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A QUEUE WITH SEMIPERIODIC TRAFFIC
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Abstract

In this paper, we analyze the diffusion limit of a discrete-time queueing system with
constant service rate and connections that randomly enter and depart from the system.
Each connection generates periodic traffic while it is active, and a connection’s lifetime
has finite mean. This can model a time division multiple access system with constant
bit-rate connections. The diffusion scaling retains semiperiodic behavior in the limit,
allowing for both short-time analysis (within one frame) and long-time analysis (over
multiple frames). Weak convergence of the cumulative arrival process and the stationary
buffer-length distribution is proved. It is shown that the limit of the cumulative
arrival process can be viewed as a discrete-time stationary-increment Gaussian process
interpolated by Brownian bridges. We present bounds on the overflow probability of
the limit queueing process as functions of the arrival rate and the connection lifetime
distribution. Also, numerical and simulation results are presented for geometrically
distributed connection lifetimes.
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1. Introduction

Some types of real-time traffic sources, like digitized voice, generate data in a regular,
periodic fashion. In this paper, we consider such traffic in a FIFO (first-in–first-out) queueing
system within the heavy-traffic regime, where diffusion limits can be used to simplify the
analysis.

Consider a time-slotted queueing system with constant service rate. Each connection enters
the system, generates one packet every N slots (for some positive integer N ), and departs
after transmitting a random number of packets, independently of the other connections and
of the time slot during which the connection began generating packets. Packets are queued
for transmission, and the transmission time of each packet is one slot. The numbers of new
connections in distinct slots are assumed to be mutually independent Poisson random variables.
We assume that the connection lifetimes are identically distributed with finite mean.

We are interested in analyzing the performance of this system. This is a rather complex task,
so we look at the diffusion limit of the system in order to simplify the analysis and obtain an
estimate of its behavior. We find a limit of the scaled cumulative arrival process as N → ∞,
uniformly over the scaled arrival rate. The semiperiodic nature of the network is reflected in the
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A queue with semiperiodic traffic 161

form of the autocorrelation function of the limit process. We show that the limit can be viewed
as a discrete-time stationary-increment Gaussian process interpolated by Brownian bridges,
and we present bounds on the overflow probability of the limit queueing process as functions
of the arrival rate and the connection lifetime distribution.

Our results complement those of Addie et al. [1] and Norros [8], who applied large-deviation
techniques to the analysis of queues with stationary Gaussian arrival processes. In particular,
the limit process in this paper is considered as an example in [8]. Similar models are considered
in Hajek [5] and Pazhyannur and Fleming [9]. In [5], the number of connections is fixed for
each N , as N → ∞, while, in [9], a heavy-traffic limit for fixed N is considered for a model
with a Gaussian arrival process.

The paper is organized as follows. In Section 2, we present the system model, the distribution
of packet arrivals, and the buffering process. The proof of the convergence of the arrival process
is carried out in Section 3 and, in Section 4, we establish some properties of the limit process.
In Section 5, we establish convergence of the normalized buffer-length distribution and, in
Section 6, present bounds on the overflow probability of the limit queueing system. Finally, in
Section 7, we present numerical and simulation results for geometrically distributed connection
lifetimes.

2. The system model

In this section, we present the model to be used throughout the paper. For integer m, slot m
represents the time interval [m,m + 1). We group N consecutive slots together and call this
a frame. The set of all slots is divided intoN equivalence classes, referred to as phases: slotsm
and l are in the same phase ifm = l+nN for some integer n. Therefore, each frame consists of
one slot from each of the N phases. Figure 1 depicts the relationships among frames, phases,
slots, and continuous time.

Let L denote the number of packets sent by a connection (referred to as connection lifetime
throughout the rest of the paper), let its probability mass function be denoted by fL(l), for
l ≥ 1, and let it have mean L < ∞. Also, let F c

L(l) := P[L ≥ l]. The connection lifetimes are
mutually independent.

