Hyperplanes in the Space of Convergent Sequences and Preduals of ℓ_{1}

Emanuele Casini, Enrico Miglierina, and Łukasz Piasecki

Abstract

The main aim of this paper is to investigate various structural properties of hyperplanes of c, the Banach space of the convergent sequences. In particular, we give an explicit formula for the projection constants and prove that an hyperplane of c is isometric to the whole space if and only if it is 1 -complemented. Moreover, we obtain the classification of those hyperplanes for which their duals are isometric to ℓ_{1} and give a complete description of the preduals of ℓ_{1} under the assumption that the standard basis of ℓ_{1} is weak ${ }^{*}$-convergent.

1 Introduction

This paper is mainly devoted to investigating the structural properties of the closed hyperplanes of the Banach space c of the convergent sequences. This study reveals that this class of spaces is very interesting, since it provides a complete isometric description of the preduals of the Banach space ℓ_{1} when it is assumed that the standard basis of this space is weak ${ }^{*}$-convergent.

The starting point of our work is a result that lists some properties of the hyperplanes of c_{0}. More specifically, the following essentially known theorem summarizes some characterizations of the 1-complemented hyperplanes in c_{0}. We prefer to give a short proof of this result for the reader's convenience. Indeed, some of the quoted known facts are scattered throughout the literature, and a simple remark, based on a well known property of ℓ_{∞}, is easy but not immediate.

Theorem 1.1 Let $f \in \ell_{1}$ be such that $\|f\|_{\ell_{1}}=1$. Let us consider the hyperplane $V_{f}=$ $\operatorname{ker} f \subset c_{0}$. The following statements are equivalent:
(i) V_{f} is 1 -complemented;
(ii) V_{f}^{*} is isometric to ℓ_{1};
(iii) there exists an index j_{0} such that $\left|f_{j_{0}}\right| \geq \frac{1}{2}$;
(iv) V_{f} is isometric to c_{0}.

Proof First, we recall that (i) is equivalent to (iii) (see [3]), and (i) implies (iv), since the 1-complemented infinite dimensional subspaces of c_{0} are isometric to the whole c_{0} (see, e.g., [7]). Trivially, (iv) implies (ii). Finally, we show that (ii) implies (i). By (ii) there exists an isometry $T: V_{f}^{*} \rightarrow \ell_{1}$, hence $T^{*}: \ell_{\infty} \rightarrow V_{f}^{* *}$ is also an isometry. By [5, Proposition 5.13, p. 142], there exists a norm-1 projection $P: \ell_{\infty} \rightarrow V_{f}^{* *}$.

[^0]Therefore, since $V_{f}^{* *}=[f]^{\perp}=\left\{x^{* *} \in \ell_{\infty}: x^{* *}(f)=0\right\}$, [2, Corollary 2] implies that V_{f} is 1-complemented in c_{0}.

One may ask whether a similar result is true when the space c_{0} is replaced by c. Therefore, the main aim of this paper is to investigate the properties of hyperplanes in c. In particular, we would like to determine whether the implications of Theorem 1.1 are preserved when we consider c instead of c_{0}. This study allows us to show that the behavior of hyperplanes in c is much richer than in c_{0}. Indeed, we will show that the counterpart in c of Theorem 1.1 is the following result.

Theorem 1.2 Let $f \in \ell_{1}$ be such that $\|f\|_{\ell_{1}}=1$, and let $W_{f}=\operatorname{ker} f \subset c$. Let us consider the following properties:
(i) W_{f} is 1-complemented;
(ii) W_{f} is isometric to c;
(iii) there exists $j_{0} \geq 2$ such that $\left|f_{j_{0}}\right| \geq \frac{1}{2}$;
(iv) W_{f}^{*} is isometric to ℓ_{1};
(v) there exists $j_{0} \geq 1$ such that $\left|f_{j_{0}}\right| \geq \frac{1}{2}$;
(vi) W_{f} is isometric to c_{0};
(vii) $\inf _{P}\|P\|=2$ (where $P: c \rightarrow W_{f}$ is a projection);
(viii) $\left|f_{1}\right|=1, f_{j}=0$ for every $j \geq 2$.

Then the following implications hold

$$
(\mathrm{i}) \Longleftrightarrow(\mathrm{ii}) \Longleftrightarrow(\mathrm{iii}) \Longrightarrow(\mathrm{iv}) \Longleftrightarrow(\mathrm{v}) \Longleftrightarrow(\mathrm{vi}) \Longleftrightarrow(\text { vii }) \Longleftrightarrow \text { (viii }) .
$$

The previous theorem is the main result of our paper, and in order to prove it we need a number of intermediate results that are interesting in themselves. First of all, we investigate the properties of the projections on the hyperplanes of c. Indeed, in Section 2, by following the approach outlined in [3] for c_{0}, we characterize the 1complemented hyperplanes of c and establish a formula to compute the projection constant of a given hyperplane in c. The second step (Section 3) is to study the hyperplanes of c that are isometric to c and c_{0}, respectively. It is worth mentioning that such situations appear only when the projection constant of the hyperplane attains its minimum and maximum, respectively. Indeed we show that a hyperplane of c is isometric to c itself if and only if it is 1 -complemented. Moreover, the only hyperplane of c that is an isometric copy of c_{0} has projection constant 2 , and is the "natural" one, i.e., the subspace of c whose elements are the vanishing sequences. At the beginning of Section 4, Proposition 4.1 characterizes the hyperplanes of c whose duals are isometric copies of ℓ_{1}. The most interesting situations among the class of the spaces W_{f} such that its dual is ℓ_{1} occur when W_{f} is isometric neither to c nor to c_{0}. Therefore, in these particular cases we compute the $\sigma\left(\ell_{1}, W_{f}\right)$-limit of the standard basis of ℓ_{1} by explicitly describing the duality between W_{f} and ℓ_{1} (see Theorem 4.3). This theorem allow us to obtain two interesting structural results. First, by using a result of [1], we show that a ℓ_{1}-predual space X is an isometric copy of W_{f} for a suitable choice of the functional $f \in \ell_{1}$, whenever the standard basis of $\ell_{1} \simeq X^{*}$ is assumed to be weak*convergent. Second, we characterize the hyperplanes W_{f} that are ℓ_{1}-preduals and are
isometric to a quotient of some $C(\alpha)$ where $C(\alpha)$ denotes the space of all continuous real-valued functions on the ordinals less than or equal to α with the order topology.

