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IRREGULARITY OF THE RATE OF DECREASE OF 
SEQUENCES OF POWERS 

IN THE VOLTERRA ALGEBRA 
J. ESTERLE 

1. Introduction. G. R. Allan and A. M. Sinclair proved in [1] that 
if a commutative radical Banach algebra St possesses bounded approx­
imate identities then for every sequence (an) of real numbers such that 
limn^œ an — 0 there exists b G St such that 

||&n||1/n 
lim inf -—-— = +oo . 

w-»oo &n 

In the other direction it is shown in [6] that if <$? is separable and if the 
nilpotents are dense in 8? then for every sequence ((3n) of positive reals 
there exists b G S% such that 

[bSt]' = St and lim sup ^ | — = 0. 

(This result was given in [2] for the Volterra algebra.) 
We are concerned here with the irregularity of the rate of decrease of 

sequences of powers. It is known [5] that if a nonnilpotent element b of a 
commutative radical Banach algebra 8% satisfies b G [bS!]~ then there 
exists a nonnilpotent c G St such that 

| | 6 » | | l /n n n | | l M 

lim sup j|^T,ï7n = lim sup frnuT/n = + ° o • 
n^oo \\c H n->œ \\0 || 

We prove here that if St is a commutative separable radical Banach 
algebra with b.a.i in which the nilpotents are dense then for any sequences 
(an) and (j3n) of positive reals which converge to zero there exists a G St 
such that [ a ^ ] - = St and 

II w i l l / » il ni l 1 In 

lim sup -—u— = +oo , lim inf 11-~— = 0. 
W->co Otn 

This result does not extend to the weighted convolution algebra 
L1(R+, e~t2) because there exists a sequence (Xn) of positive reals such 
that lim inf ||6w||1/wXn = + oo for every nonzero element b of L1(R+, e~t2) 
(see [2] or [6]). 
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2. Irregularity of the rate of decrease of sequences of powers. 

THEOREM 1. Let Si be a commutative nonzero separable Banach algebra 
with bounded approximate identities. If the nilpotents are dense in & then 
for all sequences (an) and (/3n) of positive reals which converge to zero there 
exists a £ S% such that [a3?]~ = 8% and 

II n i i l / n || n\\l/n 

hm sup -—-— = +oo , hm int —r1— = 0. 

Proof. Put, for every n £ N:nn = (l3nH/n)n. Add a unit e to S?. By the 
Johnson-Varopoulos extension of Cohen's factorization theorem [3], [7], 
[8] there exists x £ S? such that \xS%\~ = <̂ ? and it follows from a result 
of [1] that there exists K < ^ such that x £ b& and 

,. • r\\bH\\1/n , 
hm inf -—-— = +oo. 

n-^oo ®-n 

So [b@]- = 01. 
Define by induction a sequence (\n) of positive reals, two sequences 

(pn) and (qn) of positive integers and two sequences (fn) and (gn) of 
elements of «^ such that if we put 

Xn = (X1^+/1)(2X1-1^ + ^ 1 ) . . . 
(Xn_ie +/n_i)(2Xn_1-1^ + gn-.i){\ne + / n ) 

F» = (Xie +/1)(2X1~1e + gi) • . . (Ke +fn)(2\T1e + g») 

the following conditions are satisfied (we put for convenience XQ = 
Fo = e). 

(1) \\bXm-'Yn^ - bXm~'Xn\\ < 2~n (0 ^ m g n - 1, n è 1) 

(2) ||6p~Fn_i»« - ^ - X / - | | < 2-nnPm (1 g w g n - 1, » ^ 2) 

(3) ||6^Fn_i«» - ^-X/™|| < 2- n | |6^ | | ( U w ^ » - l , » | 2 ) 

(4) H f t ^ - 1 ^ - bXm-iYn\\ < 2~n (!SmSn,n^l) 

(5) \\bp™Xn
p™ - ^ - F / - | | < 2~n

liPm (1 ^ m g n, n ^ 1) 

(6) | | ^ - X / - - ^ - F / H | < 2-n | |6^ | | (1 g w g w - 1, w è 2) 

(7) H^X^il < M,n (n è 1) 

(8) | | ^ 7 / H I > \\°Qn\\ (n è 1). 

There exists a sequence (e*) of elements of 91 such that l im*^ xek = # 
for every x Ç «^, and we may assume that e* is nilpotent for every k Ç N. 
Taking/i = e* with fe large enough we may arrange that \\b — bfi\\ < J. 
Let pi be a positive integer such tha t / i P l = 0. Then 

limx_o ||6 - 6(Xe + / i ) | | < J and l imx^ PPl(X^ + / i ) P l | l = 0. 
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So taking Xi > 0 small enough we may arrange that / i , pi and Xi 
satisfy the conditions (1) and (7). Then 

\imk^œ bX^Xr'e + (1 - 2X1~1K] = bX, 
so 

limk_œbmX1
mUm[2\-1e + (1 - 2\r1)ek]

m = bmXl
mUm 

for every £/ £ ^? © Ce and for every m Ç N. So taking gi = (2Xi_1 — 
1 ) ^ with k large enough we may arrange the conditions (4) and (5) to be 
satisfied. Then 

l imr^i1M> l im_.i 2 
||7m|il/m = n i I 1 | | T 7 —mnl/m ~" ^ 

W ôo I P || || % 1 | | 

and there exists gi £ N such that 

| |68 lFi«i| | > ||6«i||. 

