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Abstract. We prove a multidimensional conformal version of the scale recurrence lemma
of Moreira and Yoccoz [Stable intersections of regular Cantor sets with large Hausdorff
dimensions. Ann. of Math. (2) 154(1) (2001), 45-96] for Cantor sets in the complex plane.
We then use this new recurrence lemma, together with Moreira’s ideas in [Geometric
properties of images of Cartesian products of regular Cantor sets by differentiable real
maps. Math. Z. 303 (2023), 3], to prove that under the right hypothesis for the Cantor sets
Ki, ..., K, and the function & : C" — R/, the following formula holds:

HDh(K|y x Ky x ---x K,)) =min{l, HD(K) + - - -+ HD(K,)}.

Key words: dynamically defined Cantor set, Hausdorff dimension, Marstrand projection
theorem
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1. Introduction

In this paper, we prove a version of the scale recurrence lemma of Moreira and Yoccoz (see
[7, §3.2]) in the context of Cantor sets in the complex plane. We will use this new version,
together with other results, to prove a dimension formula for projections of products of
complex Cantor sets. More precisely, given conformal regular Cantor sets K1, . . ., K in
C, and a C! function h : C" — R!, we prove that, under natural hypothesis, one has

HDh(K1 x Ky x ---x Ky))=min{l, HD(K1) +- - -+ HD(K,)}. (1)

Our results will be proved for conformal regular Cantor sets. Those are Cantor sets that
are maximal invariant sets for an expanding map, whose derivative is conformal at the
points in the Cantor set. Rigorous definitions will be given in §2. The investigation of such
Cantor sets is important because they appear in the study of homoclinic bifurcations of
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automorphisms of C2, as shown by Aratjo and Moreira in [1]. We expect that conformal
regular Cantor sets in C will play a role in the study of homoclinic bifurcations of
automorphisms of C2, similar to regular Cantor sets in R in the study of homoclinic
bifurcations of surface diffeomorphisms.

The study of homoclinic bifurcations has proved to be fruitful in the understanding
of dynamics for surface diffeomorphisms. Complicated dynamical phenomena arise
from them. For example, arbitrarily close to any diffeomorphism exhibiting a generic
homoclinic tangency, there are open regions in which any diffeomorphism belonging
to a residual set has an infinite number of sinks—this is the so-called Newhouse
phenomenon. Looking for analogous results and using similar ideas to those of Newhouse,
Buzzard [2] proved the existence of an open set of automorphisms of C2 with stable
homoclinic tangencies.

The scale recurrence lemma was an important step in the solution to the Palis conjecture,
about the arithmetic difference of Cantor sets, by Moreira and Yoccoz. They proved that
there is an open and dense subset, inside the set of pairs of regular Cantor sets with sum of
Hausdorff dimensions bigger than one, such that any pair (K1, K») in this subset verifies
int (K1 — K»>) # (. The theorem of Moreira and Yoccoz is for regular Cantor sets in the
real line. Together with Araujo, we are close to proving an analogous result for conformal
regular Cantor sets in the complex plane. The scale recurrence lemma in these papers is
a fundamental tool for this work in progress; from our point of view, this is the main
motivation for proving the conformal version of the lemma.

Furthermore, Moreira and Yoccoz were able to use their solution to the Palis conjecture
in the study of homoclinic bifurcations for surface diffeomorphisms (see [9]). They proved
that given a surface diffeomorphism F' with a homoclinic quadratic tangency associated
to a horseshoe with dimension larger than one, the set of diffeomorphisms close to F
presenting a stable tangency has positive density at . One of the main reasons to study
conformal regular Cantor sets is to apply the ideas in [9] to the context of homoclinic
bifurcations of automorphisms of C2. The work [1] already proves that this approach is
rewarding; it shows that Buzzard’s example [2] can be recast in terms of the theory of
conformal Cantor sets (where the concepts of limit geometries and recurrent compact set
are applied).

Another development in the subject was given by Lopez [4]. He generalized the work
[7] for a product of several Cantor sets in the real line. In this paper, we will consider a
scale recurrence lemma for a product of several Cantor sets in the complex plane.

In brief, we believe that the study of conformal regular Cantor sets plays an important
role in the theory of dynamics of automorphisms of C2. We think that such Cantor sets
should be further investigated, as we are convinced that the scale recurrence lemma is a
key step towards a complex version of Palis’s conjecture, and this will have implications in
the bifurcation theory of automorphisms of C2.

At the same time, we have the dimension formula as an application of the scale
recurrence lemma. The study of this type of dimension formulas is motivated by a classical
theorem of Marstrand, generalized by Mattila and others. Denote by G(m, /) the set of
I-dimensional linear subspaces of R™ and for s € G(m, [), denote by 7, the orthogonal
projection on s. The Marstrand theorem states that given F C R™, a Borel subset, we have
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HD(rs(F)) = min{l, HD(F)}

for almost all s € G(m,[), with respect to a volume measure on G(m,l). In the
particular case when F = K| x - - - x K,, is a product of regular Cantor sets, one has
HD(K| x---x Ky,)=HD(K1)+---+ HD(K,). Thus, our formula, equation (1),
corresponds to the Marstrand formula replacing 5 by /. The difference between our result
and the classical Marstrand theorem is that our theorem is not an ‘almost all’ result; it
holds under explicit generic conditions on the map 4 and the Cantor sets. The formal
statement of the dimension formula proven in this paper is the following main theorem.

THEOREM B. (Dimension formula) Let Ky, ..., K, be C", m > 2, conformal regular
Cantor sets generated by expanding maps g1, . . . , g, respectively. Suppose all of them
are not essentially affine. Assume that there exist periodic points p; € K, with period
nj, for1 < j < n, such that if we write Dg;.lj (pj) = (l/rj)R_Uj, where R, is the rotation
matrix by an angle v € T, then

(logr1,0,...,0;v1,0,...,0),

(O"' "logrn—l;ov' "7vn—130)5
(—logrp,...,—logry,;0,...,0,vy,),

generate a dense subgroup of R"™!\ x T". Let h be any C' function defined on a
neighborhood of K1 x - - - x K, into R! such that there exists xo € K; x - - - x K, where
Dh(xg) verifies the transversality hypotheses. Then

HD(h(K; x - - - x Ky)) = min{l, HD(K}) + - - - + HD(K,))}.

The transversality hypotheses mean that for any subset A C {1, . . ., n}, the linear map
Dh(xg) : C" — R/ satisfies

dim(Im (D (x0) (- =0:j¢4)) = min{l, 2 - #A}.

This is the minimum assumption one needs to have the dimension formula for linear maps.
Proper definitions of all other objects are given in the next section.

This type of problem has already been investigated by other authors, we mention some
of them. Peres and Shmerkin [11] proved that for Kj, K» C R attractors for self-affine
iterated functions system (i.f.s.) given by maps {rix + ¢; ?:17 {rl.’x + tl.’ }:’/:1, if there are
J» k such that log(r;)/ log(rlé) is irrational, then

HD(K; + A - K») = min{l, HD(K) + HD(K>)}

for all A #£ 0.

However, Moreira [8] studied the same formula for K|, K5 C R regular Cantor sets.
He proved that the formula holds provided one of the Cantor sets is not essentially affine.
Moreira’s proof uses the scale recurrence lemma of [7].

In another work, Hochman and Shmerkin [3] proved a dimension formula without
assuming any type of affinity or non-affinity in the attractors or Cantor sets. They proved
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(in fact, this is a corollary of their main theorem) that for K1, . . ., K, attractors for i.f.s.
on R, one has

HDOuKy + -+ AKy) = min{l, HD(K}) + - - - + HD(Ky)}

forall A; #0,i =1,...,n, provided that a certain set is dense in the group (R", +)/A,
where A is the diagonal. This set depends on the derivative of the contractions of the i.f.s.
on periodic points. The technique used by Hochman and Shmerkin is different from the
approach of Moreira.

Apart from the motivations given by the Marstrand theorem and dynamical systems,
there are other reasons to study sets of the form K| + K>, where K, K; are dynamically
defined Cantor sets. There are applications in number theory as well. In [6], Moreira used
his dimension formula to prove that fractal dimensions of the Lagrange spectrum grow
continuously. More precisely, he proved that the function

d(t) = HD(L N (=00, 1)),

where L C R is the Lagrange spectrum, is continuous.

In this paper, we will adapt the methods used by Moreira and Yoccoz to the context of
Cantor sets in the complex plane. We will consider an arbitrary finite number of Cantor
sets, not just two. This will leave us facing different difficulties. First, we need to find
the right definition for the renormalization operators and the right statement for the scale
recurrence lemma. Those are mainly influenced by Lemma 3.1 and equation (2). However,
the high dimensionality of the context requires a more detailed analysis. This can be seen
in the proof of Proposition 3.1 and the use of Lemma 3.5. The proof of the conformal
scale recurrence lemma requires a new type of hypothesis, the fact that each of the Cantor
sets we are working with is not contained in a C! embedded curve. We call this property
not essentially real, it is introduced in §2.4. Moreover, the proof of the scale recurrence
lemma in [7] has a minor flaw, which we need to deal with; in §4, we comment on how to
solve it.

The paper is organized as follows. Section 2 contains basic definitions and results. In
this section, we state, without proof, the scale recurrence lemma. Section 3 is dedicated to
the proof of the dimension formula. Finally, in §4, we prove the scale recurrence lemma.

2. Basic definitions

In this section, we define the objects and present the principal tools that will play a role
in the paper. Most of the proofs of the facts stated in this section follow from standard
techniques, so we leave them without proof. For proofs, we refer the reader to [13, Ch. 1].

2.1. Conformal regular Cantor set. A C™ regular Cantor set (or dynamically defined
Cantor set) on the complex plane is given by the following data: a finite set A of letters and
aset B C A x A of admissible pairs, for each a € A a compact connected set G(a) C C,
and a C™ function g : V — C defined in an open neighborhood V of | |, 4 G(a). This
data must verify the following assumptions.

e The sets G(a), a € A, are pairwise disjoint.

e (a,b) € Bimplies G(b) C g(G(a)), otherwise G(b) N g(G(a)) = .
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e Foreach a € A, the restriction g|G () can be extended to a C™ diffeomorphism from
an open neighborhood of G(a) onto its image such that m(Dg) > 1 (where m(A) =
infy0 |Av|/|v]| is the minimum norm of the linear map A).

e The subshift (£, o) induced by B

>t ={a=(ap,ai,...) € AV : (4, ai11) € Bforalli > 0},

o(ap, a1, az, . ..) = (ai, az, . . .) is topologically mixing.

Once we have such data, we can define a Cantor set (that is, totally disconnected, perfect
compact set) on the complex plane K = (),,.o 8 " (Ll,cs G(@)).

We will say that the regular Cantor set is conformal if for all x € K, the linear map
Dg(x) : R? — R? is conformal, that is, m(Dg(x)) = || Dg(x)||. The assumption that Dg
is not necessarily conformal outside of the Cantor set was introduced by Araujo in his PhD
thesis, where he studied Cantor sets associated to complex horseshoes for automorphisms
of CZ. It plays an important role in the investigation of a complex version of Palis’s
conjecture. We will write only K to represent all the data that are required to define a
conformal regular Cantor set. All Cantor sets in this paper will be conformal regular Cantor
sets; we will usually refer to them just as Cantor sets.

The degree of differentiability, m, can be any real number bigger than one. If m is not
an integer, then g being C™ means that it is C!"l, where [m] is the integer part of m, and
Dl g is Holder with exponent m — [m]. To prove our results, we will assume that m > 2.

We can actually suppose that the sets G(a) verify G(a) = int(G(a)), this is a
consequence of the next lemma.

LEMMA 2.1. Let K be a C™ conformal Cantor set, then there exist a family of open and
connected sets G*(a) C C for a € A, such that we have the following properties.

(i) G(a) C G*(a), and g|G() can be extended to an open neighborhood of G*(a)
such that it is a C™ diffeomorphism from this neighborhood onto its image and
m(Dg) > 1.

(ii) The sets G*(a), a € A, are pairwise disjoint.

(ii) (a,b) € B implies G*(b) C g(G*(a)), and (a,b) ¢ B implies G*(b) N
8(G*(a)) = 0.

2.2. Limit geometry. Associated to K, we define the sets »fin — {(ag, ..., ay):
(aj,ai+1) € Bland X~ ={(...,a—,,...,a—1,a9) : (a;i,ai+1) € B}.

Givena = (ao, ..., an), b= (bo, ..., by), 0" = (..., 0" ,0D).02=(...,0%,.60),
we will use the following notation.
o Ifa, =bg,ab=(ag,...,an,b1...,bn).

o If0) =ap.0la=(...0'.,6).a1,... an).

o Ifol=02,0'n0%>= (eij, ...,6)), wherejissuchthat', = 62, forall0 <i < j,
and eij_l £ eij_l.

o If6) =a,,0' na= (0!, ..., 6p), wherejissuchthat6!, =a,;forall0 <i < j,

1
and 97].71 Fap_j_1.
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For a=(ap,...,ay,) € /M define G(a) ={x €| |,cs Ga): g/ (x) € G(a;),
Jj=0,1,...,n}, and the function f, : G(a,) — G(a) given by

-1 -1
fa = 3|G(a0) o OglG(aH)'

Denote by K(a) the set K N G(a). For each a € A, we choose an arbitrary point
¢q € K (a). Using this, define ¢, € G(a) by ¢4 = ful(ca,)-

Notice that Df,(cq,) is a conformal matrix in R?, then it is equal to a positive real
number times a rotation matrix, and denote the angle of rotation by v, € R/(27Z).
In this way, we have a preferred point and direction for each G(a). We also define
rq = diam(G(a)), where diam means diameter.