Let xk,j denote the number of new connections in phase k of frame j , for k = 0, . . . , N − 1
and j ≥ 0, and let 0 < λmin ≤ L

−1
. Assume that xk,j has the Poisson distribution with mean

λN such that λN ∈ [λmin, L
−1]. The numbers of new connections in different slots are mutually

independent. Since a connection generates one packet every N slots, if it enters the system
during phase k of a frame, then it will keep sending one packet every frame (in the same phase)
for a random number of frames. Clearly, the packet arrivals in different phases are independent
of each other due to the independence of the connections.
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Figure 1: The system model.
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162 J. ALVAREZ AND B. HAJEK

We denote the number of packets that arrive in slot m by ãm, and by ak,j the number of
packets that arrive in phase k of frame j . This implies that ak,j = ãk+Nj . We assume that
packet arrivals occur only at the beginning of each slot.

Let m1 and m2 be integers with m1 ≤ m2. A connection is said to have endpoints m1
and m2 if its first packet is generated in slot m1 and its last packet is generated in slot m2. If
m2 −m1 = N(l−1) for some positive integer l, then the number of connections with endpoints
m1 andm2 has the Poisson distribution with mean λNf (l). Otherwise, there are no connections
with endpoints m1 and m2. From this observation, it is clear that the arrival process (ãm) is
time reversible.

Next, in Section 2.1, we give the distribution of the number of packets arriving into the
system in any particular slot. Section 2.2 concerns the buffering process.

2.1. The distribution of packet arrivals

Since arrivals in different phases are independent, and the distribution of arrivals within each
phase is the same, it suffices to obtain the distribution of arrivals within one phase.

Theorem 1. For any k = 0, . . . , N − 1 and integer j , the distribution of ak,j is Poisson with
mean λNL. Furthermore, if j1, j2, k1, and k2 are integers with 0 ≤ k1, k2 ≤ N − 1, then

cov(ak1,j1 , ak2,j2) = λNLg(|j1 − j2| + 1)δk1,k2 , (1)

where g(l) := L
−1 ∑∞

n=l F c
L(n) and δ is the Kronecker delta function.

Proof. Fix k and let j ∈ Z. Then the number of packet arrivals in phase k of frame j
corresponds to the number of active connections in the same frame and phase. This can be con-
sidered to be the number of busy servers in an M/G/∞ queue with Poisson arrivals with mean
λN and independent, identically distributed service times, with probability mass function fL.
Therefore, its steady-state distribution has the following properties [7]: ak,j ∼ Poisson(λNL)
and

cov(ak,j , ak,j+n) = λN E[(L− |n|)+] = λN

∞∑
l=|n|+1

F c
L(l),

where x+ denotes the positive part of x.
If k1 �= k2 then, by independence between phases, cov(ak1,j , ak2,j+n) = 0. Hence, the

proposition is proved.

In Section 3, we will use these properties of the arrival process in order to obtain a diffusion
limit for the model. It was pointed out in [7] that the process could be long-range dependent.
In particular, if E[L2] = ∞ then cov(ak,j , ak,j+n) is not summable in n.

2.2. Buffer size

In this section, we consider the buffering process. Let Bm be the cumulative number of
arrivals from slot −m up to slot −1, i.e. Bm = ∑−1

l=−m ãl . Then the buffer size at time 0,
denoted by QN

0 , can be expressed as QN
0 = sup{0, B1 − 1, B2 − 2, . . . }.

Let Ãm denote the cumulative number of arrivals in [0,m), i.e.

Ãm =

⎧⎪⎪⎨⎪⎪⎩
m−1∑
l=0

ãl , m ≥ 1,

0, m = 0.

(2)
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Then, by the reversibility of the arrival process,

QN
0

d= sup{0, Ã1 − 1, Ã2 − 2, . . . } = sup
m≥0

{Ãm −m}, (3)

where ‘
d=’ denotes equality in distribution.

It will be helpful to group the arrivals by phases, so we denote byAk,j the cumulative number
of phase-k arrivals in frames {0, 1, . . . , j − 1}, i.e. for k = 0, . . . , N − 1,

Ak,j =

⎧⎪⎪⎨⎪⎪⎩
j−1∑
l=0

ak,l, j ≥ 1,

0, j = 0.

(4)

Using (4) and the fact that packet arrivals occur only at the beginning of each slot, we can
rewrite (2) as

Ãt =
N−1∑
k=0

Ak,lNk (t)
for all t ≥ 0,

where lNk (t) = 	t + 1 − (1 + k)/N
, i.e. lNk (t) denotes the number of complete phase-k slots
in [0, t] (since 	·
 denotes the largest integer less than or equal to its argument). Notice that
this definition of lNk (t) allows us to use any nonnegative real number t , instead of just integer
values.

