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IRREGULARITY OF THE RATE OF DECREASE OF
SEQUENCES OF POWERS
IN THE VOLTERRA ALGEBRA

J. ESTERLE

1. Introduction. G. R. Allan and A. M. Sinclair proved in [1] that
if a commutative radical Banach algebra % possesses bounded approx-
imate identities then for every sequence (a,) of real numbers such that
lim, . a, = 0 there exists b € # such that

n||1/n
lim inf o~ =
N30 Qn

+c0.

In the other direction it is shown in [6] that if # is separable and if the
nilpotents are dense in # then for every sequence (8,) of positive reals
there exists b € & such that

n)11/n
bR” = A and limsup L 0.

(This result was given in [2] for the Volterra algebra.)

We are concerned here with the irregularity of the rate of decrease of
sequences of powers. It is known [5] that if a nonnilpotent element b of a
commutative radical Banach algebra &% satisfies b € [bZ ]~ then there
exists a nonnilpotent ¢ € & such that

N—co N

n(1/m 1 njl/n
lim sup hi7ﬁ = lim sup H%%Tﬁ = +4o00.

We prove here that if # is a commutative separable radical Banach
algebra with b.a.i in which the nilpotents are dense then for any sequences
(an) and (B,) of positive reals which converge to zero there exists a € %
such that [aZ]~ = % and

n) 1/n n)1/n
tim sup L7 — oo, timing €17 _

n->c0 Ay N0 n

0.

This result does not extend to the weighted convolution algebra
L'(R*, e=**) because there exists a sequence ()\,) of positive reals such
that lim inf [[5"]|'/"\, = + oo for every nonzero element b of L1(R*, ¢e~*)
(see [2] or [6]).
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2. Irregularity of the rate of decrease of sequences of powers.

THEOREM 1. Let X be a commutative nonzero separable Banach algebra
with bounded approximate identities. If the nilpotentis are dense in R then
for all sequences (a,) and (B,) of positive reals which converge to zero there
exists ¢ € R such that (aR|~ = K and

—— lim inf — =
N—co Ay oo n

npl/n n)|1/n
lim sup 4] = 400, o] 0.

Proof. Put, for every n € N:ip, = (8,H/n)*. Add a unit e to #. By the
Johnson-Varopoulos extension of Cohen’s factorization theorem (3], {7],
[8] there exists x € &% such that [x# ]~ = & and it follows from a result
of [1] that there exists b € % such thatx € b% and

niyl/n
lim inf “ba” - = 400,
So (bR~ = A.

Define by induction a sequence (\,) of positive reals, two sequences
(pn) and (g,) of positive integers and two sequences (f,) and (g,) of
elements of # such that if we put

Xn = ()\16 +f1)(2)\1—'18 + gl) .
()‘n—lg +fn—l) (2)‘71—1—13 + gn—l) (}\,,6 + fn)
Yo = (e + ) @n7le + 1) - (ve + £.) @\ 7e + g,)

the following conditions are satisfied (we put for convenience X, =
Yo = 6).

1) X 'YVmr —0X,, "X, <2 0=ms=n—1,n21)
(2) oPmY,Pm — Xl < 27, (1 2

3

<n—1,n2z22)

(3) (b ¥y yim — binX,in|| < 2 (lbin]| 1 < m < n—1,7n 2 2)
) bX,"X, - bX, 'V, <27 (1 =msnnzl)

(6) o X — WY < 27, (LS m < n,n 2 1)

6) [JptmX, i — bV, ]| < 27| (L= m s n—1,n22)

(@) Mo X7 | < po (n 2 1)
@) foer e > o] (= 2 1).