Given 0 = (...,0_n,....0-1,00) € 5=, let " = (6_p, ...,00) and define kZ:
G(6p) — Cby

0
kn = ¢gn o for,
where ¢gn is the unique map in Aff(C) = {A(z) =az+b:a,beC, a#0}such that

¢on(con) =0, Depgn (ch)ei”ﬁ" e R, diam(¢gn (G(0"))) = 1. For the next theorem, we
consider k,% extended to a small open neighborhood G*(6y) of G () (as in Lemma 2.1).

THEOREM 2.1. Let K be a C™ conformal Cantor set. For any 60 € X7, the family of
functions k,% : G*(6p) — C converges in the C'"™ topology, with an exponential rate of
convergence independent of 9, to a C™ function k% : G*(6) — C. The function k% is a
diffeomorphism onto its image and the derivative Dk%(x) is conformal for all x € K (6p).

Moreover, if m > 2, then there is a constant C > 0 such that given ', 0> € ~ ending
with the same letter,

supllk?' o (k€)' (z) — z| + DU o (kL)1) () — I|]] < Cdiam(G (8" A 62)).

The function k% is called a limit geometry of K. Notice that the rate of convergence
being independent of @ implies that D'kZ, for 0 < < [m], depends continuously on 6.
The proof of Theorem 2.1 can also be found in [1].

For§ € £, a € £/™, such that a starts with the last letter of #, define

Gla) = K(G(a), K%a) =kAK (@), c5=K(cq)

DK%(c,)

Mexp(i V), ry = diam(G%(a)).

exp(i vg) =
Let FQQ be the affine map determined by the equation k% o f, = Fg o k%21t maps 0 to c%
and can be written using rg e Rt, vg € R/2nZ as
Fg(z) = rgexp(i vg)z + c%

Definition 2.1. We will say that a C™, m > 2, Cantor set K is not essentially affine
if there exist ', 6% € £, ending in the same letter, and zo € KQZ(G(%) such that

DK o (k")) (z0) # 0.

https://doi.org/10.1017/etds.2024.15 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2024.15

Scale recurrence lemma and dimension formula 7

2.3. Mass distribution principle. Typically, estimating the Hausdorff dimension from
below is harder than from above. One usual technique is the mass distribution principle
that we state below.

PROPOSITION 2.1. Let F C R! be a Borel measurable set, v a Borel measure with
v(F)>0,and a,b >0, s > 0 such that v(u) < a - diam(u)*® for all u measurable with
diam(u) < b. Then the Hausdorff dimension of F, denoted by H D(F), is bigger than s.

The next proposition is a consequence of the mass distribution principle and it will be
used to prove the desired dimension formula (Theorem B). Its proof is not difficult and can
be found in [13, §1.3].

Let N be the node set of a rooted tree with the property that every node has finite index.
Here, N can be described in the following way: there is a marked element pg € N called
the root of N; for each p € N, we have a finite set Ch(p) C N called the children of p; if
p # ¢, then Ch(p) N Ch(g) = ¥; for any g € N, there is a sequence qo, q1, - - - , ¢m Such
that go = po, gm = ¢, and gij4+1 € Ch(q;),i =0, ...,m — 1, such ¢ is called an m-level
node of N. Denote by I (k) the set of k-level nodes. Now N can be written as the disjoint
union N = L2 I (k).

COROLLARY 2.1. Suppose we have a set N as described above and assume that for each

p € N, we have a Borel measurable set G(p) C R! with the following properties:

(@) if p € Ch(q), then G(p) C G(q);

() if p1, p2 € Ch(q), p1 # p2, then G(p1) N G(p2) = ;

(c) the supremum sup{diam(G (p)) : p € 1(k)} goes to zero as k goes to infinity;

(d) there is a constant u > 1 such that for any p € Ch(q), we have diam(G(p)) >
! diam(G(q));

(e) there is a constant u > 1 such that for any p € N, the set G(p) contains a ball of
radius " 'diam(G (p));

(f) there is a number s > 0 such that for any g € N,

Y diam(G(p))* = diam(G(q))".
peChig)

Let F be the set F = (o Upe](k) G(p). Then HD(F) > s.

2.4. Not essentially real Cantor sets. In this subsection, we will present a hypothesis in
the Cantor set that will guarantee it is indeed two dimensional. We remark that for regular
Cantor sets in the real line, there is no analogous definition and results to those in this
section. Those are objects that start appearing at dimension two.

Definition 2.2. We will say that a Cantor set K is essentially real if there exists 6 € X~
such that the limit Cantor set KZ(6) is contained in a straight line.

It is not difficult to prove that K is essentially real if and only if for every 8 € X7, the
limit Cantor set K%(6p) is contained in a straight line. Moreover, one can prove that K
being essentially real is equivalent to K being contained in a C! one-dimensional manifold
embedded in the plane. For the proof of the scale recurrence lemma, we will suppose that
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the Cantor set is not essentially real, in such a case, one is able to control the quantity of
elements GQ(c_l) close to an arbitrary line; this is the content of the next lemma.

Given ¢ > 0, p > 0, define Z(c, p) = {a € M : ¢ 1p < diam(G(a)) < cp}. We
can think of this as the set of G(a) having approximate size p. Using standard techniques
(see [10] or [13]), one can prove that there is a constant C > 0, depending only on ¢ and
the Cantor set K and not depending on p, such that

C7p HPE) < 43 (c, p) < Cp~ 1P,
Suppose we have fixed a constant Cs > 0. Let (a, b) € B. Asubset D C X(Cs, p) is called
a discretization of K (a, b) of order p if | J,.p K(a) = K(a, b).

LEMMA 2.2. Let K be a Cantor set not essentially real. There exist an angle « € (0, 7w /2)
and numbers py > 0, a € (0, 1), depending only on Cs and the Cantor set K, such that for
any limit geometry k2, x € G%(8y), line L, s € A, D discretization of K (8o, s) of order less
than pj,

#{ae D: G%a)NCone(x, L,a) # ¥} <a-#D,

where Cone(x, L, «) is the set of z € C such that the vector 7 — x forms an angle of
measure less than « with the line L.

Another use of the not essentially real hypothesis will be given in the next lemma. Let
K be a Cantor set, for x € K, consider the set

. y—Xx

K .= ﬂ { 2] 1y € Bs(x) N (K \ {x})},
>0 Y

where Bj(x) is the open ball of radius § centered at x. If K is not essentially real, then the

set K fi " has two linearly independent vectors (over R) and then the following lemma holds

for K.

LEMMA 2.3. Let K be a Cantor set and fa C' function from a neighborhood of K into R?.
Suppose that f is conformal at K, that is, Df (x) is conformal for all x € K, and K ;’ir has
two linearly independent vectors (over R) for all x € K. Then, for all x € K, the I-linear
map D! fx): R2x...xR?— RZis conformal, that is, there is a complex number ci
such that

D'r, ... ) =ck 21z 2.

The operation - on the right-hand side of the last equality corresponds to complex
multiplication.

In particular, if a Cantor set is not essentially real and not essentially affine, then for the
values zg € K, 6 1 QZ € X7, given by Definition 2.1, there is a non-zero complex number
dp such that

D2k o (kY1) (z0) (v, w) = do - v - w.

2.5. Renormalization operator. From now on, we will be working with a finite set of
conformal regular Cantor sets K1, ..., K,. To each of them, we have various objects
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associated, as defined in the previous subsections. We will use subscripts and superscripts
to differentiate the objects from one Cantor set to the other. For example, we use X (c, p)
for the set X (c, p), which was defined in the last subsection, associated to the Cantor set
K ;. We will denote by d; the Hausdorff dimension of the Cantor set K ;. In this section,
we will define renormalization operators, which are operators associated to the family
K, ..., K, of Cantor sets.

Define J = R*~! x T", where T = R/(27Z). The group T is endowed with the unique
invariant distance giving diameter 27 to the whole space. For v € T, we denote by
|lv|| the distance between v and the zero element. The space J is an abelian locally
compact group. We put on J the unique invariant metric such that the distance between
(t1, ... th—1, V1, . .., Uy) and the zero element is max;{|z;|, [|v;|l}.

Lemma 3.1 justifies why we choose to work on J = R"~! x T”. The lemma states that
the ‘renormalization’ of &, given by h o (f,1, ..., fan), becomes, modulo composition by

an affine function, arbitrarily close to a function of the form B o A(¢, v) o (le, e, kQ").
The pair (z, v), parameterizing the maps A(-, -), is in R?~! x T”. In fact, if the function
h were not only C! but holomorphic, then we could reduce further the type of function
A appearing and take J as R"~! x T"~!. The renormalization operators are then defined

observing how the expression A(¢, v) o (le, ..., k2") changes when one composes it by
(fpls o os Jom)-
For (b',...,b") € Z{i" x - x M define the operator
Ty gt Zp XX By x> B XX XX,
given by
Tél,m,én(Ql, e O L, UL e V)
91 gnfl
T r
bl bnfl 91 "
= <Q1Q1,,,,,Q”Q”,t1 +log —, ..., ta—1 +log 7,v1+vb1,...,vn+vbn>.
I’En rl;n -

These are called renormalization operators. They will appear in the statement of the scale
recurrence lemma. For » > 0, we also define the set

=t otm) RN < 1< f<n— 1) x T,

and denote by v the Haar measure on J giving measure (2)" to the set Ji .

2.6. Scale recurrence lemma. In this subsection, we state one of the principal results in
the paper. This is a multidimensional conformal version of the scale recurrence lemma of
Moreira and Yoccoz [7]. The proof is technical and will be left for the end of the paper.

THEOREM A. (Scale recurrence lemma) Let K1, K3, ..., K,, be C™ conformal regular
Cantor sets with m > 2. Suppose they are not essentially affine and not essentially real.
Denote by d; the Hausdorff dimension of K;, 1 < j < n. If r, co are conveniently large,
there exist c1, ¢, ¢3, po > 0 with the following properties: given 0 < p < po, and a family
F(gl, ...,a") of subsets of J,, (a', ..., a") € Ti(co, p) X - - - X Ty(co, p), such that

v, \F@',...,a") <c foral(a', ..., a",
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there is another family F*(a', . . ., a") of subsets of J, satisfying the following properties.
() For any (a',...,a"), F*@',...,d") is contained in the c;p-neighborhood of
F(c_zl, Lo ah).
(i) Let (d',...,a") € i(co, p) X - - - X Tp(co, p), (t,v) € F*(a!, ..., a"); there
exist at least c3 p~ Tt +d) yples (b, ..., ") € T1(co, p) X - - - X Tulco, p)
(with b', . .., b" starting with the last letter of a', . . ., a") such that, if 0" € X
ends with gi, i=1,...,n, and

Ty (@' 0" 1, 0) ="', ..., 0", 7, D),

the p-neighborhood of (f, ¥) € J is contained in F*(b', . . ., b™).
(iii) v(F*(gl, ...,a™) = v(J,)/2 for at least half of the (a', . . ., a") € Z1(co, p) X
o X Ep(co, p).

3. Dimension formula

In this section, we will prove the dimension formula (Theorem B), which is one of the main
theorems in the paper. First, we will introduce some notation. Second, we will present the
discrete Marstrand property, which will be an important tool. Finally, we give the proof of
Theorem B.

The idea of the proof of Theorem B is to use the mass distribution principle in the form
of Corollary 2.1. The role of the sets G (p) will be played by sets of the form 2(G(a') x
-+ x G(a")). Thus, we will estimate the Hausdorff dimension of a subset of h(K;| X
- -+ X Ky) by defining a nested sequence of sets of the form h(G(c_zl) X - x G(d"))
verifying the properties in the corollary. The main difficulty with this type of argument is
to guarantee property (f). Roughly speaking, we use the Marstrand property to guarantee
that for every size p, we have a ‘positive’ proportion of sets G(a I x -+ x G(a@™), with
al e X j(co, p), such that their images by & are disjoint. This helps us get property (f) at a
certain level. To be able to iterate this argument and to have property (f) at all levels, one
uses the scale recurrence lemma.

We will use the notation R(p) = Xi(co, p) X - -+ X Xp(co, p), and think of any
element Q = (a', ..., a") € R(p) as the set G(a') x - - - x G(a"). Given a function ¢
defined on a neighborhood of G(a) x -+ x G(a"), we write ¢(Q) to denote the set
9(G@") x -+ x G(@).

To each (¢, v) € J, we associate the linear map A(¢, v) : C* — C",

tn—1+ivy—1

i .
A(ll7 M tn-l’ Ul’ M vn)(Zl’ AR Zl’l) = (e l+lv1 ‘ Zl? M e ° Zl’l—l’ elvnzi’l)'

. I 1 n
We consider the composition w41 gn, , = A(t,v) 0 (kQ kY ); these maps are
related to the renormalization operators by the following equation:

gl © Uats oo Jar) = Bop, gl pm iy @

where B : C* — C" is an affine function of the form B(z) = « - z + B for « € R. In fact,
this equation is the reason why we defined the renormalization operators as we did.
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One of the main reasons to use limit geometries is that they appear naturally when one
considers compositions of a C! function with the maps fa. This is explained in the next
lemma.