In the sequel, whenever X is a Banach space, B_{X} denotes the closed unit ball of X and $[x]$ the linear span of a vector $x \in X$. We write $X \simeq Y$ when X and Y are isometrically isomorphic. We also use standard duality between c and ℓ_{1}, that is, for $x \in c$ and $f \in \ell_{1}: f(x)=\sum_{i=0}^{\infty} f_{i+1} x_{i}$, where $x_{0}=\lim _{i \rightarrow \infty} x_{i}$. Throughout the paper, the hyperplane $W_{f} \subset c$ stands for the kernel of $f \in \ell_{1}$ with $\|f\|_{\ell_{1}}=1$.

2 The Projections on the Hyperplanes of c

The aim of this section is to extend to c the study of the projections onto the hyperplanes of c_{0} developed in [3].

First, the following lemma establishes a formula to compute the norm of a given projection on an hyperplane of c.

Lemma 2.1 A projection of c onto W_{f} has the form $P_{z}(x)=x-f(x) z$ for some $z \in f^{-1}(1)$. Moreover,

$$
\begin{equation*}
\left\|P_{z}\right\|=\sup _{i \geq 1}\left\{\left|1-f_{i+1} z_{i}\right|+\left|z_{i}\right|\left(1-\left|f_{i+1}\right|\right)\right\} \tag{2.1}
\end{equation*}
$$

Proof The first part is well known (see, e.g., [3]). Now we will prove formula (2.1). We have

$$
\left\|P_{z}\right\|=\sup _{x \in B_{c}} \sup _{i \geq 1}\left|\left(P_{z}(x)\right)_{i}\right|=\sup _{x \in B_{c}} \sup _{i \geq 1}\left|x_{i}-f(x) z_{i}\right|=\sup _{x \in B_{c}} \sup _{i \geq 1}\left|\sum_{j=0}^{+\infty}\left(\delta_{i j}-f_{j+1} z_{i}\right) x_{j}\right| .
$$

Therefore, it holds

$$
\begin{equation*}
\left\|P_{z}\right\| \leq \sup _{i \geq 1}\left(\sum_{j=0}^{+\infty}\left|\delta_{i j}-f_{j+1} z_{i}\right|\right) \tag{2.2}
\end{equation*}
$$

Now let us consider, for every $i \geq 1$, the sequences $\left\{x^{(n, i)}\right\}_{n \geq 1} \subset B_{c}$ where $x^{(n, i)}=$ $\left(x_{1}^{(n, i)}, x_{2}^{(n, i)}, \ldots\right)$ is defined by

$$
x_{j}^{(n, i)}= \begin{cases}\operatorname{sgn}\left(\delta_{i j}-f_{j+1} z_{i}\right) & \text { for } j \leq n, \\ \operatorname{sgn}\left(-f_{1} z_{i}\right) & \text { for } j>n .\end{cases}
$$

Then we have that for all integers $n \geq 1$,

$$
\begin{aligned}
\sup _{i \geq 1}\left\|P_{z}\left(x^{(n, i)}\right)\right\| & =\sup _{i \geq 1}\left|\sum_{j=0}^{+\infty}\left(\delta_{i j}-f_{j+1} z_{i}\right) x_{j}^{(n, i)}\right| \geq \sup _{1 \leq i \leq n}\left|\sum_{j=0}^{+\infty}\left(\delta_{i j}-f_{j+1} z_{i}\right) x_{j}^{(n, i)}\right| \\
& =\sup _{1 \leq i \leq n}\left|\sum_{j=0}^{n}\right| \delta_{i j}-f_{j+1} z_{i}\left|-z_{i} \operatorname{sgn}\left(-f_{1} z_{i}\right) \sum_{j=n+1}^{+\infty} f_{j+1}\right| .
\end{aligned}
$$

Therefore, we obtain that

$$
\begin{equation*}
\left\|P_{z}\right\| \geq \sup _{i \geq 1}\left(\sum_{j=0}^{+\infty}\left|\delta_{i j}-f_{j+1} z_{i}\right|\right) . \tag{2.3}
\end{equation*}
$$

Hence, combining (2.2) and (2.3), we conclude that

$$
\left\|P_{z}\right\|=\sup _{i \geq 1}\left(\sum_{j=0}^{+\infty}\left|\delta_{i j}-f_{j+1} z_{i}\right|\right)
$$

Finally, an easy computation shows that

$$
\left\|P_{z}\right\|=\sup _{i \geq 1}\left\{\left|1-f_{i+1} z_{i}\right|+\left|z_{i}\right| \sum_{\substack{j=0 \\ j \neq i}}^{+\infty}\left|f_{j+1}\right|\right\}=\sup _{i \geq 1}\left\{\left|1-f_{i+1} z_{i}\right|+\left|z_{i}\right|\left(1-\left|f_{i+1}\right|\right)\right\} .
$$

By means of the previous lemma, we are able to characterize the 1-complemented hyperplanes of c.

Proposition 2.2 A norm-1 projection of c onto W_{f} exists if and only if $\left|f_{j}\right| \geq \frac{1}{2}$ for some $j \geq 2$. Moreover, there exists a unique norm-1 projection of c onto W_{f} if and only if there exists a unique index $j_{0} \geq 2$ such that $\left|f_{j_{0}}\right| \geq \frac{1}{2}$.