There exists a sequence (e;) of elements of # such that lim,, xe, = x
for every x € #, and we may assume that ¢, is nilpotent for every & ¢ N.
Taking f1 = e, with £ large enough we may arrange that [|b — bf1|| < 3.
Let p; be a positive integer such that f1?* = (. Then

limy,o 6 —0(he + f1) || < 3 and limi,, 71 (e + f1)?:] = 0.
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So taking N\, > 0 small enough we may arrange that fi, »; and )\
satisfy the conditions (1) and (7). Then
lim,c_m bX][2)\1—16 + (1 - 2)\1_1)ek] = bX1
)
lim e, 0" X " U™ (20 e + (1 — 2N~ Y)e ™ = X, U™

for every U € # ® Ce and for every m € N. So taking g; = (2N~ —
1)e; with & large enough we may arrange the conditions (4) and (5) to be
satisfied. Then

i 127X

1
mtm— 2 lm ro-=mrmm = 2
e My
and there exists ¢; € N such that
oyt > [[bu].

Now suppose that we have constructed finite families (A, ..., \,),
(fv,ooonfu)y (€ oo &)y (Pry .., pn) and (qu, . . ., ¢n) satisfying the
eight conditions. As lim;_,, be;, = b we have

limk_)m memek”‘ = mem

for every £ € N and every U € # @ Ce. Taking f,11 = e, with k large
enough we may arrange that the following inequalities hold:

16X =1V, — bXn= Vifural] < 271 (0 < m < n)
”bﬂm Ypm — b anmfn+lﬂm|| < z_n_lﬂpm (1 =m= n)
[0V, = o V" ™| < 277 Hpom || (L = m < ).

Let pn+1 > P, be a positive integer such that f,"»+! = 0. We have
limyol| (Ne + fr)?+1] = 0 and limy,o 2™ (Ne + fus)™ = &"fr”™

for every m € N and every x € #. So taking \,;; > 0 small enough we
may arrange the conditions (1), (2), (3) and (7) to be satisfied by

Aut1y Patr and foir
Then

limg, e 0Xnia[20p17le + (1 — 2017 "e) | = 0X i
)
limk—)oo men+lmUm[2)‘n+l_le + (1 - 2)\n+l_lek)]m = men+1mUm
for every U € # @ Ce and every m € N. So taking g1 =

(1 — 27417 Y)e;, with k large enough we can arrange the conditions (4),
(5) and (6) to be satisfied. Then

m m|11/m
lim MZ—*%/—,Q— = lim —"l_;rf/—m‘ = 2"
o™l | Vo™l

Mm—co m-co

So we can choose ¢,;1 > ¢, satisfying (8).
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We thus see that we can construct by induction sequences (\,), (f,),
(g2), (pn) and (g,) satisfying the eight conditions. It follows from (1) and
(4) that

16X, — bXpi1] < 8.2771
for every n = 0 and that

lim,., [6X, — 0Y,| = 0.

So the sequence (bX,) is Cauchy. Denote by « its limit. Then a =
lim, . bY,. We have, for every m = 0 and every n = m,

I|me_1Xn - me_IXn-HH é Hme—an - me_l Yn”

+ [0X 01V, — b X X < 32771
So

[aX, ™ = bl £ 20 116X Kir — bX, Xl < 327", and

b = lim,_,aX, ™"
Sob € [a(X + Ce)]~,bZ# C [aZX]~ and [aZ ]~ = X. It follows from (2)
and (5) that we have, for every m = 1 and every n = m,

[6mX™ — b X, < 3271 g,

So
o) < 167 + 10X = 7
< (1 + 3'2—n)#ﬂm < 3“Pm
We obtain
o 1/pm < 31/1?": i ml/l’m — 31/pm . é&n .
|| ” Hp .
So
om|| 1/pm n||1/n
lim 12 BH ~0 and fiminf <
m->c0 Pm n-c0 n

Also it follows from (3) and (6) that we have, for every m = 1 and every
n=m:

S S A e
So

”alIm” > ”qu qum” _ m;n”blhn . Yan — pm. Yn«}»lqm“

> [[pem||[1 — 2-m+1].
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We obtain
gm||1/qm
lim inf W; = 1,
m-=co
gm||1/qm
tim inf 171 oo
m-ooo a(I‘h
So
nylm
lim sup Ll = +©.
n->00 QA

This completes the proof of the theorem. The theorem applies in particu-
lar to the ‘“Volterra algebra’ L4!(0, 1) discussed in [4], Section 7.
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