LEMMA 3.1. Let h be a C' function defined from a neighborhood of K1 x - - - x K,
into R!, and r > 0. There exists a function E : (0, 00) — R, depending only on h, r,

and the Cantor sets, such that lim;_.o E(t) = 0 and with the following property: for any
1

(a',...,a") such that

r i ¥V, n—1

s=<log s ,...,log £ ,Ual,...,Uan>€]r,

rgn rgn - -
consider the affine function L : R — R! given by L(z) = 1/ran(z = hicgt, . . ., can)).
Then for any 0',...,0" ending in d',...,a" the supremum distance between
Loho(fy,..., far) and Dh(cy,...,cqn)o A(s)o K€, .. k%) is less than
E(maxi<j<np ryj)-

This lemma is saying that & o (f,1, . . ., fg»), modulo composition by an affine function
on the left, becomes arbitrarily close to a function of the form B o A(t, v) o (le o k2
as the length of the words a/ increases.

Proof. Write ho (f1,..., fa) as

[ho (qb;ll, s b0 (Bt © futs s Gan 0 fur).
Use the fact that (¢, 0 f1,...,¢q" o fgn) becomes close to a limit geometry
(le, oo, k%) and Taylor first-order approximation for 4 o (¢>a_]1, e, ¢a_,,l). O

3.1. Discrete Marstrand property. In this section, we present and prove the discrete
Marstrand property. We first state two linear algebra results that we will need.

LEMMA 3.2. Let A :R" — R? be a linear map, A # 0, and denote by o the smallest
non-zero singular value of A. Then dist(x, ker(A)) < |Ax|/o for all x € R".

LEMMA 3.3. Let E|, Ey C R” be linear subspaces such that E| + Eo = R". Denote by
0 the angle between Ey and E». Define I = Ey N Ey, L1 = I* N Ey, and L, = I'- N E;.
Forx =11 +v+1, withly € Ly,1p € Ly, v € I, we have

] < dist(.x, E») and b < dist('x, El)'
sin 6 sin 6
The next proposition is the main tool that will allow us to obtain the discrete Marstrand
property. Given an R-linear map B : C" — R!, we will say it satisfies the transversality
condition if for any set A C {1, .. ., n}, we have dim(/m(B|(;;=0:j¢A})) = min{l/, 2 - #A};
in all this subsection, B will denote one such map.

PROPOSITION 3.1. Letr > 0 and B : C" — R! a linear map satisfying the transversality
condition. There exists a constant C, depending only on r and B, such that for any pair of
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subsets Q1, Q2 C C", we have

‘ max{diam(Q), diam(Q2)}’
v({s € Jy : Bo A(s)(Q1) N Bo A(s)(Q2) #¥}) < C( dist(01. 02) )

where dist(Q1, Q3) denotes the distance between Q1 and Q».

Proof. Throughout the proof, we will use the notation P = O(Q), meaning that there is
a constant C , depending only on r and B, such that P < C- 0.

Given a subset A C {1, 2,...,n}, we consider the subspace CA = {(z1,...,20) €
C":z; =0 forall j ¢ A}. By the transversality condition, we can choose 6 > 0, only
depending on B, such that the angle between ker(B) and C# is bigger than 6 for any
non-empty subset A.

Denote max{diam(Q1), diam(Q>)} by p. Fix ¢, ¢ € C" such that

dist(cj, Q;) < p, dist(Q1, 02)/2 < |c2 —c1| <2 dist(Q1, Q2)
and ¢p — ¢y has all its coordinates in C" different from zero. Suppose that s € J, is

such that BA(s)(Q1) N BA(s)(Q2) # ?. Then there are ¢| € Q1, ¢2 € Q> verifying
B o A(s)(¢1) = B o A(s)(¢2). We conclude that

|B o A(s)(c2 — c1)| = O(p).

Define x = (c2 — c1)/|ca — c1], and hence |B o A(s)(x)] = O(p/dist(Q1, Q2)). By the
first linear algebra lemma, we get that dist(A(s)(x), ker(B)) = O(p/dist(Q1, Q»)). Up
until now, we have proven that there is a constant C, depending only on r and B, such that
. P

dist(A(s)(x), ker(B)) = Cy - ——————.

dist(Q1, Q2)

Notice that if p/dist(Q1, Q2) > (e~" sin 8)/4Cy, then the proposition follows taking
C = 2r)" ' 2m)"(4Cy /e~ sin 0)!. This is thanks to the fact that

v({s € J, : Bo A(s)(Q1) N B o A(s)(Q2) # 0}) < 2r)" ™' 2m)".

For the rest of the proof, we suppose p/dist(Q;, Q2) < (7" sin0)/4Cy. Define
a = (e sin@)/4n and write x € C" as x = (eX1H91 . eXnti®n) Consider the set

A={jell,...,n}: e’ >ae™"},

and the subspace CA; we will see that dimrC? >[. Let u € CA be the orthogonal
projection of A(s)(x) in CA. By the definition of C*, we have |A(s)x — u| < na. Given
that || A(s)|| > e~ (remember that s € J,) and na < ¢~ /2, we have

ul = |A@) @) — [A()x —u| > e —n-a> ze .

If dimpCA < I, the transversality implies CA Nker(B) = {0} and then, by the choice of
6, we would get dist(u, ker(B)) > |u| sin & > (e™" sin 0) /2. However, this is not possible
since
dist(u, ker(B)) < |u — A(s)(x)| 4 dist(A(s)(x), ker(B))
e " sinf

<na+Cy- — P <
dist(Q1, Q2) 2
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Given that dimpC# > I, the transversality condition implies ker(B) +CA=Cn
Let L =C4nN (ker(B) NCA4)L. Define the R-linear function % :C" — C" given
by £(z1,...,20) = (eXHP .z eXntidn .z ) Notice that A(s)(x) = ([s]),
where [s] = (et tiV1, .. eln—1FVn-1 oitn)  Write %([s]) = by + by, where b; € L,
by € ker(B). The second lemma in linear algebra implies

by] < dist(by, ker(B)) _ dist(x([s]), ker(B)) _ 0( . P )
dist(Q1, Q2)

sin 6 sin 6
Given that by € C4, we get that 1=1(b1)| = O(p/dist(Q1, 02)). Therefore,
[s] = 271 (b)) + 21 (by) implies

. o —of —Fr
dist([s], 7' (ker(B))) = 0<dist(Q1, Qz)>'

This last inequality tells us that the vector [s] is close to a 2n — [ subspace. Moreover, the
last coordinate of this vector has modulus 1. This two properties will allow us to obtain the
desired estimate.

Consider the set

H={@z1,....,zm) e (ker(B) : |zal =1, |zjl €[e™ ¥, e¥], j=1,...,n—1}.

We have proven that there is a constant C, > 0, depending only on B and r, such
that dist([s], ! (ker(B))) < C» - p/dist(Q1, Q2). Thus, there is a constant C3 > O,
depending only on B and r, such that
R

dist(Q1, Q2)
In fact, let u = (uq, . . ., u,) € £~ 1(ker(B)) such that lu —[s]] < Cy- p/dist(Q1, O2).
We have

dist([s], H) < C3

1—C2 )§|Mn|§1+C2

P P
dist(Q1, 0> dist(Q1, 02)°

and

. o o

TG ———— <uj| <+ Cp
dist(Q1, @2) ~ 7 dist(Q1, Q2)

for j =1,...,n — 1. Therefore, if p/dist(Q1, Q») is small enough, one has that u/|u,| is

in H and [[s] — (u/|un])| = O(p/dist(Q1, Q2)). If p/dist(Q1, Q») is big, the proposition

follows choosing C properly, as it was done before when we considered the case

p/dist(Q1, Q2) > (e7" sin 6)/4C.

Define the function
Izl
|Zn]

R {(11, oo zn) € S N i (ker(B)) ele™,e¥], j=1,...,n— 1} — H,
given by ¢(z1, . .., zn) = (21/lznl, - - - » 2n/|zn]). Notice that ¢ is surjective and smooth.
Moreover, one has that |D¢| is bounded by a constant depending only on r and
n. Since the domain of ¢ is contained in a (2n — [ — 1)-dimensional unit sphere
inside x~!(ker(B)), there exist wy, ..., wp, € H such that H is covered by the balls
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By dist0,,00)(wj), j=1,..., p,and

p —@n—1—-1)
=0||——— .
b <<diSt(Q1, Q2)> )

We conclude that [s] € Ule Bcy.p/dist(01,0,) (W), for a constant C4 > 0 depending
only on r and B.
Writing w; as w; = (wj 1, ..., W;,), we obtain that for some 1 < j < p,

iv,

e _wj,n|§C4

—_—Fr
dist(Q1, 02)’

|etq+ivq _ wj,q' < C4

P
dist(Q1, 02)

g=1,...,n— 1. Notice that |[w; 4| is bounded below by e~ 2" and hence

ltg —log [wj4ll = Cs llvg —arg(wj )l < Cs

L L
dist(Q1, 02)° dist(Q1, 02)°

g=1,...,n, where Cs is a constant depending only on r and B, and arg(w;,4) € T
is the argument of w;j,. This implies that the set {s € J, : Bo A(s)(Q1)NBo
A(s)(Q2) # @} is contained in the union of p sets, each one with a v-volume of order
O((p/dist(Q1, 02)** 1. Finally, using the order of p, we conclude that

0 2n—1)—Q2n—I1-1)
v({s € J; : Bo A(s)(Q1) N B o A(s)(Q2) # 9} = 0(<(hSt(Q1Q2)) )

as we wanted. ]

Proposition 3.1 implies that there is a constant C > 0 such that for any 6!, . . ., §" and
Q1, Q2 € R(p), we have

1
0
v({s € Jr: Bomg oo (Q1)NBomy g (Q2) # 0} < C<M> )

The constant C > 0 depends on B, r, co, and the Cantor sets Ki, ..., K,, but it is
independent of p. For the next proposition, we will also need the following fact: if p is
big enough, then for any Q; € R(p) and a € Z, we have

#Q2 € R(p) : p~* <dist(Q1, Q2) < p~ T} = O((p~ )Nt Hn p=(ditedn)y
where dj = HD(K ), j =1, ..., n.For aproof, see [13, Lemma 1.2.3].
PROPOSITION 3.2. Assumed; +---+d, <. Let

N,@'.....0"%s)

,,,,,

Then for any 6!, .. ., 0", we have [, N,(@',...,0", s)ds = O(p~““+"+9D) and the
constant in the O notation is independent of 01, . . ., 0".
Proof. Since the Cantor sets Ky, ..., K, have bounded geometries, then there is a

constant Cp, independent of p, such that dist(Q1, Q2) > Cip for any Q1, Q2 € R(p),
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Scale recurrence lemma and dimension formula 15

Q1N Qy =10. Let kg € Z such that p’kO <Cip < p’ko“. Using the previous lemma,
we have

/ N, (@', ...,0" 5)ds
Jy

> vliseld:Bomy g (Q)NBomy g (02) # 0))
01.02€R(p)

ko
-y 3 3 0(p' /[dist(Q1, 02)1)

Q1€R(p) k=—00 dist(Q1,Q2)e[p~*,p~Ft1)

+ 0y oy ey

Q1€R(p) 02NQ1#D
Clearly, 3" () ZQZQQH&Q)(Zr)”*1 = O#R(p)) = O(p~ @1t +d)) However,

ko
> > 3 0(p'/1dist(Q1, 0)1)

Q1€R(p) k=—00 dist(Q1,02)elp=F,p~*+1)

ko
= 3D 0 s

Q1€R(p) k=—o00

0
= Y o(proy Uit pl=ietdiy NPl (i)
01€R(p) =
= O(p~ () p =l (it od) pl= (i) — g (p=(Ditetd)), =

PROPOSITION 3.3. Let b >0, F C R(p) such that #F > bp~(it=+d) [
@', ...,0", s) such that Np(Ql, Lo, 0 8) < ap~ it tdn) then there exists a subset
T C F with the properties that B o Ty g s(Q1) N B o Tyl Qn’s(Qz) =0 for all

,,,,,,,,,,,

01,02 €T, Q1 # Qs and #T > (b2 /4a)p~ D+,

Proof. For Q¢ € F, define

..........

We have ZQGF n(Q) < Np(Ql, .0, s) <ap~@ttd)  Therefore, the set
To ={0 € F : n(Q) <2a/b} has at least (1/2)#F elements. Finally, it is clear that
from Ty, we can extract a subset 7" with at least (1/(2a/b))#Ty elements and such that

Bomy en’s(Q]) NBomy gn,s(Qz) = for any Q1, QO € T. For this set, we have
UL titdy _ 0 tiran
#T > #Tp > ——=b ! W= —p
~2a/b " T 2a/b2 4a O
Notice that since [, N,(@',...,0" s)ds = O(p~ @+ +dn) then choosing a big

enough, we can guarantee that the set

{s€J,:Ny@',...,0" 5) > ap(dt-Fdny
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has measure as small as we want. Thus, for every @1, ...,0™), we have that most of
the s € J, verify the property of the last proposition, that is, for any family ¥ C R(p)
with #F > bp~(@1++d)  there exist a positive proportion of F, T C F with
#T > (b2 / (4a))p_(d1+'"+d"), such that elements of T project to R!, in the direction of
s, to disjoint sets: B o ngl’m’en,s(Ql) NBo ﬂel’mﬁn,s(QZ) =@ forall Q1, Q2 € T. This
is what we call the discrete Marstrand property.