Proof By Lemma 2.1 W_{f} is the rank of a norm-1 projection if and only if there exists $z \in c$ such that

$$
\begin{gather*}
\left|1-f_{i+1} z_{i}\right|+\left|z_{i}\right|\left(1-\left|f_{i+1}\right|\right) \leq 1 \quad \forall i \geq 1 \tag{2.4}\\
\sum_{j=0}^{+\infty} f_{j+1} z_{j}=1 \tag{2.5}
\end{gather*}
$$

Inequality (2.4) implies that $\operatorname{sgn}\left(f_{i+1}\right)=\operatorname{sgn}\left(z_{i}\right)$ for every $i \geq 1$. Then (2.4) becomes

$$
1-f_{i+1} z_{i}+\left|z_{i}\right|-z_{i} f_{i+1} \leq 1 \quad \forall i \geq 1
$$

and hence

$$
\left|z_{i}\right|\left(1-2\left|f_{i+1}\right|\right) \leq 0 \quad \forall i \geq 1 .
$$

Therefore, $z_{i}=0$ for every i such that $\left|f_{i+1}\right|<\frac{1}{2}$. By equation (2.5) we conclude that there exists at least one index $j_{0} \geq 2$ such that $\left|f_{j_{0}}\right| \geq \frac{1}{2}$.

Now let us consider an element $z^{0} \in c$ such that

$$
\begin{equation*}
z_{j_{0}-1}^{0}=\frac{1}{f_{j_{0}}}, \quad z_{j}^{0}=0 \quad \forall j \neq j_{0}-1 \tag{2.6}
\end{equation*}
$$

It is easy to see that z^{0} satisfies equations (2.4) and (2.5), $\left\|P_{z^{0}}\right\|=1$. Finally, if there is a unique index j_{0} such that $\left|f_{j_{0}}\right| \geq \frac{1}{2}$, we remark that a unique projection $P_{z^{0}}$ exists (where z^{0} is defined by (2.6)). If there are two indexes j_{1} and j_{2} such that $\left|f_{j_{1}}\right|=\left|f_{j_{2}}\right|=$ $\frac{1}{2}$, then both the projections $P_{z^{1}}$ and $P_{z^{2}}$ (where z^{1} and z^{2} are defined by (2.6)) have norm 1.

Lemma 2.1 allows us to give an explicit formula to compute the projection constant of the hyperplane W_{f}.

Proposition 2.3 Let $f \in \ell_{1}$ be such that $\|f\|_{\ell_{1}}=1$ and $\left|f_{j}\right|<\frac{1}{2}$ for every $j \geq 2$. Then

$$
\inf _{z \in f^{-1}(1)}\left\|P_{z}\right\|=1+\left(\left|f_{1}\right|+\sum_{j=1}^{+\infty} \frac{\left|f_{j+1}\right|}{1-2\left|f_{j+1}\right|}\right)^{-1}
$$

Proof Let us consider the quantity

$$
\alpha_{N}=\left|f_{1}\right|+\sum_{j=1}^{N-1} \frac{\left|f_{j+1}\right|}{1-2\left|f_{j+1}\right|}+\operatorname{sgn}\left(f_{1}\right) \sum_{j=N}^{+\infty} f_{j+1} .
$$

We first remark that there exists $N_{0} \in \mathbb{N}$ such that for every $N \geq N_{0}, \alpha_{N}>0$ and

$$
\begin{equation*}
\alpha_{N} \geq \frac{\left|f_{k+1}\right|}{1-2\left|f_{k+1}\right|} \tag{2.7}
\end{equation*}
$$

for every $1 \leq k \leq N-1$.
Let us consider the sequence $\left\{z^{N}\right\}_{N \geq N_{0}} \subset c$ defined by

$$
z^{N}=\lambda_{N}(\underbrace{\frac{\operatorname{sgn}\left(f_{2}\right)}{1-2\left|f_{2}\right|}, \ldots, \frac{\operatorname{sgn}\left(f_{N}\right)}{1-2\left|f_{N}\right|}}_{N-1}, \operatorname{sgn}\left(f_{1}\right), \operatorname{sgn}\left(f_{1}\right), \ldots)
$$

where λ_{N} is a positive real number such that $f\left(z^{N}\right)=1$. Therefore, it is $\lambda_{N}=\alpha_{N}^{-1}$.
Now we have

$$
\begin{equation*}
\left\|P_{z^{N}}\right\|=\sup _{i \geq 1}\left\{\left|1-f_{i+1} z_{i}^{N}\right|+\left|z_{i}^{N}\right|\left(1-\left|f_{i+1}\right|\right)\right\} \leq 1+\lambda_{N} \tag{2.8}
\end{equation*}
$$

for every $N>N_{0}$. Indeed, by inequality (2.7) we obtain that $1-\lambda_{N} \frac{\left|f_{i+1}\right|}{1-2\left|f_{i+1}\right|} \geq 0$, and hence, for $1 \leq i \leq N-1$, we have

$$
1-\lambda_{N} \frac{\left|f_{i+1}\right|}{1-2\left|f_{i+1}\right|}+\lambda_{N}\left(\frac{1-\left|f_{i+1}\right|}{1-2\left|f_{i+1}\right|}\right)=1+\lambda_{N} .
$$

Moreover, for $i \geq N$

$$
\left|1-\lambda_{N} f_{i+1} \operatorname{sgn}\left(f_{1}\right)\right|+\lambda_{N}\left(1-\left|f_{i+1}\right|\right) \leq 1+\lambda_{N}\left|f_{i+1}\right|+\lambda_{N}-\lambda_{N}\left|f_{i+1}\right| \leq 1+\lambda_{N} .
$$

By (2.8) we have that $\inf _{z \in f^{-1}(1)}\left\|P_{z}\right\| \leq 1+\lambda$, where

$$
\begin{equation*}
\lambda=\lim _{N} \lambda_{N}=\left(\left|f_{1}\right|+\sum_{j=1}^{+\infty} \frac{\left|f_{j+1}\right|}{1-2\left|f_{j+1}\right|}\right)^{-1} \tag{2.9}
\end{equation*}
$$

We will finish the proof by showing that $\inf _{z \in f^{-1}(1)}\left\|P_{z}\right\|=1+\lambda$. Let us consider two different cases.

First, let us suppose that $\left|f_{1}\right|=1$, and hence $\lambda=1$. In this case it is well known that $\inf _{z \in f^{-1}(1)}\left\|P_{z}\right\|=2$ (see, e.g., [5]).