Now suppose that we have constructed finite families (Xi, . . . , Xn), 
( / i , • • • ,/n), (gi, • • • , & ) , (£i, • • • , £») and (gi, . . . , gn) satisfying the 
eight conditions. As l im^^ 6^ = b we have 

lim^œ6mZ7m^m = bmUm 

for every K N and every U £ & ® Ce. Taking fp+i = ek with & large 
enough we may arrange that the following inequalities hold: 

\\bXm~'Yn - bXm~'Ynfn+1\\ < 2 — * (0 g m ^ n) 

\\bPmYn
Pm - bPmYn

p™fn+1
p™\\ < 2~n~lnPm (1 g w g w) 

\\bmYn
m - bmYn

mfn+1
m\\ < 2-w-1 | |6^ | | (1 g m g w). 

Let £w+i > £n be a positive integer such that fn+iPn+l = 0. We have 

limx^oll (Xe + fn+i)Vn+1\\ = 0 and limx_0 x
w(Xe + in+i)w = *m/n+im 

for every m Ç N and every x Ç ̂ . So taking Xn+i > 0 small enough we 
may arrange the conditions (1), (2), (3) and (7) to be satisfied by 

pn+1 and / n + i . 
Then 

\imk^œbXn+i[2\n+r1e + (1 - 2Xn+r1ek)] = bXn+x 

so 
\\mk^bmXn+l

mUm[2\n+rle + (1 - 2X n + 1 -^ ) ] m = bmXn+1
mUm 

for every U Ç ^ 0 Ce and every w £ N. So taking gn+i = 
(1 — 2\n+i~1)ek with k large enough we can arrange the conditions (4), 
(5) and (6) to be satisfied. Then 

m 111 lm 
y \\bmYn+1

m\\1/m
 > y 1 _ _ « , . 

m \\hm\\l/m m II V —will/m — ^ • 
ra->oo I P || m->oo || * n+1 \\ 

So we can choose qn+i > qn satisfying (8). 
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We thus see that we can construct by induction sequences (X„), (/„), 
(gn). (Pn) and (q„) satisfying the eight conditions. It follows from (1) and 
(4) that 

\\bXn - bXn+1\\ < 3 . 2 - * - 1 

for every n ̂  0 and that 

limn^ \\bXn-bYn\\ = 0. 

So the sequence (bXn) is Cauchy. Denote by a its limit. Then a = 
lim^^^ b Yn. We have, for every m S; 0 and every n 2: m, 

\\bXm~lXn - bXm~'Xn+l\\ è \\bXm~iXn - bX^YnW 

+ \\bXm~^Yn - bXm-'Xn+1\\ < 3.2-"-1. 

So 

\\aXm-1 -b\\è1L \\bXm-Xn+l - bXm~lXn\\ < 3.2"1", and 
n=m 

b = Umm^maXm-1. 

Sob € [a(& + Ce)}~,b& ç [ a ^ ] - a n d \aM\- = St. It follows from (2) 
and (5) that we have, for every « i l and every n S; m, 

\\bmXm - bmXn+1
m\\ < 3.2-*-* . v.Vm. 

So 

Ik2""!! s . Wm\\ + È Wmxn+iPm - bVm • xn
Vm\\ 

< (1 + 3.2~n)nPm < 3nPm. 

We obtain 

So 

\\„Pm\\l/Pm ^ ql/Pm 1/Pm _ o 1/Pw Pgm 

\\a II "^ " ' Mpm ~~ " ' . 

lim ^ = 0 and lim inf ]]^~ = 0. 

Also it follows from (3) and (6) that we have, for every m S: 1 and every 
n 2; m: 

\\b'"Yn'» - ft«-F,+1«-|| < 2-"He'-»||. 
So 

||a*"|| > \\bqmYjm\\ - £ ||6«" • F,/"* - 6"» • Fn+1""|| 

> \\b*~\\[l - 2~m+1]. 
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We obtain 

\\aqm\\1,qm 

j | Qml 11 Iqrn 

lim inf = +co . 

So 

|H | 1 / W , 
lim sup -—-— = +°o . 

This completes the proof of the theorem. The theorem applies in particu­
lar to the "Volterra algebra" L^(0, 1) discussed in [4], Section 7. 
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