The next lemma guarantees that the property of Proposition 3.3 still holds for small
perturbations of B o 7y gn (; it is inspired in the presentation given by Shmerkin [12].

LEMMA 3.4. Let T C R(p), ¢ a function defined on a neighborhood ofUQGT Q into R,
and L, t > 0 real numbers. Suppose that for each Q € T, we have Bi-1,(co) C#(Q) C

Br,(co) for some cq € R and ¢(Q1)N@(02) =0 Jorall Q1,02 €T, Q1 # Q».
Then for any ¥ defined on a neighborhood of | J oer @, such that the supremum norm
l¢ — ¥ < tp, there exists T' C T such that

#T' > [BL(L+ 1)) - #T
and Yy (Q1) NV (Q2) =9 forall Q1, Q2 € T', Q1 # Q.

Proof. Here, ||[Yy — ¢|| < tp implies ¥ (Q) C B(r41)p(cg). Use the Vitali covering
lemma for the family {B(;4r)o(cg) : Q € T}. We get T' C T such that {B111),(co) :
Q € T'} is a pairwise disjoint family and (Jycr Br+7)p(c0) C Uger Baw+r)p(co)-
From this, we get

#T' - [3(L + ‘L'),O]lwl > VOl( U B(L+T)p(CQ)>
QeT

> Vol( U BL1p(cQ))

QeT
=#T - L_l,olwl,

where wy is the volume of the [-dimensional unitary ball. Hence,

#T' > [BL(L +7)]7" - #T. O

3.2. Proof of the dimension formula. In this subsection, we prove the desired dimension
formula (Theorem B). Assume we have Ky, ..., K, satisfying the hypothesis of the
scale recurrence lemma. We start by using the discrete Marstrand property and the
scale recurrence lemma to obtain, for each limit geometry (0, ..., 6"), a set of ‘good’
directions to project. Fix cp, r > 0 big enough, and let c1, ¢, ¢3, po be the constants given
by the scale recurrence lemma. Suppose that 4 is a C' function defined from a neigh-
borhood of K| x - -- x K, into R! such that there exists a point xg € K| X - - - X K,
where B = Dh(x() verifies the transversality hypotheses. By the results in §3.1, we can
fix a > 0 big enough such that

v\ (s € Jr i Ny@L, ..., 0" 5) <ap @ty < ¢
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Scale recurrence lemma and dimension formula 17
forall (8!, ...,0"). Define
F(Ql, . 9Qn) — {S c Jr . Np(le . ’Qn’s) < ap*(d1+-~.+dn)}’

and for (a!, ..., a") € T1(co, p) X - - - X Tu(co, p),

0l....0"

where the union is over all 6_’1, ..., 0" ending in gl, ..., a", respectively. We clearly have
v(J, \ F(a',...,a") < c1, and thus we can apply the scale recurrence lemma (from now
on, we assume p < po) to obtain sets F*(a', . . ., a") with the three properties in Theorem
A (see §2.6).

THEOREM 3.1. Suppose that di + - --+d, <1 and for any @',...,0" s) € X%
<X X X Jy, there exists (gl, o.M e Z{in X -0 X E,’jn such that T£1 ’’’’’ £n(Ql, e,
0", s) =B, ...,0"c",5) and 5 € F*@',...,a") for some @', ...,a") for which
©'c',...,0"c") endsinit. Then HD(h(Ky X - - - x Kp)) =dy + - - - + d,.

Proof. Since h is Lipschitz in a neighborhood of K| x - - - x K, and HD(Ky X - - - X
K),)=d +---+d,, wehave HD(h(K| X - - - x K;)) <dj + - - - + d,. Thus, we only
need to show HD(h(K; x ---x K;)) >dy +---+d,. Let n > 0 arbitrary, we will
prove that HD(h(Kq x - - - X Ky)) > d1 + - - - + d, — n, this will finish the proof of the

theorem.
Since ¥, x---x X, x J, is compact and 7y 40 depends continuously in
(Ql, ...,0", s), then we can choose a constant L > 0 (only dependingon r, Ky, . . ., K,

and Dh(xg)) such that

BL—lp(CQ) C Dh(xp) o g1 Qn,S(Q) C Bpy(cg) forall Q € R(p), 3)

.....

for some cg € R!, which depends on 6!, . .., 6", s and Q.
Choose T > 0 big enough such that

| Dhxo) 0 751 o . = Dh(xo) 0 g1 gn Il < 570 @)
for all 0/,6" € =7, j=1,...,n, 5,5 €J, with |s =3 < c2p, 8/ A6’ € j(co, p),
j=1...,n

Until now, all the statements where p appeared were true for any value small enough.
For the rest of the proof, we are going to fix a particular value, which we call p; to
distinguish it from the ‘variable’ p. It is chosen such that ,0;’ < G3[3L(L + t)]_lc§/4a,
where C3 > 0 is a constant, independent of p, which will be fixed later (equation (5)).

We can choose g(l), ...,agand Q(l), ..., B ending in it, respectively, with the following
properties.
(a) The element sy = (log(rg(l)/rgg), . ,log(rgon_l/rgg), Ugls v s vgg) is in J;.

(b) xo € G(a}) x - - x G(ap).
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(c) For any b',...,b", consider § = (log(r, lbl/ra”b” o log(rpn—1pn—1 /ranpr),
4 2 =0=

Uglpls - -+ vggén). Then

”Dh(cg(l)él, RN CQ{')Q") o ﬂg{l)él’m’%én’sz — Dh(xg) o JTThl (0}

,,,,,,

1
QS»S)” =< 3701-
. . . . 1
This is achieved by choosing very long words for @), . . . , a;. If the number of symbols
in c_r(’), for 1 < j < n, increases, then |xo — (c, bl cggén)l goes to zero; the same

happens for the distance between the last coordmate of Tbl b (01, e, _0, s) and §. This

a consequence of item (b) and the fact thatr ,r /r alb/ -1, v bl (va_/ + v;?)” — 0
ap b

as the number of symbols in a goes to 1nﬁn1ty

(d) For any Ql, Lo b" such that § € J,, there is an affine function L such that
1
ILoho (f&l)kl’ RN fg(n)én) — Dh(cg(l)él’ BN ngén) OJTQ(I)QI """ %an” < 3701

This is a consequence of Lemma 3.1.

By hypothesis, there exists (c!, ..., c") € E{i" X oo X Z,{in such that
,,,,, @, - - 05, 50) = Ooc’, . . ., 05", Fo)
and §p € F*(Q(l), ..., ap) for some @(1), .. ,Qg)‘for which (Qégl, ..., 03c") ends in it.
We will define inductively a set N C E‘lﬁn x - x TP x XX X By X
Every p = (a',...,d", 6',...,0", s) € N should verify:
i) s € F*@',...,a" for some (a',...,a" such that (8',...,6") ends in
@.....a";
(i) (@'...,a%0%...,0" ) =(a)b',...,ab" Ty (04, ..., 05,50)  for
some(lgl,...,lg”) € E{i"x...x i,
Forp =(a!,...,a" 01 ,0",5) € N, we will define a set T'(p) C R(p1) verifying:

(i) #T'(p) = c3 1/)1" (dr+- +d,L)
Av) ho(fy, ..., fa)(Q1)Nh o( eeeos fa)(Q2) =9 for all Q1. Q2 € T'(p),

Q1 # 01;
(v) for all (b',...,b") eT'(p), we have Ty @ 0", ) =@, ...,
0"b",5)and § € F*(b', ..., b").

Elements of N are defined inductively, that is, every element already defined as
p € N generates new elements, which we call the children of p and denote by
Ch(p). Thus, N has the structure of a rooted tree. The root of the tree is pg =
(c_z(l)gl, .. ,_Oc 00c , Qgg”, S0), the set T'(pg) is defined as described below.

Given p = (_1, s at, Q], ..., 0% s) verifying items (i), (ii) (as po does), define
T'(p) in the following way.

By item (i), we know that s € F *(Zt1 ,a"), and hence the scale recurrence lemma
implies that there exists a set F C R(p1) w1th #F > c3p, ~(@i+-Fdn) 50 d such that item )
holds for F.
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Since F*(@',...,a") C Veyp (F@',...,a"), then there exist s’ € F@',...,a")
) . - - ~1 ~

with |s — 5’| < ¢pp1. By the definition of F(c_zl, ...,a"),wehave N, (@, ... ,Qn, s <
(4 ~1 ~ s -

ap, (dit-tdn) g1 some @,... ,Qn) that ends in (gl, Loah.

Using Proposition 3.3, we obtain a set 7 C F such that

Dh(xg) o ﬂél’m’én’s,(Ql) N Dh(xg) o Tl A (0 =10

forall 01, 0, €T, Q1 # Q»,

and #T > (c}/(da))p; Ut 7+,
We want to use Lemma 3.4 for ¢ = Dh(xp) o T51 an e YV =Loho(fu,....fa),

.....

where L is some affine function, and the set 7. Note first that 6/ A éj € Xj(co, p1), 1 =

j < n, since both 8/ and 6 J end in &’. Equation (4) implies then

1
| Dh(xg) o L Dh(xg) o Tyt Qn’S” < 37p01.

However, item (ii) together with items (c) and (d) imply
ILoho(fy,. .., far) = Dh(x0) o 7gr g |l < 2tp1.
We conclude

ILoho(fu,. ., far) = Dh(xo) o1 o Il < Tp,

which together with equation (3) shows that we can use Lemma 3.4. Hence, there is a
subset T'(p) C T C F such that

ho(fgs s fa)(@QDNho(fr, .o, fan)(Q1) =0
forall Q1, Q> € T'(p), Q1 # Q»,

and
2
—1 3 —(d++d, 1 n—(dy+tdy
#T'(p) = [BL(L 4 1)] l.ﬁm(w + )2C31pf (dr+tdn)

In the way we have defined T'(p), it clearly verifies items (iii), (iv), and (v).
Given p = (gl, - ,c_z”,Ql, ..., 0" s) € N, the children of p are defined by

,,,,,

The children of p clearly satisfy items (i) and (ii).

Now that we have defined N, we can finish the proof. For each non-negative integer &,
consider the set I (k) of elements p € N generated in the k-step of the inductive process.
(They are children of elements generated in the (k — 1)-step, and the only element in the
0-step is pg.) For each p = (c_zl, L. ,g",Ql, ...,0", s) € N, define the set

G(p) =h(G(a") x -+ x G(@") C R
We clearly have
N U G chkx - xKy.

k>0 pel (k)

https://doi.org/10.1017/etds.2024.15 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2024.15

20 C. G. T de A. Moreira and A. M. Zamudio Espinosa

The desired result, HD(h(K| x - - - x K,)) > dy + - - - + d,, — n, follows from Corollary

2.1 if we can prove that
3 (diam(G(q)>>d1+“'+d"‘" -
4eChip) diam(G(p))
and each set G(p) contains a ball with radius proportional to its diameter. All other
requirements in the corollary are obviously verified.

Given p = (gl, s at Ql, ...,0", s) € N, properties (i), (ii) and the observation in
property (c) imply that s € J, and s(a!, ..., a") = (log(ry1/ra), - - ., 10g(rgn-1/ran),
Ugls - - vgn) is very close to s. Thus, we can assume s(c_zl, ...,a") € Jp and then we
can think of G(a') x - - - x G(a") as being a square; indeed we have diam(G(a’)) <
eV diam(G (a™)) for any j, m. This together with the fact that Dh(xg) verify that the
transversality hypotheses allow us to conclude that 2 (G (a hyx..ox G(a™)) contains a
ball with radius proportional to its diameter. Moreover,

(€)' diam(G(a") x - - - x G(a@") < diam(h(G(a') x - - - x G(@")))

< Cidiam(G(a') x - - - x G(@")
for a constant Cé > 0, depending only on r, &, and the Cantor sets. However, we can choose
C, > 0, independent of p, such that diam(G (ab)) > C}p - diam(G(a)) for any a € E{m

and b € Z;(co, p), 0 < j < n. Therefore, we can choose C3 > 0 that does not depend on
p1, such that

d dn*
> C3pj! TN (5)

diam(G(g)) \ 10
(diam(G(p))>

for any g € Ch(p). Now that C3 has been chosen, we get

5 <diam(c(q)))dl+“'+d”‘”> T Gyl
= 1

gecn(p \HAM(G(P)) g<Ch(p)
= C3p{ T AT (p) = 1. O
THEOREM B. (Dimension formula) Let Ky, ..., K, be C™, m > 2, conformal regular
Cantor sets generated by expanding maps g1, . . . , &, respectively. Suppose all of them

are not essentially affine. Assume that there exist periodic points p; € K j, with period n

for 1 < j < n, such that if we write Dg?’ (pj) = %R,Uj, where R, is the rotation matrix
J

by an angle v € T, then

(logr1,0,...,0;v1,0,...,0),

©,...,logr,—1;0,...,v,-1,0),
(—logrp,...,—logry,;0,...,0,v,)

generate a dense subgroup of J. Let h be any C' function defined on a neighborhood of
Ky x -+ x K, into R! such that there exists a point xg € K1 x - - - x K, where Dh(xg)
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verifies the transversality hypotheses, then
HD(h(K| x - -+ x Ky)) =min{l, HD(Ky) + - - - + HD(K,)}.