Finally, let $\left|f_{1}\right|<1$. By contradiction, let us suppose that there exists $\widehat{z} \in f^{-1}(1)$ such that

$$
\left\|P_{\widehat{z}}\right\|=\sup _{i \geq 1}\left\{\left|1-f_{i+1} \widehat{z}_{i}\right|+\left|\widehat{z}_{i}\right|\left(1-\left|f_{i+1}\right|\right)\right\}<1+\lambda
$$

hence

$$
\left|1-f_{i+1} \widehat{z}_{i}\right|+\left|\widehat{z}_{i}\right|\left(1-\left|f_{i+1}\right|\right)<1+\lambda
$$

for every $i \geq 1$, and then

$$
1-\left|f_{i+1}\right|\left|\widehat{z}_{i}\right|+\left|\widehat{z}_{i}\right|-\left|\widehat{z}_{i}\right|\left|f_{i+1}\right|<1+\lambda
$$

Therefore, for every $i \geq 1$, it holds that

$$
\begin{equation*}
\left(1-2\left|f_{i+1}\right|\right)\left|\widehat{z}_{i}\right|<\lambda \tag{2.10}
\end{equation*}
$$

Moreover, the last relation gives that

$$
\begin{equation*}
\left|\widehat{z}_{0}\right|=\lim _{i}\left|\widehat{z}_{i}\right| \leq \lim _{i} \frac{\lambda}{1-2\left|f_{i+1}\right|}=\lambda \tag{2.11}
\end{equation*}
$$

Since there exists at least one index $\widehat{j} \geq 1$ such that $f_{\widehat{j}+1} \neq 0$, by using inequalities (2.10) and (2.11) and by recalling (2.9), we conclude that

$$
\sum_{j=0}^{+\infty} f_{j+1} \widehat{z}_{j} \leq\left|f_{1}\right|\left|\widehat{z}_{0}\right|+\sum_{j=1}^{+\infty}\left|f_{j+1}\right|\left|\widehat{z}_{j}\right|<\lambda\left(\left|f_{1}\right|+\sum_{j=1}^{+\infty} \frac{\left|f_{j+1}\right|}{1-2\left|f_{j+1}\right|}\right)=1 .
$$

The last inequality is a contradiction, because $\sum_{j=0}^{+\infty} f_{j+1} \widehat{z}_{j}=1$.

3 Isometries Between the Hyperplanes of c and the Spaces c and c_{0}

In this section we show that the isometric structure of the hyperplanes is completely described whenever the associated projection constant assumes the extreme values. Indeed, we will prove that W_{f} is isometric to c if and only if it is 1-complemented, whereas W_{f} is isometric to c_{0} if and only if its projection constant is 2 . We begin with the study of the 1 -complemented hyperplanes of c. The first step shows that a 1-complemented hyperplane is isometric to c.

Proposition 3.1 If $W_{f} \subset c$ is 1-complemented then W_{f} is isometric to c.
Proof By Theorem 2.2, there exists $j_{0} \geq 2$ such that $\left|f_{j_{0}}\right| \geq \frac{1}{2}$. Now let us consider $T: c \rightarrow W_{f}$ defined by

$$
T\left(x_{1}, x_{2}, \ldots\right)=(x_{1}, \ldots, x_{j_{0}-2}, \underbrace{\alpha}_{j_{0}-1}, x_{j_{0}-1}, x_{j_{0}}, \ldots)
$$

where

$$
\alpha=-\frac{1}{f_{j_{0}}}\left(\sum_{j=0}^{j_{0}-2} f_{j+1} x_{j}+\sum_{j=j_{0}}^{+\infty} f_{j+1} x_{j-1}\right) .
$$

The inverse of T is $T^{-1}: W_{f} \rightarrow c$; it acts on $y=\left(y_{1}, y_{2}, \ldots\right) \in W_{f}$ by deleting the ($j_{0}-1$)-th component of y. Moreover, if $x \in c$, then

$$
\begin{aligned}
|\alpha| & \leq \frac{1}{\left|f_{j_{0}}\right|}\left(\sum_{j=0}^{j_{0}-2}\left|f_{j+1}\right|\left|x_{j}\right|+\sum_{j=j_{0}}^{+\infty}\left|f_{j+1}\right|\left|x_{j-1}\right|\right) \leq \frac{1}{\left|f_{j_{0}}\right|}\left(\sum_{j=0}^{j_{0}-2}\left|f_{j+1}\right|+\sum_{j=j_{0}}^{+\infty}\left|f_{j+1}\right|\right)\|x\| \\
& =\frac{1}{\left|f_{j_{0}}\right|}\left(\sum_{\substack{j=0 \\
j \neq j_{0}-1}}^{+\infty}\left|f_{j+1}\right|\right)\|x\|=\frac{1}{\left|f_{j_{0}}\right|}\left(1-\left|f_{j_{0}}\right|\right)\|x\| \leq\|x\| .
\end{aligned}
$$

Therefore T is an isometry between W_{f} and c.
In order to prove the reverse implication, we need to investigate the family of the isometries on c with 1-codimensional range. To this aim, we adapt to our framework some results from [6] (Theorem 2.1 and Lemma 2.2) about the isometries on the space of continuous functions defined on a compact set. It is worth noting that the mentioned results in [6] do not refer to general isometries, but they only consider shift operators. Nevertheless, by considering the proofs of these results, it is easy to see that they hold for general isometries with 1-codimensional range.

As is well known, the space c can be seen as the space $\mathcal{C}\left(\mathbb{N}^{*}\right)$ of continuous function on \mathbb{N}^{*}, where \mathbb{N}^{*} denotes the Alexandroff one-point compactification of the set of positive integers. For the sake of convenience, we denote by 0 the unique limit point of \mathbb{N}^{*}.