Proof. We first treat the case HD(K1) + - - -+ HD(K,) < [. Notice that Ky, ..., K,
verify the hypotheses of the scale recurrence lemma; the existence of the periodic points
p;j imply that all of the Cantor sets are not essentially real. The desired result follows from

the preceding theorem if we show that for any (6',...,0",s) € XXX X x
there exists (c',...,c" e E{m X oo X E,{m such that T. . @', ...,0", ) =
©'c',...,0"c",5) and §e F*@',...,a" for some (@',...,a") for which
©@'c', ..., 6"c") ends in it.

Leta; € Eﬁ " be the word of length n ;j such that the periodic point p; corresponds to

the sequence a ; -+ - . For a finite sequence a € Zf "and k € Z*, we are going to use

a;a;a;
the notation c_zk =aa---a.
—— ———
k—times

Choosing cg big enough and assuming p is small, we can find k; € Z such that Qj =

c_zjjeE(co p). Define 6 ; dj---d; €T
By properties (ii) and (111) of the scale recurrence lemma, we know that there are sg, 51 €
J.b; € Zj(co.p) and ¢; € f , 1 <j<n, such that Tpp, e p O, 0,,5) =
©c1by, ..., 0,c,b,, s1), and the p-neighborhood of s; is contained in F*(by, ..., b,).
Thanks to the continuity of the map & — kZ, we can choose positive integers 1, . . ., I,

depending on p, such that for any m; > I;, any 0/ e Ej_, 1 <j<n, and x in the
p/2-neighborhood of sy, we have

Tepyocp 0@, .., 0"@"™, x) = ©'@M by, . . ., 0"E" by 5

=n=n?
and X € F*(b, . ..

1 < j < n, starts, otherwise we consider Qf a” § instead of @' § for some Q/ , and the proof
follows in the same way.)

,b,). (We assume 6/, 1 < j < n, ends with the letters in which a;

. 07 o) 0iai e
Now notice that Fojamy =T Tany s and if /; is big enough, we have
e
1 QJQ/- 1 Q,‘ P
Og Vom;: Og r‘;n <
7/./ a.’ 82n — 1)
07
for any m; € Z*. Similar formulas hold for v_, ’
. . ~ ~n
Form; € Zt, 1< Jj < n, consider T&,ﬁm1 St (Ql, L0 s)=0,...,0,3%).
a4, seeol
‘We have
- 1 Ql 1 Qn l -1 1 Qn . Ql Qn
§=S + Og r..l]+m1 - Og raanrmn > . Og r /n 1+my, Og ralnﬂnn > v..11+m1 LA vaanrmn

21 “n n 1 “n Ql “n

01 on 0171 on 91 on
=5+ (log ro, —logrs ... logr i, —logr vy, ..., vj,")

a a, ay, a ay

=1 4, l =1

] . In—1

glul ongin 0" 12”71 na[n o1 a onah In
+ (log Fom ' —log r?,,,j’ o, logro,, "7 —log rgmn v, ,,,, see s Uzmg )
a, [ =n 4 n
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Now notice that

1 ! 1
91 1] Q”&ln 9'1 la: 11 Qnﬂfln ) ngll ong l”
log -, e —logrom,,...,logr o — log Fam" SV Ve
a, a; a4,

“n—1

is in the p/4 neighborhood of

6 [ 0, 6
logron, —logrzp,, .. log r i —log r-mn, v m e Uz )
1 n— l 1
4 4n -1 4
However,
0 0 8,1 0, 6 0
<log rom —logran,, ..., logr ,’,’ln , —lograi; vj,,] .. va,’}m>
a; “n En En

[

=m1(logr§:,0,...,0;vZ,0,...,0>

0, -
_l’_...-|-mn_1<0, logrén 11’0’ é}l*ll,0>
—i—mn( log r 3’ —10gr§n?0""’0’v%l)'

Moreover, r %) R & = [Dghi"i(p)]~! = rfj Ry ;v;. Therefore, the density hypothesis in

J

the theorem, together with the next lemma, implies that there exist m1, ..., m, € ZT
such that
0 0 0, 6
(log r_m, —logram,, .. logr w' —log r~mn,v ,,,1,. B V)
5] 4 [45] n

“n—1

is in the p/4-neighborhood of

gl " gn—1 " ol Q"
so—s —(logr; —logr ... logr, L, —logr v v ).
a; n g 4 4 4

Hence, 5 is in the p/2-neighborhood of s and from this, we get

91 l|+m| o ’Qnéfln-‘rmn’g)

T‘é[1 1tmy C,b,

1
Elél’m’é;,ﬁmnglén @, .. S) = Clbl ,,,,, cb (0

(91 ll+mlcléls o aQnéierann[zn* 5/),
and §' € F*(by, . .. Ign), as we wanted.

Ift HD(Ky1)+---+ HD(K,) =1, fix € > 0 and find conformal regular Cantor sets
K CKj,1<j<nsuchthat/—e < HD(K))+---+ HD(K,) <, pj € K, and

the expanding map of Kj is given by a power of g;, 1 < j < n (see [8, Lemma in p. 16]).

We get
I>HDMhK x -+ xKp)>HDMhK; x -+ x Ky))
=HDKK))+---+HD(K,) > —e.
Since € can be arbitrarily small, we obtain HD(h(K X - - - x K;)) = [ as we wanted. [

The following lemma was used in the previous theorem. It also implies that the
hypothesis needed for the dimension formula is generic. Its proof is based on the
well-known Kronecker theorem.
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LEMMA3.5. LetA; <0,v; € T, 1 < j < n, and consider the set E(Ay, . . ., A, V1, . . .,
vp) C R x T" given by the vectors

(A1,0,...,0;v1,0,...,0),

(Oa AR 3)"}’1—1;03 AR 9Un—190)s

(=Mns e ooy =23 0,...,0, vp).

We have the following properties.

@ If Er,..., Ay, V1,...,0,) generates a dense subgroup of R x T then
E(kiA, ... knAn, k1v1, . . ., kyvy) also generates a dense subgroup for all
ki,...,k, € Z\ {0}

® IfEMA, ..., Ay, v1,. .., V) generates a dense subgroup of]R"*1 x T", then it also
generates a dense semigroup, that is, the set of linear combinations of vectors in
EM, ..., Ay, V1, ..., V) with coefficients in N is dense in Re—L o,

(¢) The set of values (Ayy...,Ap,V1,...,0Uy) € RZO x T", for which the set
E(\,...,An, V1,..., V) generates a dense subgroup, is a countable intersection

of open and dense subsets.

4. Proof of the scale recurrence lemma

In this section, we will present the proof of the scale recurrence lemma, it follows the
ideas in [7] with some modifications. One of the main new features is the use of the not
essentially real hypotheses. In §4.3, we use this hypothesis to estimate the norm |x — y|
from an inner product (£, x — y), for some pairs x, y in a Cantor set. Roughly speaking,
the not essentially real hypothesis allows us to choose many x, y such that the vector x — y
is far from being orthogonal to &.

We also introduced new objects that were not present in the logical structure of [7];
there was a minor flaw in that paper, exactly in the proof of the scale recurrence lemma.
We defined these objects to deal with this problem.

The flaw in [7] is in the pr90f of lemma 6.6, exactly in the part where one tries

to estimate the measure of E,, (1) outside the interval [—r +2logco+ A1p, 7 —
21og ¢o — A1 p], which would correspond to estimating the measure of E,, (1) outside
of J_210g(céy)—A,p in our paper. We considered, apart from the parameter cp, another
parameter ¢g, which is smaller than cyp. We then created a statement, similar to the scale
recurrence lemma, involving both parameters, the sets X ;(co, o) used to parameterize sets
E(d',...,d") and the sets = j(co, p) used to parameterize renormalization operators. We
prove that the statement implies the original lemma. Finally, we prove the statement using
an analogous logical structure to that presented in [7]. A similar approach can be used
in [7].

4.1. General setting. We proceed as in [7, 6.1] using Fourier analysis in the group
J instead of R. Let A be a set of indices, A a finite set, and maps o A~ A,
w: A — A Define A; = a7 1(i), AV = 07 1(j), Al = Ay NAJ, N; = #A;, N =#A],

1
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pij = Nl.j /N;. The numbers ( pij ) define a stochastic matrix, it has a probability vector (p’)
verifying Y ;a4 p'p! = p/. Y jen P = 1. Set
pl/ _ 0 ifw(d) # a()),
* 1/Nyy if o) =a),

() . . . . S -
and p* = ]’:,a—m It is easily proved that (pi‘/) is a stochastic matrix with probability

vector (p*). Let J* =R""! x Z" denote the Pontryagin dual of J. Elements & =
(U1 - s Up—1, M1, ..., my) € J* are homomorphisms from J to st, given by
g(tla L] tn—ls Uly oo vy vl’l) = e(zs;% [ju/-’_Z;’:l mlv!)l'

Now suppose that for each (A, 1)) € A2, there is an element ail € J. Using this, we define

foreach & € J*, alinear operator T : CA — C* givenby Te ((za)ren) = (Wa)rea, where
Wi =) sren Pﬁ,g(a,%/)zw-

We endow the space C* with the norm [|(z;.).ca I? = Y sea p*|z5.]2. In a similar way
to [7], a short computation shows that || 7¢|| < 1 forall £ € J*.

Assume that we have a family {E (1)} ca of bounded measurable subsets of J, and
consider the function

ny(x) = H# € Ay By(x +al) C EQV)).

w(})
Let0 < 7 < 1, and denote by E*(A) the set E*(A) = {x € J : n;(x) > t}.

PROPOSITION 4.1. Suppose there exist Ag > 0 and ko € (0, 1) such that ||T¢|| < ko for
all € = (Wi, ..., fn—t1, M1, ..., my), with |§| = max;{|u;], Im;|} € [1, Agp~']. Then
there exist k1 € (0, 1), ¢ > 0, and t € (0, 1) depending only on Ay, ko (and not on p) such
that if v(E(L)) < € forall A € A, then

Y PPER ) <k Y PPV (EG)),

reEA reA

Proof. Consider the functions X; = lguy, Ya(x) =) ,cp pﬁ/X;L/ (x+ ai‘/),

Z,(x) = Y (x —1)dv(t) = 1,0 * Yo (x).

1
v(B,(0) Jp,0) v(B,(0))

Note that Z; (x) > n,(x), then ||Zkl|i2 > 2vp(E* (1)), which implies

DO PVE W) <Y pHIZE.. 6)

reA rEA

The Fourier transforms of X, Y,, Z, are

X(6) = /J X, E@)dv(x), V€)=Y p}e@)X (@),

MeA
1 ol Sin(i;p) 1= sin(m;p)
76 = — iy Tal6) = j 2 3@,
(&) 5(B, () 5O & =] 1 I np ()

j=1 Jj=1

https://doi.org/10.1017/etds.2024.15 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2024.15

Scale recurrence lemma and dimension formula 25

where & = (w1, ..., tn—1,m,...,my,). Hence, |ZA($)| < |YA(E)| and there exists
ki € (0, 1), depending only on Ao, such that |Zx(§)| < k1|YA(£§)| if |&] > Agp~!. We
estimate ) , A P |Z;L(‘§)|2 in various ways depending on |£|.

If €] < 1, then

AGIERAS] </ Y (@)ldv(x) < Y plv(EQ)),
MNeA
therefore,
PNAACTEEDS <Z pp >v<E(x N* =Y PrEM)
LEA MNeA N Aex rEA

If1 < €] < Agp~ !,

Y PMZ@EP <Y PINEP <k Y PP

AEA AEA AEA

note that we used the fact that ()A’,\(S))AGA =1 (()A(,\ (E)pen)-

If |&] > Aop~",
S PNLEP <k Y pPIn@EP <k Y pHX@P
reA rEA rEA

Combining all three inequalities, we get

/ > PMZ®)1PdDE)

reA
/ Y PPVEM)ANE) + K / I APAGIRE
1E1<1 3 en I<lél<A0p™! J2A
+k f 3 PHXAEPdDE).
‘$‘>A0,0_] AEA

Hence,

Y PMIZalG. < DUIEN < 1)) € Y pru(EM) + maxtkg, ki) Y pHIXa ..

rEA reEA reA

Using Plancherel theorem and the fact that v(E (X)) = || X, || we get

L?’

D PMIZalG: < DAIE] < 1)) - € + max{kg, k111 Y pHv(EM).

rEA reA

This together with equation (6) imply

D PPV (EFM) < T0AIEl < 1)) - € + max{kg, kT Y pPu(EG).

reA reA
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Finally, we get the desired inequality setting

T = [D({|€] < 1)) - € + max{kg, k{}1', ki = T2 [D({1&] < 1}) - € + max{kg, k)],
and taking € small enough such that D({|§| < 1}) - € + max{k2, ilz} < 1. O]

Let Ay > 0 be any positive number and consider

Ay (x) = H#V € Ay : Ba,p(x +al Y NEQ) # 0);

#Aw(x)

define E(A) ={x € J:n,(x) > t}.Foraset E C J,denote by Vs(E) the §-neighborhood
of E.

COROLLARY 4.1. Under the same hypothesis as Proposition 4.1, let ks > 0 such that
k1 < kg < 1; if we choose A > 0 big enough and €1 > 0 small enough such that

1 A 2n—1 1 A 2n—1
k1(1+ +A 1) < ky, el<1+ +A l) <€,

then v(Vap(E(X))) < €1, for all & € A, implies that

D P VVap(E) <ka Y pPo(Vap(E(M))).

rEA rEA

Proof. First observe that (see [5])

14+ A
A

2n—1
V(Vp+ap+a,p(EQ))) < <1 + ) V(Vap(E(R))).

Now consider the family A(L) = Vyyap+a,0(E(X)); by our choice of €1, we can apply
Proposition 4.1 to A(L). Notice also that if x € VAp(E(A)), then there exist y € Ba,(x)
and 7 -#A, () elements ' € Ay such that Ba,,(y + aﬁf/) NE(\) # @, and thus
By(x +a}) C Vprapsap(EO)) = AR)).

This shows that Va,(E(X)) C A*(1). Applying Proposition 4.1 to A(A) gives

D PVVap(EG)) < Y prvAT () ki Y pPro(Vpraprap(ER)))

AEA AEA AEA
1 A 2n—1
§k1(1+ + 1) 3 P o(Vap(EG))
AEA
<ks Y pPP(Va(EQ))). O
AEA

4.2. Proof of Theorem A. In this subsection, we will prove the multidimensional
conformal scale recurrence lemma. First we will fix the values of the main parameters
playing a role in the proof. This is done to make it clear that there are no contradictions
between their values.

Start by choosing a positive constant p such that — log rg < pu for any 6 € E;, and

c = (co,C1) € Ef " a finite sequence with only two symbols. The choice of x and the
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equation rgc = rg . rgfb imply that log erC > log r,;Q — w. This is saying that as the length
of b increases, the number log r,f* decreases by steps no bigger than .

Now choose ¢ > 0 such that ¢~ 'diam(G (a/)) < diam(G?' (a/)) < ¢ diam(G(a/)) for
al € E'jﬁ", 0/ € ;. These constants only depend on K1, . . ., K. Fix &y > 0 such that

2 log(cco) > p. @)
We will use Proposition 4.1 with the following data:

A = X1(Co, p) X - -+ X Zy(Co, P),
A=A x---xA,,

a@,...,a" =(ap, ..., ad),
1 1
w(a ,...,c_z"):(aml,...,afnn),
01 gnfl
¥ (1o 2 log 271 et o
a, = ogW’“"OgV’vb“”"vQ" .
rl;n rl;n -
where a/ = (a}, . .. ,a,f”), A=, ....,a") AN =@®'... b, and b’ e ¥ finishes

ina’/, 1 < j <n. (Forevery a’ € Z‘]ﬁ " we choose, arbitrarily, an element 9/ € T that
ends in a/. Using this, we define a)’}/.) Assume that the hypothesis of Proposition 4.1 holds,
namely that there exist Ag, ko such that || T¢|| < kg for all |£] € [1, Agp~'1; this will be
verified in the next subsection. Applying the proposition in this setting gives constants
ki, T, €.

Now fix k4, ks > O such that k; < k4 < ks < 1 and § > O such that

ka+2-3"k;'LCy ' Cud < ks, (8)

where C; > 0, L > 0 are constants such that
L1 p=ittdn) < gp, < o= dittdn) 9)
CopPt -t < ph, (10)
foranyi € A, A € A, and C4 > 0 is defined by equation (19). All these constants depend

only on ¢y.
Fix r > 0 such that
1

2r > 87! (9 + Z) log(cép). (1)
The choice of u and ¢q allow us to find p; > 0, small enough, such that for any family of
intervals Iy, . . ., Iy, withdiam(/;) > 2 log(ccp), any x = (¢, v) € J withdist(z;, I;) <
s+ 4—11) log(cép), and any A € A, there exists Ao = (b', ..., b") € Z{m X oo X E,{in

with the property x +ai‘° eli x - xI_1 x T, and diam(G(/)) > p1, 1 < j <n.
Choose ¢y > ¢ big enough such that

Ao € Xi(co, p) X - -+ X Ty(co, p)
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for all Ag = (121, ..., b"), such that diam(G(Qj)) >p;, 1 <j<n, and any X € A
with w(ho) = a (V). Af A = (a!, ..., a"), Ao = (lgl, ..., b"), with w(X9) = a()), then
o = (bldl, ... b"ah).)

We also fix a constant A > 0 that should be big enough to verify equation (15); this is
a condition that only depends on cg. Finally, we choose A, € as in Corollary 4.1.

Notice that A’ = Xi(cg, p) X - - - X X, (co, p) contains A. Choose a function
@ : A" — A such that we have the following properties.

@ Ifr=(@!,...,a" e A andp(L) = (l_)l, ..., b"), then either a/ ends with l_)j or
b/ ends with g/ forevery 1 < j < n.

®) @A) =A forall X € A.

Thanks to properties (a),(b) of ¢, there are constants 77, 7> depending only on cq, ¢g, and

noton p,suchthat 1 <77 < #go_l(k) < T forall A € A.

We show that we can suppose F(A) = F(¢(X)). Assume that for the given values of
co and r, there exist ¢y, ¢, c3, po > 0 such that the scale recurrence lemma is verified in
the special case when F(A) = F(¢(A)) forall A € A’. We find new values for c1, ¢y, ¢3,
po > 0 verifying the lemma in the general case. In fact, we do not need to change
c2, €3, po > 0, just redefine ¢ as c1/T». Given a family {F (1)}, ea’ with v(J, \ F(L)) <
c1/ T, consider F(\) = Mye 01 (0(0) F()\'). This new family verifies F(}) = I:“(go()\)),
moreover, v(J; \ F (A)) < ¢y, then there exists F *(A) with the properties of the scale
recurrence lemma. Taking F*(A) = F*(1) gives the lemma in the general case.

For the scale recurrence lemma to hold, it is enough to prove the following statement.

STATEMENT 4.1. For the given values of co and r, there exist ¢y, c2, c3, po > 0 with the
Jollowing properties: given 0 < p < po and a family F()) of subsets of J., L € A =
¥1(Co, p) X+ + - X X,(Co, p) suchthat v(J, \ F(X)) < c| for all A, there is another family
F*()\) of subsets of J, satisfying the following properties.
(1) Forany r € A, F*()) is contained in the cp-neighborhood of F ()).
(i) Let A = (c_zl, ...,ad") e A, (t,v) € F*(L); there exist at least 63p_(d1+"'+d")
elements ' = (b, ..., b") € A (with bl starting with the last letter of a’) such
thatifo € E;, 1 <j<n, verij‘ij /\Qj € Xj(co,p), 1 < j<nand

Ty @ 0" 1, 0)=@'b, ... 0", 7, 0)

the p-neighborhood of (t, V) € J is contained in F*(p()\)).
(i) v(F*(A) = v(J,)/2 for at least T, /(T> + T)) of the A € A.

The difference between Statement 4.1 and the scale recurrence lemma is that A is
parameterizing the sets F (1) instead of A’; however, A’, which is much bigger than A,
still parameterizes the set of renormalization operators.

Let {F(X)},ea’ be a family of sets as in the scale recurrence lemma. We can suppose
that F (1) = F(p(A)). Now assume that Statement 4.1 holds, then we can apply it to the
restricted family {F(1)}yca, which produces another family {F*(1)},ca. We extend it
to A € A" by F*()) = F*(p(X)). It is easily seen that {F*()A)},ca’ verifies the desired
properties on the scale recurrence lemma. From now on, we will focus in the proof of
Statement 4.1.
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Suppose we have a family of sets {F(A)}rea. Define Eg(L) = J, \ Vap(F(L)), A € A.
Now we define recursively two families of sets {E,,(A)}rca and {E;m (W) bien. The set
E, (1) is given by the x € J, such that (when 1’ € A’ \ A, the element a)kh/ is defined in
the same way as when A, A’ € A)

#{M e A1 a()) = w(); Ba,py(x +a} ) C U \ En(@())} < c3p™ @t

and E,11(A) = Eg(A) U Ep(A). (In fact, since Ej(A) C Ej11(1), we have E, (L) =
Eo(l) U Eo(k) u---u Em,l(k).) The value of ¢3 will be fixed during the proof of the
next lemma. Note that for x € Eg()), one has

(M € A: Bajp(x+a}) C U\ Er(p(\)))
C{V €A : Ba,(x+a})CJr\ EolpG)))},

and hence Eo()») C E‘l(x). Analogously, one proves that Em(A) C Em+1(k), E,(}) C
E;+1 (1) for all m.

LEMMA 4.1. Ifcy, c3, po are sufficiently small, then

Y PV (Vap(En())) < ks Y pPv(Vap(En())), (12)
rEA rEA

Jy Jr
S puVag (B o)) = SR, (13)

AEA

Before proving the lemma, we will use it to prove Statement 4.1. Consider Eoo(X) =
Umzo E,,(1); thanks to equation (13), we have

1)(-Ir+A/D \Jr) +ci

Y P V(Vap(Ex (W) < s

reA
Now define F*(A) = J, \ Exo(X). We will prove that this family of sets has the desired
properties.
(i) Since Ep(A) C Exo(X) then F*(A) C J; \ Eo(A) = Vap(F (X)), choosing c2 = A
gives the first property.
(ii) Let x € F*()), then x ¢ E,, (%) and the set

(14)

Am={ €N 1a()=0®): Ba,(x+a})C I\ En(p))}

has more than c3p~ @1+ +d) elements for all m. Moreover, since E,(¢(1)) C
Epnt1(p())), one has A1 C Ay and then #((),,20 Am) = c3p~(dittdn) Therefore,

#HA e AN :a) =w)); Ba,,(x +a§/) C F*(p())) > Cgp_(d1+"'+d”)_

. ~1 = ~j
To finish, it is enough to prove that for any 6 , . .. ,Qn such that Q'/ Na’l € Zj(co, p),
1 < j <n, one has

~1 ~n—1

"p! Tt ! 7" W
Bp<x+(log ?,...,log T,vb,,...,vbn>> C Ba,p(x +ay ),

}"En Iy
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/ 1 n n—1 n
where A/ = (&',...,b"), A=(d',...,a"), a’ = (1og(r§1 /ré% A 1og(r§,H /rg,, )
1 n . . - -
v;gl s v%,,) for some 6/ ending in a/, 1 < j < n. This is accomplished by taking A

big. More precisely, since
IDK 0 () ) (@) — 1] < Cdiam(G(©7 A 8)) < Cp

for all 1 < j <n, for some constant C‘ only depending on cp, we can conclude that
. ...j -
|log rzj log rz | < Cip, |vb — vb | <Cipforall 1 < Jj < n, for some constant C
only depending on cg. Therefore, imposing
14+22n—1C) < Ay (15)
would be sufficient to guarantee the second property.
(iii) By equation (14), choosing c1, po small such that

V(Jr—i-Ap \Jp) +c - CiTh
1 —ks 2T + Tr)

v(Jr),

where C; is a constant such that p’\ > Cq (#A)_1 for all A € A, implies that

S P(F ) = (1 - &)(m.
- 2T + 1)

rEA
Let A = {A : v(F*(1)) > v(J,)/2}, and hence,

T
(1 - #)um <Y P E + Y PO

2N+ 1) reA AEA\A
(J
vl Y P+ —= Y P
reA AeA\A
v(J
=v() - —= > ph
reA\A

From this inequality, we get (C1/2)(#(A \ A)/#A) < % ZMA\A p* < CiT/2(Th + T»).
Finally, this implies #A > (T2/(T} + T2))#A, as we wanted.

Proof of Lemma 4.1. Choose c3 > 0, €2 > 0 small such that
<C3 + C;12>p—(d1+"'+d"> < (1 =1)N,qy foralla € A, (16)
€]

where C5 is a constant such that p)‘ > Cz,od'+"'+d" for all L € A. We suppose that c1, po
are small enough such that

V(Jr—i-Ap \J) +c
<é
1 —ks

We will proceed by induction following the scheme

a7

equation (13) for m = equation (12) for m = equation (13) for m + 1.
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For the base case, equation (13) for m = 0, notice that Va,(Eo(A)) C Jryap \ F(A).
Therefore,

v(Vap(Eo(M)) < v(Jrpnp \ Jr) +v(Jr \ FQQ)) <

V(Jr+ap \ Jr) +c1
1—ks ’

Now we prove ‘equation (13) for m = equation (12) for m’: define A, ={A € A :

V(Vap(Em(X)) < €1}, A(A) = E;(X) for L € Ap and A(L) = @ otherwise. We will show

that £, (A) N Jr_210g(cég)—ap C A(A). Here A(A) is the set from Corollary 4.1, that is,

the x € J such that

1

#Dw ()

H € Aoy Ba,(x +a)) CTVAQ) <1 —1.