Theorem 3.2 ([6, Theorem 2.1 and Lemma 2.2]) Let $T: \mathcal{C}\left(\mathbb{N}^{*}\right) \rightarrow \mathcal{C}\left(\mathbb{N}^{*}\right)$ be an isometry with 1-codimensional range. Then there exist a closed subset M of \mathbb{N}^{*}, a continuous and surjective function $\phi: M \rightarrow \mathbb{N}^{*}$, where $\phi^{-1}(n)$ has at most two elements for each $n \in \mathbb{N}^{*}$, and a sequence $\left\{\varepsilon_{n}\right\}_{n \in \mathbb{N}^{*}}$, where $\left|\varepsilon_{n}\right|=1$ such that

$$
\begin{equation*}
(T x)_{n}=\varepsilon_{n} x_{\phi(n)} \quad \text { for every } n \in M \tag{3.1}
\end{equation*}
$$

Moreover, only one of the two following alternatives holds:
(i) $M=\mathbb{N}^{*} \backslash\{\bar{n}\}$, where \bar{n} is a positive integer (in addition, in this case ϕ is also injective);
(ii) $M=\mathbb{N}^{*}$, and if there exists $n^{\prime} \in \mathbb{N}^{*}$ such that the set $\phi^{-1}\left(n^{\prime}\right)$ has two elements, then $\phi^{-1}(n)$ is a singleton for every $n \in \mathbb{N}^{*} \backslash\left\{n^{\prime}\right\}$.

Now, by means of the previous theorem, we will show that W_{f} is 1-complemented whenever it is isometric to c.

Proposition 3.3 If $W_{f} \subset c$ is isometric to c, then W_{f} is 1-complemented.
Proof By recalling Proposition 2.2, in order to prove the theorem, it is sufficient to show that there exists $j_{0} \geq 2$ such that $\left|f_{j_{0}}\right| \geq \frac{1}{2}$ whenever there exists an isometry $T: c \rightarrow W_{f}$.

First of all, by the continuity of ϕ it is easy to see that $\phi(0)=0$. Now let us consider Theorem 3.2(i) and let us suppose that $M=\mathbb{N}^{*} \backslash\{1\}$ without loss of generality. Therefore equation (3.1) is true for every $n \geq 2$. Hence, all the components of $T x$ are known except $(T x)_{1}=z$. Since $T x \in W_{f}$ for every $x \in c$,

$$
\begin{equation*}
f_{1} \varepsilon_{0} x_{0}+f_{2} z+\sum_{j=2}^{+\infty} f_{j+1} \varepsilon_{j} x_{\phi(j)}=0 \tag{3.2}
\end{equation*}
$$

By the injectivity of ϕ, we can choose $x_{N} \in c$ such that

$$
\varepsilon_{n}\left(x_{N}\right)_{\phi(n)}=\operatorname{sgn} f_{n+1}
$$

for every $2 \leq n \leq N$. All the other components of x_{N} are equal to a value x_{0} given by

$$
\varepsilon_{0} x_{0}=\operatorname{sgn} f_{1}
$$

By (3.2), we have

$$
\left|f_{1}\right|+f_{2} z_{N}+\left|f_{3}\right|+\cdots+\left|f_{N+1}\right|+x_{0} \sum_{j=N+1}^{+\infty} f_{j+1} \varepsilon_{j}=0
$$

where $z_{N}=\left(T x_{N}\right)_{1}$. Since T is an isometry $\left|z_{N}\right| \leq 1$, and hence, up to a subsequence, we can suppose that z_{N} converges to \widehat{z}. Therefore, as $N \rightarrow \infty$, we have

$$
\left|f_{1}\right|+f_{2} \widehat{z}+\sum_{j=2}^{+\infty}\left|f_{j+1}\right|=f_{2} \widehat{z}+1-\left|f_{2}\right|=0
$$

and hence $\widehat{z}=-\frac{1-\left|f_{2}\right|}{f_{2}}$. Since $|\widehat{z}| \leq 1$, we conclude that $\left|f_{2}\right| \geq \frac{1}{2}$.
Now let us study Theorem 3.2(ii), where $M=\mathbb{N}^{*}$. We consider three different situations.

- Let $\phi^{-1}(n)$ be a pair for an element $n \in \mathbb{N}^{*}, n \neq 0$. Without loss of generality, we can suppose that the map $\phi: \mathbb{N}^{*} \rightarrow \mathbb{N}^{*}$ is one-to-one everywhere except at the point 1 where $\phi^{-1}(1)=\{1,2\}$. Since $T x \in W_{f}$, we have

$$
\begin{equation*}
f_{1} \varepsilon_{0} x_{0}+f_{2} \varepsilon_{1} x_{1}+f_{3} \varepsilon_{2} x_{1}+\sum_{j=3}^{+\infty} f_{j+1} \varepsilon_{j} x_{\phi(j)}=0 \tag{3.3}
\end{equation*}
$$

By the injectivity of ϕ, we can choose $x_{N} \in c$ such that $\varepsilon_{n}\left(x_{N}\right)_{\phi(n)}=\operatorname{sgn} f_{n+1}$ for every $3 \leq n \leq N$. Moreover, the component $\left(x_{N}\right)_{1}$ is chosen to satisfy $\varepsilon_{1}\left(x_{N}\right)_{1}=\operatorname{sgn} f_{2}$. All the other components of x_{N} are equal to the value x_{0} given by $\varepsilon_{0} x_{0}=\operatorname{sgn} f_{1}$. Since $T x_{N} \in W_{f}$, by (3.3), we have

$$
\left|f_{1}\right|+\left|f_{2}\right|+f_{3} \varepsilon_{1} \varepsilon_{2} \operatorname{sgn} f_{2}+\cdots+\left|f_{N+1}\right|+x_{0} \sum_{j=N+1}^{+\infty} f_{j+1} \varepsilon_{j}=0
$$

Therefore, as $N \rightarrow \infty$, we have

$$
\left|f_{1}\right|+\left|f_{2}\right|+f_{3} \varepsilon_{1} \varepsilon_{2} \operatorname{sgn} f_{2}+\sum_{j=3}^{+\infty}\left|f_{j+1}\right|=0
$$

and hence

$$
\begin{equation*}
1-\left|f_{3}\right|+f_{3} \varepsilon_{1} \varepsilon_{2} \operatorname{sgn} f_{2}=0 \tag{3.4}
\end{equation*}
$$

Similarly, by choosing $\left(x_{N}\right)_{1}$ to satisfy $\varepsilon_{2}\left(x_{N}\right)_{1}=\operatorname{sgn} f_{3}$, we obtain an analogous equation for f_{2} :

$$
\begin{equation*}
1-\left|f_{2}\right|+f_{2} \varepsilon_{1} \varepsilon_{2} \operatorname{sgn} f_{3}=0 \tag{3.5}
\end{equation*}
$$

Equations (3.4) and (3.5) hold true simultaneously only if $\left|f_{2}\right|=\left|f_{3}\right|=\frac{1}{2}$.