Using equation (17) gives €2 > Y 5 cp PP V(Vap(En (L)) > Copit-Fdue #h (A \ Ap),
and hence, .
HAN A = ;! Zpm (i,

Letx € E,y(M) N J,_s log(cég)— A1 p» Using the last inequality, equation (16), and the fact that
af/ € Jalog(cgy) forall A, 1" € A, we have
#' € Aoy Bap(x +al) C T\ AQ))
<#\ € Ap: Bap(x+a) C T\ En(p())}
+#(A\ Ap)
<#{M € A : Ba,,(x +a}) CJp\ En(p())))

4 C1 2 prttdy)
2 €]

_1€ _
< (c3+ C2 1_2)p (di++dn)
€]
< (1 — T)Nw(k).

Hence, x € A(k), and we have shown E,,(A) N J,_, log(céy)—A1p C A(A). Clearly the
family A(X) satisfies the hypothesis of Corollary 4.1, that is, v(Va,(A(R))) < €1. Using
the corollary gives

D PV Vap(En () N Iy 2 10giea)-a10)) < Y, PP v(Vap(A(L))
reEA reA

<k Y pPv(Vap(A)

reA

<ks ) pPPo(Vap(En(W).  (18)
rEA

Now we estimate E,, (1) outside of Jr—210g(cég)— A, p- Assume that pp is small enough
such that 2Ap < JT log(ccp), A1p < JT log(ccop). By equation (11), forevery j =1, ..., n,
there exist intervals

I; Cl-r,—r + 8719 log(céo) +2Ap)] C [—r, 7],
I} Clr =57 Olog(co) +24p), r1 C [-r, 7],
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with diam(/}") = diam(lj) = 9 log(cé) such that

D PV (Vap(En() NI <8 Y pPo(Vap(En(W)),

rEA reA
D PV (Vap(En) NI <8 Y pPo(Vap(En(W)),
rEA reA
where er(_) ={(t,....tho1,V) € Jr 1 tj € I;r(_)}.
For every pair (A, B) such that A, B C{l,...,n—1} and AN B =, consider
vag = (t1(A, B), ..., ta—1(A, B), 0) € J given by

—r +log(céy) if j € A,
t;(A, B) = \r —log(céy) ifje B,

0 otherwise.

We also define sets J A.B>» Ja.p C J in the following way:

Jap =01, ... ta—r,v) € Jr ity €I if j € Byt; € I} if j € A},
Jag ={(t1, . tam1,0) € Jp 1 8] ef;’ifj € B, t; efj_ifj € A},
where the interval i;‘ has the same center as J” and has length 2 log(ccp); here u = +
or —. .
Fix A € A. From the choice of p; and ¢, we know that there is A4 p € Z{m X - X
E,{m such that y4 g + ai‘A’B € fA,B, and A4 g2 € A forall M’ € Ay(r,p)-

Let x € Vap(Em() N Jp \ Jr_210a(cig)—A1p)> then there is y € En()NJ,\
Jr 2 log(cg)—A1p» Y € Bay(x), and for y, we have

#2' € A Bap(y +a5) C Jr \ En(p(1))) < c3p™ (@0,
Write y = (#1, . . ., t,—1, v) and consider the sets

A={jell,n—=11NZ:t; < —r+2log(cco) + A1p},
B={jell,n—=1]1NZ:t; >r —2log(cco) — A1p}.

Since y & Jr_210g(cég)—Ap> We know that AU B # ¢ and we can consider A4 g. Given
that #A ., ) = L™ p~ @1+ we conclude that

A 2 _ —
#1 € A Ba,(y + @) N En(p(haph)) # 0} = (L7 — c3)p~@ittdw)
L71

> —0p

—(di++dy)
) )

where we are assuming that ¢3 < L~!/2. Notice that BAlp(y+aiA’B)‘)ﬂJr -
Ja,p forall M € A, therefore,

-1
raBA L™ a4
A € Mogiap - X+ ™" € Vapiap(EnlpGhaph)) N Jap)t > ——p= @,
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Hence, Va, (E,(0) N J, \ Jr—2log(céy)—A, p) 1S contained in

L—l
X 1 o (X) > _p_(d1+"'+dn)}’
{ (%;) z;\ Vaptagp(Em@OuasANNJa ) —a, B 2
where the first sum is over all pairs (A, B) suchthat A, BC {l,...,n},ANB =0, AU

B # {}. Now using Chebyshev’s inequality, we get
V(Vap(En () 0 I\ Jy—2108(c0)-a10))

1
DD v(VaptaipEn(@0Gash) N Jag)

<
= (L1 —(d1+-Fdy)
(L=/2)p (A.B) WeA

Ay 2n—1
< 2(1 T K) Lo S SN S (Vap (En(@ua2) N Ja8)
(A,B) NeA

Ay 2n—1 dttd
52(”?) CaLp® " " v(Vap(En(W) N Jap),
(A,B) MeA
where C4 > 0 is a constant, only depending on ¢y, such that

#{A\ e AwGagp) QD()\.A’B)\./) =AM} <Cyq forall A € A. (19)

Now we will sum over A. By the definition of A, we know that (1 + A;/A)>"~! < kl_l,
and using p* > Cop@t i we get

Z pAV(VAp(Em MNN I\ J2 log(ch)—Alp))
reA

A 2n—1
< 2(1 + XI> CaLp =t d y © Y v(Vap(En (M) N Ja.)
(A,B) MVeA

33 PP (Vap(En(X) N Ja))
(A.B) MeA

<2:3%TLCT Ca8 Y pru(Vap(En(L)).
AEA

1

< 2k ' CyLpht o
2 n

Putting this inequality together with (18) gives

> P VVap(Em()) < (ks +2- 3"k ' LC; Ca8) Y p 0(Vap(Em(A))
reA rEA

<ks Y pro(Vap(En(h)),
reA

which is equation (12) for m. Here we have used equation (8) where § was chosen.

To finish, we prove ‘equation (13) for m and equation (12) for m => equation (13) for
m+ 1. Since Epi1(1) = Eg() U En(A) and v(Vap(Eg()) < v(Jrsap \ Jp) + 1, we
get
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D PV Vap(Ent1(0)) < Y P v(Vap(EoO)) + Y PP v(Vap(En(2)))

rEA reA rEA
<vUrsap \ I+ +ks Y pPo(Vap(En(A)
rEA
- v(Jr4ap \ Jr) + €1

V(Jr-i-Ap \Jp) +c1+ ks
1 —ks

_ V(JrJrAp \Jr) +ci

1— ks =

4.3. Proof of hypothesis on Proposition 4.1.  In this subsection, we prove that there exist
0 <ko<1,Ap > Osuchthat || T¢ || < ko forall |§] € [I, Aop~'1, and these constants does
not depend on p. Remember that the operator 7 : CA — C* is given by T: ((z)ren) =
(Wi)ren, Where wy =D /ca pf&(ai‘,)zy. Notice that C* can be decomposed in two

ways:
CA=®CA1’ CAZ@CA],
i€eA JjEA
and the operator 7¢ sends CAiinto CA', Let I 1lis I - II7 be the restriction to CAi, CAj,
respectively, of the norm | - || on A. Note that

IzI? =Y Ilm @17 = ) (7! @) forall z € C*,

icA JjeA

where 7; : CA — C%, 7/ : CM — CA are the projections given by the decompositions.
This implies that ||7: || < ko if and only if || T¢|ca; || < ko foralli € A, where Tg|ca; is
the restriction Tx [ca; : (CA7, | - [|;) — (CN, || - |I7). We start by supposing that there exist
p>0,l&| €1, Agp~'1,i € A such that
I Telen Il = (1= no)'/2.

From this, we will derive a series of inequalities depending on parameters 7o, 71, 72, - - - »
each new parameter 741 will depend on 1, not on p, and lim;); .o 17;+1 = 0. Finally, we
will see that with the appropriate value of Ao, the last ; will be bounded away from zero
and then also 7q, and this will complete the proof.

By our assumption, there is z = (z) € C* such that Z,\eAi pk|z;\|2 =1 and for w =
Tt (z), we have |w|? = D oaeni p*lw;. |2 = 1 — no. Note that

2 2
1 1 )
< _ E ’ < — E A
- (#Ai 12 |) T H#A; 2]

MNeA; MeN;

3 P e

MeA

2
lwy|” =

Consider the set

- . 1
A=1reAl: 251 —n))— s
{ wal* = (1 =) NEZA)m
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where n; = )7(1)/ 2, Hence,

L=no < Y pHlwl =) prlwlP+ > pHwl

rEA reA reANA
<y p*( > p) |zw|2> + Y pk((l -m) Y p} |Z;v|2>
reA NeA reAN\A VeA
IR ACE DD px( 3 ol mz).
AAEA reAIN\A MeA

. ' / 2
Since Zm,eA p*pi\ lzv]? = Y ovea p*lzv)? = 1and ny = no, we get

m> >y pk(Zmle/) o - Zp o

reAN\A MeA ,\eAl\A MeA
Pt dy++d i\ X
= D = CoptTThHAT\ A),
AEAI\A

Putting 172 = 11/C2, we obtain #(A’ \ A) < nyp~ @1+ +d) Proceeding as in [7], define
7Y = £(a))zs, then

1 Ay A A A, ,
DD I A R PAR A DAY Y

LoEA; M EA; MNEA;

If/\e]\,

/\

% > 2 pi&pﬁzib_zi/”z— > el =—,-,
Aj

l
AN M€ NMeA;

Al A . ’
and hence Dy cn, Douien, 125" — Z'P < @E#A)*/pHm. Now set Z} =z —
£(—al ywy, then

1 A 2
|ZA |2 |%—(a)L )z — U))L|2 S(Cl)L Vo — —— ZAO
#A;
A;)EAI'
WP 1 N
—_— VA ' 0 < — 7 " 7702
A, ,Z:( & T #A; Z 1Z} Al
AoEA; AoEA;
Summing over A’ gives
2#A;
- —(d1++dy)
Zml_#AZZm <p n < nsp ,
MeN, Ve K)jeh,

https://doi.org/10.1017/etds.2024.15 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2024.15

36 C. G. T de A. Moreira and A. M. Zamudio Espinosa

for 13 a constant multiple of 1. Pick Ao, A| € A, then z;, = E(—ai\;)wxo +Zi\; =
é(—aﬁi)wxl + Zﬁ;, and from this (redefine 73 as 413),

3 lE(—a) wi, — E(—af s, P = Y |ZE = Z) 2 < pap )

MNeA; HEn
Observe that
G A A »
6= Yy — E(—al w, | = @}, — sy — ws|
(€, aX —a¥)y+¢
> min{|wy, |, [wa, |} - 25in< 1 2 ; )’

where (€, (t,v)) = Y12} wjtj + Xj_y mjv; € T for & = (u,m) € R"™! x Z", and ¢
is the argument of the complex number wj,,/wj, . Using this inequality together with (here
we assume 71 < 3/4, which can be assumed without loss of generality)

1 -
.12— forall A € A,
p' 4

|w|? >(1—m)— > el =

Ai NeA;

we see that

& a} —al)+ ¢
3 sin? ( b . ko ) < ap— k),

)L/EA,'

Let ng = n;/ 3 The previous inequality implies that

(E,a} —a})+¢
sin( & 5 2o ) <4

forall ' € A;, but ngp~ @1+ 3/ From this, we get || (£, a% — af\‘(;) + ¢|| < ns for all
A € A, but nsp~ @it tda) 37 where 55 is a constant multiple of 7. i
Let jo such that |§] = |u | or |§] = |m j,|. We will fix some specific Ag, A1 € A of the
form
ro=@. .. a0 % dt! o dh,
=, ... a0t al .

Notice that Ag, A1 only differ on the jo coordinate. Moreover, if jo # n, we have

’ 90
a%l ako ©,...,0,log( b/O/rl:/O) 0,...,0, ”;/o v;,o, 0,...,0), where )\ =
b',...,b"),and QO, A= Ejo end with a°, a!, respectively. If jo = n, then ak - ai‘; =
1 QO Ql 1 QO Ql 0 0 Ql QO Wi k th A Az I
(log(ryn /Ty )s - - - s 10g(ryu /7r12), 0, .. ., 0, Upn = vk,,). e remark that a; —aj  only

depends on the jo Cantor set K j,.
~0
. . . . =0 ~1 _
Given that K j, is not essentially affine, thereis§ ,6 € X io and xg € K %) such that

D2k o (k2 M(xo) £ 0.
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~0
For any QO, Ql € Ej_o’ we define FGO’QI = le o (kQO)’l. Since xg € K%, then
DF. 50 5! (x0) is a conformal matrix. Denote by C C GL(2, R) the set of 2 x 2 conformal
matrices. Let P : U — C be a smooth function from a neighborhood U C GL(2, R)
of DFéO’él(X()) into C, such that P(A) = A for all Ae CNU. We will use the

notation D Fyo 41(x) = P(DFy 41 (x)). The properties of P and the fact that K j, is not
essentially real allow us to conclude that D]D)Féo él(xo) = DzFéo él(xo). Now notice

that C can be naturally identified with C* and in this sense, we can choose a branch
of logarithm log defined in P(U) (for U small). Then Lemma 2.3 will imply that
B :=Dlog ]D)Féo 5! (x0) # 01is a conformal matrix.