- Let $\phi^{-1}(0)$ be a pair. Without loss of generality we can suppose that

$$
\phi^{-1}(0)=\{0,1\} .
$$

Analysis similar to that in the previous point shows that $\left|f_{1}\right|=\left|f_{2}\right|=\frac{1}{2}$.

- Finally, let ϕ be injective. The same argument applied above yields the contradiction

$$
\sum_{j=1}^{+\infty}\left|f_{j}\right|=0
$$

Now we study the hyperplanes of c that are isometric to c_{0}. First, we prove that a hyperplane of c with projection constant equal to 2 is an isometric copy of c_{0}.

Proposition 3.4 If W_{f} is such that $\inf _{z}\left\|P_{z}\right\|=2$ (where $P_{z}: c \rightarrow W_{f}$ is a projection), then W_{f} is isometric to c_{0}.

Proof Let us recall that, by Proposition 2.3,

$$
\inf _{z}\left\|P_{z}\right\|=1+\left(\left|f_{1}\right|+\sum_{j=1}^{+\infty} \frac{\left|f_{j+1}\right|}{1-2\left|f_{j+1}\right|}\right)^{-1}
$$

Then, since $\inf _{z}\left\|P_{z}\right\|=2$, we have

$$
\left|f_{1}\right|+\sum_{j=1}^{+\infty} \frac{\left|f_{j+1}\right|}{1-2\left|f_{j+1}\right|}=1
$$

Since $\|f\|_{\ell_{1}}=1$,

$$
\sum_{j=1}^{+\infty} \frac{\left|f_{j+1}\right|}{1-2\left|f_{j+1}\right|}=\sum_{j=1}^{+\infty}\left|f_{j+1}\right|
$$

and hence

$$
\sum_{j=1}^{+\infty}\left(\frac{\left|f_{j+1}\right|}{1-2\left|f_{j+1}\right|}-\left|f_{j+1}\right|\right)=\sum_{j=1}^{+\infty}\left(\frac{2\left|f_{j+1}\right|^{2}}{1-2\left|f_{j+1}\right|}\right)=0
$$

Since $\left|f_{j+1}\right|<\frac{1}{2}$ for every $j=1,2,3, \ldots$ (otherwise $\inf _{z}\left\|P_{z}\right\|=1$ by Proposition 2.2), the last equality holds if and only if $f_{j+1}=0$ for every $j=1,2, \ldots$. Therefore, $f=$ $\pm(1,0,0, \ldots)$, and hence $W_{f} \simeq c_{0}$.

Now we prove that there exists a unique hyperplane of c isometric to c_{0}. This assertion follows directly from a simple lemma that can be stated in a more general setting.

Lemma 3.5 Let V be a subspace of $\mathcal{C}(K)$ where K is a compact metric space. If V is isometric to c_{0}, then there exists $p \in K$ such that

$$
V \subseteq\{f \in \mathcal{C}(K): f(p)=0\}
$$

Proof Let $T: V \rightarrow c_{0}$ be an isometry. Therefore, $T^{*}: \ell_{1} \rightarrow V^{*}$ is also an isometry, and hence $T^{*}\left(e_{n}\right) \in \operatorname{ext} B_{V^{*}}$, where e_{n} is the n-th element of the standard basis of ℓ_{1}. By [4, Lemma 6, p. 441], we have $T^{*}\left(e_{n}\right)= \pm x_{p_{n}}^{*}$ where x_{p}^{*} is the evaluation functional. Since $\left\{e_{n}\right\}$ is a weak ${ }^{*}$-null sequence, $\left|x_{p_{n}}^{*}(f)\right| \rightarrow 0$ for every $f \in V$. Now, by the compactness of K, there exists an element $p \in K$ such that $f(p)=0$ for every $f \in V$.

If we take $\mathcal{C}(K)=\mathcal{C}\left(\mathbb{N}^{*}\right)=c$ and $V=W_{f}$ in the previous lemma, then, necessarily,

$$
W_{f}=\left\{x \in c: x_{0}=\lim _{i} x_{i}=0\right\}
$$

since W_{f} has codimension 1 .

4 Duality Between W_{f} and ℓ_{1} and Some Applications

We start this section by characterizing the hyperplanes of c such that their duals are isometric to ℓ_{1}. Despite its simple proof, this result plays a central role in our approach, since it allows us conclude the proof of our main result, Theorem 1.2.

Proposition 4.1 There exists $j_{0} \in \mathbb{N}$ such that $\left|f_{j_{0}}\right| \geq \frac{1}{2}$ if and only if $W_{f}^{*} \simeq \ell_{1}$.
Proof Let us denote by V_{f} the subspace of c_{0} defined as $V_{f}=\operatorname{ker} f \subset c_{0}$. Since

$$
V_{f}^{*} \simeq \ell_{1} /[f]
$$

then $W_{f}^{*} \simeq V_{f}^{*}$. By Theorem 1.1 we have that $W_{f}^{*} \simeq \ell_{1}$ if and only if there exists $j_{0} \in \mathbb{N}$ such that $\left|f_{j_{0}}\right| \geq \frac{1}{2}$.

A consequence of Theorem 1.2 is the classification of the hyperplanes of c such that their duals are isometric copies of ℓ_{1}.