1 0
In the rest of the proof, we will make an abuse of notation, where vfjo — vfjo will not
1 90 B
represent an element of T but the imaginary part of log exp[(vfjO — vfjo)i ]. In this way,

91

0
we have chosen a representative in the class defined by v o vfjo. Define the following

vectors in R?:

91
r—.
2z bl gl ()
dMJ»o = <log F’ véj0 — véjo ,
Ty
and o
= ) Gjg.mjg) if jo # n,
§= o
(—(u1 + -+ pp—1), my) if jo=n.

Notice that 1 < |§| <nAop~ ! and (&, a)k\: — ai‘(’)) = <§, di‘:’ko)mod 2n 7., where the (-, -)
in the right-hand side of the equation refers to the usual inner product on R.
Since k% depends continuously on 6, we get that

|D log DFQO,QI x) — Bl <61 20)

for all QO, 2] I x close enough to QO, Q 1, xo; the value of §; will be fixed later. We assume
that 1 is small such that the proportion of A inside A’ is big enough to exist A9, A| € A,
with the form specified before, verifying that 89, 8! are close to 8°, ' so that equation
(20) holds. (Here we also need to suppose that pg is small enough.) From now on, 1y and
A1 are fixed as these values.

Now fix ¥ e Z}Z " such that any x in the convex hull of GQO(QO) is close enough
to xo to have equation (20). Denote by X, (co, p, go) all the elements of X, (co, p)
starting with ¢®. This is a positive proportion of % jo(Co, p) (independent of p).
Then, if we assume 75 small enough, we can guarantee that for a proportion of
b e Xj,(co, p,cY), as big as we want, there exist b/ € X (Co, p), j # jo, such that
A=, ..., b7 b bt b") verifies

(B, ) + & —2mB)7| < 7, @1

where m (b) is an integer depending on b. Denote the set of such b by & o (Co, P, ).
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. .. . 1 0 .
For simplicity, write F = k2 o (kQ )’1, instead of Fyo 41, then we have

00 0! 00 00
F(c,)=c,, DF(c,)=IIDF(c,)I-R g . (22)

Yy ~Y%

0 ’
We will show that the distance between log DF (cg ) and dfMO is of order p for any

0 0
A e A. Let zg,z1 € GQ0 (b) such that rg = |zo — z1|. Using Taylor expansion at cg s

0
we get F(z9) — F(z1) = DF(C% )(z0 — z1) + O(lzo — z1/?), where the constant in the O
notation does not depend on p, b, 6 U or QO. Hence,

00 09 60
ry IDF(c, )l =120 — 2111 DF (¢, )|
2 0! 09,2
< [F(z0) = FzD| 4+ O(lz0 — z211") =1, + O((r, )).

0 0 1 0
From this and the fact that rg is of order p, we get || DF(C% )| — rg /rg < O(p). A sim-
1 0 0 - 0 1 0
ilar argument gives ry /ry — [DF(cy )|l < O(p). Therefore, || DF (cy )|l — ry /re | <

0(p).

0 1 0
Now, given the fact that |DF (cg )|l and rg / rbg are uniformly bounded away from
zero, we obtain that there is a constant C3 > 0, independent of p, such that

6Y 0! 60
llog [DF(c, )l — (log r,, —logry )| < Csp. (23)

Given b',b?> € T jo (o, P, ), by the choice of ¢, using Taylor approximation and
equation (20), we will have that
90

0 00 00
log DF(C@) — log DF(CEZ) = i (c;1 —

) (24)

for some B such that |81 — B < 1.

The idea to finish the proof is the following: we use equation (21) to see that the set of
dxk.,,/\o projected to the line generated by & is close to an arithmetic progression, then two
points will be either very close or very far from each other. Equations (22), (23), (24) allow

/ 0 . .
to translate this fact about d)%l 5, to the analogous one about the set of cg . Finally, we will
0 0 s 0 0
use the fact that K j, is not essentially real to estimate |ch — CZZ | from (£, By (CZ1 — sz))’

0 0
and thus it will happen that |c§] - c%zl is either too big or too small which will bring us

into a contradiction with the boundedness of the geometry of the Cantor set.
Any pair by, b, € X ,(co, p, ¢%) should verify one of two options.
(i) If m(b)) = m(b,), using equation (21) for A|, A associated to b, b,, respectively,
we get |(€, dill,xo) — (€, dif,x())' < 2ns. This together with equations (22), (23) give
~ g0 90 ~
(€. log DF (¢, ) — log DF (¢ )| < 2n5 +2C3[&|p.
Considering equation (24) leads to

~ 90 90 ~ 90 90 ~
(B &, ¢, — ) = 1(E. Bi(cy, — ¢, )] < 215 +2C31E |,

where ﬂIT is the transpose of fi.
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(i) If m(b;) # m(b,), a similar process arrives to

(BT &, Cb —Cb )I > 7 —2C;5E]p.

Now we use the hypothesis that K, is not essentially real. First, we choose a constant
Cs > 0, depending only on ¢¢ and the Cantor set K j,, such that for any a € E}:’) " one has

(£ '(G®) : b € Zjy(Co, p, @)} C{G (D) : b € Ty (Cs, p))}

for some p > 0, which depends on p and a. Lemma 2.2 proves that there is an angle
o € (0,7/2) and numbers pr >0, a € (0,1) such that for any limit geometry

k2, x € GZ(6y), line L, s € Aj,, D discretization of K, (6o, s) of order less than pj,

#{a € D : Gg(g) NCone(x, L, o) # 0} <a-#D.

Remember that a discretization D of K j, (8o, s) of order p is a subset of X ;,(Cs, p) such
that (J,.p Kj,(@) = K, (6o, s) for some pre-fixed constant Cs.
Fix 81 by requiring that |81 — B|| < §; implies that

m(B)/2 <mBl) < 18] < 2IIBI

and the angle between 7 w and ,BIT w is less than /2 for any w € R\ {0}. Remember that
m(A) = inf, 4 HJﬁ' and that g is conformal, and hence m(BT) = m(B) = 8] = IIBT |
Fix a € (a, 1). Assuming 15 small enough, we can guarantee that

#3j,(Co. p. <) > @ - #3 (o, p. ).

This allows us to find a finite sequence go, o

, ¢ of elements of >/ guch that:

) cj *1 starts with cj and has one more letter;

o #(Zj,(Co, p, ¢/) N Ty (Cos p,_o)) > a-#%j,(Co, p. ¢/);

o X (co,p, c/) N )leo(co 0, C 0y Z X;,(co, p, cf+1) (actually, for this property to be
true, we take a big such that #Xz, (0, ¢/*1) < a - 2z, (p, ¢/));

o ¢/ e Xj(Co, p)onlyfor j =m.

Fix an integer mo < m such that for any b € X, (co, p, ¢/) and j < mg, we have

fcjl (G() =GB forb' € X ,(Cs, p), for p < py (this only requires that m — my is big

enough). For each gj, Jj < m, we will choose two elements c_zl’j, gz’j € Xj,(co, p, gj) N

3, (o, p, ) in the following way.

e  First, we choose any c_zl’j € Xj,(Co, p, gjs/) N ijo (¢o, p, go), where s’ is a letter in Aj,
such that ¢/ 1 £ ¢/’

e If j > my, then we choose any t_zz’j € Xj,(co, p, cthn fijo(éo, 0, go).
Suppose j < mg. Given b € X, (o, p, ¢/, it can be written as

() J Jjo gt
b=1(cl,, ... 5 €15 Cpy Cp . b1, ..., bp),

where CO, c(f)—H are the last letters of ¢/, c/T!, respectively. Using this notation, we can

define the set

o o |
D={c, b, by esitid,, e by by)
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€ 2j,(Go. p. ¢/ TH).
This set is a discretization of K j, (cé, cé“) and by our choice of my, it has order less
0,.j 0 0
than p>. Now use Lemma 2.2 for the limit geometry K %) <, point x = (F ch y—1 (Cgl, i)

. QO . . T%
and line L such that Fg_/- (L) is orthogonal to the line generated by 8 £. Hence,

#aeD: Go°¢’ (a) NCone(x, L, o) # ¥} <a-#D,
and then
~ i+1 00 60 60
#b € j,(Co, p, /) : G= () NCone(c ;. F ; (L), a) # B}
<a-#%, (G, p.c/t).
Since a > a, then there are elements a € X j,(Co, p, dthns o (o, P, ¢%) such that
0 80 6°
G%(a) N Cone(c,y ;. Fj (L), o) =
We choose a>/ as any such element. It easily follows from the choice of a>/ that

£ - F (L) > a.

a2 i’
Let L be the line orthogonal to the vector IT £. The previous inequality and the choice of
81 implies that
90 90 ~
A(c;,yj — s L) > /2. (25)
Now we have all the ingredients to finish the proof. For any j, the pair a'/, a>/ verifies
either option (i) or (ii), note that option (ii) implies

~ 90 QO
|c00 0 |(:31 &, c - ng,j)|

L cail= T =
4 = ||,31 - 151

>l gl ~HEIT = 2G51B1117 p

JTII,BII !

——— &7 = 4GB

1
(—””ﬂ” Ay —4csnﬂ||—1)p.

v

2n

Hence, choosing A¢ small enough, we can guarantee that option (ii) is not verified for
j =n — 1. However, if ¢!/, a>7 verifies option (i), then using equation (25), we get
L

00 90 . 69 69 . 69
|c;1,j - C;Z,j' -sin(e/2) < |C;1,j — c;z’j| - sin K(C;Lj — zj,

0

_ .8 0° 22 R
= |C£1,j - ng,j| - COS (CQLJ' azj, ,31 §)

BTE. 2, — %)l
- 87 &
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_ 205 +2C3[Ep
1720811 1€
< dnslE|7HIBIT +4CapllBIT

and we obtain
0° 0° . -1 =1y a1 -1
e = €l = (in(a/2)) " (@nslg] BT +4C3plB17).

Hence, assuming 15 and p small enough, we can guarantee that option (i) is not verified for
j = 0. Therefore, there exists j such that ¢!/, a>/ verifies option (ii) and g/ *!, g2/ %!
verifies option (i). From the inequalities obtained, we see that

6° 6° -
Cqrin — el (Sm g>14ns|s|‘ 1BI~" +4C3pl 81~

— <
—1 ~
2/ HEET 4G

00 00 -
|c£l,j _cgz,j|
_ (Sin g)‘l 4ns +4C3plE|
(w/2) —4C3pl§|

2

<< a)_l 4ns + 4nC3 Ao

sin — —_—
2] (n/2) —4nC3A

where we used || € [1, nAgp~!]. We obtain

6° 6°
|Ca1,j+1 _CaZ,j+l| _ ( . a)*l 4ns +4nC3Ap
_— sin — —_—,
QO_ - Q(J» o 2 (/2) —4nC3Ag
|CQI,] CQ2,1|

notice that the right-hand side of the inequality goes to zero as Ag and ns go to zero;
however, the left-hand side is bounded away from zero thanks to the bounded geometry of
the Cantor set K j,. We conclude that for Ag small enough, 15 is bounded away from zero,
as we wanted to prove.

5. Final remarks

In this final section, we want to comment, very briefly and without details, about our work
in progress, together with Araujo, about a complex version of Palis’s conjecture on the
arithmetic difference of Cantor sets.

More precisely, given a pair of conformal Cantor sets (K, K') with HD(K) +
HD(K') > 2, we are close to prove that arbitrarily close to this pair, we can find another
pair (K, K') such that int (K — K') # @.

To make sense of the previous statement, we need to explain the topology in the space
of Cantor sets. Fix a set of letters A and admissible pairs B C A x A, so that they generate
a subshift of finite type . Denote by Q7 the set of all conformal C™ Cantor sets with
the same associated subshift ¥ +. We introduce a topology in this space by defining a basis
of neighborhoods. For each K € Q% and § > 0, we define the §-neighborhood around
K as the set of C™ conformal Cantor sets K’ defined by an expanding map g’ : V' — C,
U, G’ (a) C V' such that G'(a) C Vs(G(a)) for every a € A (where Vs(G(a)) refers to the
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§-neighborhood of G(a)) and the restrictions to V N V' of the functions g, g’ are § close
in the C™ topology.

The definition of this topology is similar to that for regular Cantor sets in the real
line; moreover, it verifies that if we have regular conformal Cantor sets associated to
horseshoes for automorphisms of C? (as considered in [1]), then those Cantor sets depend
continuously on the automorphisms.

Our proof follows the strategy of [7] adapted to conformal Cantor sets. We prove the
existence of a recurrent compact set for a pair (K, K') close to the original pair. The
perturbed pair (K, K’) is selected, within a family of possible perturbations, using a
probabilistic argument. To be able to perturb properly, we use the fact that in the definition
of conformal Cantor sets, the derivative Dg is conformal at the Cantor set and this is only
required at these points. The not essentially real hypothesis also plays an important role in
this part.

For the construction of the recurrent compact set, we first define a set of ‘good’ scales,
and for this, we use a complex version of Marstrand’s projection theorem together with
the scale recurrence lemma we proved in these pages. The conformal version of the scale
recurrence lemma is a key tool for our proof of a complex version of Palis’s conjecture.
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