Remark 4.2 The hyperplanes W_{f} of c such that $W_{f}^{*} \simeq \ell_{1}$ can be divided into three distinct classes:

- $W_{f} \simeq c$ (or, equivalently, there exists $j_{0} \geq 2$ such that $\left|f_{j_{0}}\right| \geq \frac{1}{2}$);
- W_{f} is isometric neither to c nor to c_{0} (or, equivalently, $\frac{1}{2} \leq\left|f_{1}\right|<1$ and $\left|f_{j}\right|<\frac{1}{2}$ for every $j \geq 2$);
- $W_{f} \simeq c_{0}$ (or, equivalently, $\left|f_{1}\right|=1$).

The most interesting situations occur when W_{f} is isometric neither to c nor to c_{0}. In these cases we study the $\sigma\left(\ell_{1}, W_{f}\right)$-limit of the standard basis of ℓ_{1}. It is worth mentioning that in order to reach this aim we explicitly describe the duality between W_{f} and ℓ_{1}.

Theorem 4.3 Let $W_{f} \subset c$ be such that $W_{f}^{*} \simeq \ell_{1}, \frac{1}{2} \leq\left|f_{1}\right|<1$, and $\left|f_{j}\right|<\frac{1}{2}$ for every $j \geq 2$. If $\left\{e_{n}\right\}$ is the standard basis of ℓ_{1}, then

$$
e_{n} \xrightarrow{\sigma\left(\ell_{1}, W_{f}\right)} \widehat{e},
$$

where $\widehat{e}=\left(-\frac{f_{2}}{f_{1}},-\frac{f_{3}}{f_{1}},-\frac{f_{4}}{f_{1}}, \ldots\right)$.
Proof Consider the map $\phi: \ell_{1} \rightarrow W_{f}^{*}$ defined by

$$
(\phi(y))(x)=\sum_{j=1}^{+\infty} x_{j} y_{j}
$$

where $y=\left(y_{1}, y_{2}, \ldots\right) \in \ell_{1}$ and $x=\left(x_{1}, x_{2}, \ldots\right) \in W_{f}$.
It is easy to see that $\phi\left(\ell_{1}\right)=W_{f}^{*}$, and for any $y \in \ell_{1}$,

$$
\begin{equation*}
\|\phi(y)\|_{W_{f}^{*}} \leq\|y\|_{\ell_{1}} \tag{4.1}
\end{equation*}
$$

Now, for a given $y=\left(y_{1}, y_{2}, \ldots\right) \in \ell_{1}$, consider the points $x^{N}, N=1,2, \ldots$, defined as

$$
x^{N}=\left(\operatorname{sgn}\left(y_{1}\right), \operatorname{sgn}\left(y_{2}\right), \ldots, \operatorname{sgn}\left(y_{N}\right), x_{0}^{N}, x_{0}^{N}, \ldots\right),
$$

where x_{0}^{N} satisfies the following equation:

$$
f_{1} x_{0}^{N}+\sum_{j=1}^{N} f_{j+1} \operatorname{sgn}\left(y_{j}\right)+x_{0}^{N} \sum_{j=N+1}^{+\infty} f_{j+1}=0
$$

It is clear that $x^{N} \in W_{f}$ for all N. Moreover, for any $N \geq N_{0}$, where N_{0} is such that $\sum_{j=N_{0}+1}^{+\infty}\left|f_{j+1}\right|<\frac{1}{2}$, we have $x^{N} \in B_{W_{f}}$. Indeed, for every $N \geq N_{0}$, we have

$$
\begin{aligned}
\left|x_{0}^{N}\right| & =\left|\frac{-\sum_{j=1}^{N} f_{j+1} \operatorname{sgn}\left(y_{j}\right)}{f_{1}+\sum_{j=N+1}^{+\infty} f_{j+1}}\right| \leq \frac{\sum_{j=1}^{N}\left|f_{j+1}\right|}{\left|f_{1}+\sum_{j=N+1}^{+\infty} f_{j+1}\right|} \\
& =\frac{1-\left|f_{1}\right|-\sum_{j=N+1}^{+\infty}\left|f_{j+1}\right|}{\left|f_{1}+\sum_{j=N+1}^{+\infty} f_{j+1}\right|} \leq \frac{1}{2}-\sum_{j=N+1}^{+\infty}\left|f_{j+1}\right| \\
\frac{1}{2}-\sum_{j=N+1}^{+\infty}\left|f_{j+1}\right| & =1 .
\end{aligned}
$$

Now, for every $N \geq N_{0}$, we have

$$
\|\phi(y)\|_{W_{f}^{*}} \geq\left|(\phi(y))\left(x^{N}\right)\right|=\left|\sum_{j=1}^{N}\right| y_{j}\left|+x_{0}^{N} \sum_{j=N+1}^{+\infty} y_{j}\right| .
$$

Letting $N \rightarrow+\infty$ we get

$$
\begin{equation*}
\|\phi(y)\|_{W_{f}^{*}} \geq\|y\|_{\ell_{1}} . \tag{4.2}
\end{equation*}
$$

By (4.1) and (4.2) we conclude that the map ϕ is an isometry.
Finally, for any $x=\left(x_{1}, x_{2}, \ldots\right) \in W_{f}$, we obtain

$$
\lim _{n \rightarrow \infty}\left(\phi\left(e_{n}\right)\right)(x)=\lim _{n \rightarrow \infty} x_{n}=x_{0}=-\frac{1}{f_{1}} \sum_{j=1}^{\infty} f_{j+1} x_{j}=(\phi(\widehat{e}))(x)
$$

The last result has some interesting consequences.
First of all, by recalling Lemma 2 in [1], that asserts "that the w^{*}-closure of the ℓ_{1}-(standard) basis is the only thing that is important" to describe the structure of an ℓ_{1}-predual space, we obtain a complete isometric descriptions of the preduals of ℓ_{1} under the additional assumption that its standard basis is $\sigma\left(\ell_{1}, X\right)$-convergent.

Corollary 4.4 Let X be a Banach space such that $X^{*}=\ell_{1}$. If the standard basis $\left\{e_{n}\right\}$ of ℓ_{1} is a $\sigma\left(\ell_{1}, X\right)$-convergent sequence, then there exists $f \in \ell_{1}$ with $\|f\|_{\ell_{1}}=1$ such that X is isometric to W_{f}.

Proof Let $\widehat{e}=\left(\widehat{e}_{1}, \widehat{e}_{2}, \ldots\right) \in \ell_{1}$ be the $\sigma\left(\ell_{1}, X\right)$-limit of $\left\{e_{n}\right\}$. If $\left|\widehat{e}_{j}\right|<1$ for every $j \geq 1$, then by Theorem 4.3 and [1, Lemma 2] we have that $X \simeq W_{f}$ where $f=\left(f_{1}, f_{2}, \ldots\right) \in$ ℓ_{1} is defined by

$$
f_{1}=\frac{1}{1+\sum_{n=1}^{\infty}\left|\widehat{e}_{n}\right|}, \quad f_{n}=-\frac{\widehat{e}_{n-1}}{1+\sum_{n=1}^{\infty}\left|\widehat{e_{n}}\right|} \text { for every } n \geq 2
$$

Now it remains to consider the case where $\widehat{e}=e_{m}$ for a fixed $m \geq 1$. Under this assumption it is easy to show that $X \simeq c$, and hence $X \simeq W_{f}$ for every $f \in \ell_{1}$ such that there exists $j_{0} \geq 2$ such that $\left|f_{j_{0}}\right| \geq \frac{1}{2}$.

Finally, we obtain some additional information about the isometric structure of the hyperplanes W_{f}. Let us introduce the following notation. For a countable ordinal α, let $C(\alpha)$ be the space of all continuous real-valued functions on the ordinals less than or equal to α with the order topology.

Corollary 4.5 There exists a countable ordinal α such that W_{f} is isometric to a quotient of $C(\alpha)$ if and only if one of the following conditions holds:
(i) there exists an index $j_{0} \geq 2$ such that $\left|f_{j_{0}}\right| \geq \frac{1}{2}$;
(ii) $\frac{1}{2} \leq\left|f_{1}\right| \leq 1$ and $\left|f_{j}\right|<\frac{1}{2}$ for all $j \geq 2$ and $f=\left(f_{1}, f_{2}, \ldots, f_{n}, 0,0, \ldots, 0, \ldots\right)$ for some $n \in \mathbb{N}$.

Proof First of all, by Theorem 1.2 we have that condition (i) is satisfied if and only if $W_{f} \simeq c$. Now it remains to consider the case where $\frac{1}{2} \leq\left|f_{1}\right| \leq 1$ and $\left|f_{j}\right|<\frac{1}{2}$ for all $j \geq 2$. Let us suppose that $f=\left(f_{1}, f_{2}, \ldots, f_{n}, 0,0, \ldots\right)$ for some $n \geq 2$. Then $W_{f} \subset c$ is isometric to a quotient of $C(\omega \cdot n)$. To see it, consider the sequence of measures μ_{i} defined by $\mu_{i}=\delta_{\omega \cdot i}$ for $i=1,2, \ldots, n-1$, and for $i=n, n+1, n+2, \ldots$, (we put $\left.\delta_{\omega \cdot 0+i}:=\delta_{i}\right)$

$$
\mu_{i}=-\frac{1}{f_{1}} \sum_{j=2}^{n} f_{j} \cdot \delta_{\omega \cdot(j-2)+i}+\frac{2\left|f_{1}\right|-1}{\left|f_{1}\right| \cdot i} \sum_{j=1}^{i}(-1)^{j} \cdot \delta_{\omega \cdot(n-1)+\frac{i \cdot(i-1)}{2}+j} .
$$

Now it is enough to apply Theorem 4.3 and [1, Proposition 3], with the mapping ϕ given by $\phi\left(e_{i}\right)=\mu_{i}$. To show that condition (ii) implies that W_{f} is isometric to a quotient of $C(\alpha)$ for some α, it is sufficient to consider [1, Proposition 6] and Theorem'4.3.

References

[1] D. E. Alspach, $A \ell_{1}$-predual which is not isometric to a quotient of $C(\alpha)$. In: Banach spaces (Mérida, 1992), Contemp. Math., 144, American Mathematical Society, Providence, RI, 1993, pp. 9-14.
[2] M. Baronti, Norm-one projections onto subspaces of ℓ^{∞}. Arch. Math. 51(1988), no. 3, 242-246. http://dx.doi.org/10.1007/BF01207478
[3] J. Blatter and E. W. Cheney, Minimal projections on hyperplanes in sequence spaces. Ann. Mat. Pura Appl. 101(1974), 215-227. http://dx.doi.org/10.1007/BF02417105
[4] N. Dunford and J. T. Schwartz, Linear operators. Part I. General theory. Reprint of the 1958 original, John Wiley \& Sons, Inc., New York, 1988.
[5] M. Fabian, P. Habala, P. Hájek, V. Montesinos Santalucía, J. Pelant, and V. Zizler, Functional analysis and infinite-dimensional geometry. CMS Books in Mathematics, 8, Springer-Verlag, New York, 2001.
[6] A. Gutek, D. Hart, J. Jamison, and M. Rajagopalan, Shift operators on Banach spaces. J. Funct. Anal. 101(1991), no. 1, 97-119. http://dx.doi.org/10.1016/0022-1236(91)90150-4
[7] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. I. Sequence spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, 92, Springer-Verlag, Berlin-New York, 1977.
Dipartimento di Scienza e Alta Tecnologia, Università dell'Insubria, via Valleggio 11, 22100 Como, Italy e-mail: emanuele.casini@uninsubria.it
Dipartimento di Discipline Matematiche, Finanza Matematica ed Econometria, Università Cattolica del Sacro Cuore, Via Necchi 9, 20123 Milano, Italy
e-mail: enrico.miglierina@unicatt.it
Instytut Matematyki, Uniwersytet Marii Curie-Skłodowskiej, Pl. Marii Curie-Skłodowskiej 1, 20-031 Lublin, Poland
e-mail: piasecki@hektor.umcs.lublin.pl

[^0]: Received by the editors September 29, 2014.
 Published electronically May 5, 2015.
 AMS subject classification: 46B45, 46B04.
 Keywords: space of convergent sequences, projection, ℓ_{1}-predual, hyperplane.