We now consider a diffusion limit of this cumulative arrival process, in Section 3.

3. The diffusion limit

In this section, we present a diffusion limit for our model that allows for two time-scales:
a short one, corresponding to a single frame, and a long one, which corresponds to multiple
frames. For t ≥ 0 and for N ∈ N, we define

XNt = ÃNt − λNL	Nt
√
λNLN

. (5)

For any T > 0, the processXNt is a member ofD[0, T ], the space of right-continuous functions
with left limits on the interval [0, T ]. We denote by ‘

w−→’ weak convergence with respect to the
Skorokhod topology [2] on D[0, T ].

Let {Xt }t≥0 be a stationary-increment, zero-mean, almost-surely-continuous Gaussian pro-
cess with variance function

ρt := E[X2
t ] = t + 2

∞∑
j=1

g(j + 1)(t − j)+ for all t ≥ 0. (6)

Notice that the variance is piecewise linear with slope 1 + 2
∑

{j : 1≤j≤k} g(j + 1) on the
interval [k, k + 1], where k is a nonnegative integer. This slope approaches (2/L)E[L2] − 1
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as k → ∞ and, as indicated in Section 2.1, if E[L2] = ∞ then the process is long-range
dependent.

The covariance function of X is obtained from its stationary-increments property and its
variance, i.e.

ρs,t := E[XsXt ] = 1
2 (ρs + ρt − ρ|s−t |). (7)

Since ρt = t for 0 ≤ t ≤ 1, the restriction {Xt }0≤t≤1 is a standard Brownian motion. Since X
has stationary increments, {Xt+α −Xα}0≤t≤1 is also a standard Brownian motion for any fixed
α ≥ 0. Additional properties of X are given in Section 4.

Theorem 2. For each T > 0, the random process {XNt }0≤t≤T converges weakly to the random

process {Xt }0≤t≤T in D[0, T ] as N → ∞, i.e. XN
w−→ X.

Proof. The proof is carried out in three steps. First, convergence of one-dimensional
distributions is shown. This result is then extended to finite-dimensional distributions and,
finally, to weak convergence with respect to the Skorokhod topology on D[0, T ].

Step 1. Let t ≥ 0 be fixed throughout this step of the proof. We can rewrite (5) as

XNt = 1√
λNLN

N−1∑
k=0

SNk (t),

where
SNk (t) = Ak,lNk (Nt)

− lNk (Nt)λNL,

i.e. SNk (t) is the cumulative number of arrivals in phase k up to time Nt , minus its mean.
Clearly, for fixed t , the random variables SNk (t), k = 0, . . . , N−1, are mutually independent

since they correspond to arrivals in different phases. This representation ofXNt makes it evident
that it is the sum of N independent random variables.

The first and second moments of SNk (t), as well as an upper bound on its third moment, will
be useful to show the desired convergence. The process SNk is centered so that E[SNk (t)] = 0.
The second moment is given by

E[SNk (t)2] =
lNk (Nt)−1∑
j1=0

lNk (Nt)−1∑
j2=0

cov(ak,j1 , ak,j2)

=
lNk (Nt)−1∑
j=0

var(ak,j )+ 2

lNk (Nt)−1∑
j=1

(lNk (Nt)− j) cov(ak,0, ak,j )

= lNk (Nt)λNL+ 2

lNk (Nt)−1∑
j=1

(lNk (Nt)− j)λNLg(j + 1)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
λNL

(
	t
 + 1 + 2

	t
∑
j=1

(	t
 + 1 − j)g(j + 1)

)
if t − 	t
 ≥ k + 1

N
,

λNL

(
	t
 + 2

	t
∑
j=1

(	t
 − j)g(j + 1)

)
otherwise,

(8)
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where the second equality follows from the stationarity of the arrivals, the third follows from (1),
and the fourth follows from the fact that lNk (Nt) = 	t
 + 1 if t − 	t
 ≥ (k + 1)/N and
lNk (Nt) = 	t
 otherwise. Note that if a, b ≥ 0, then |a− b|3 ≤ max{a3, b3} ≤ a3 + b3. Thus,

E[|SNk (t)|3] ≤ E

[( lNk (Nt)∑
m=1

mZm

)3

+
( lNk (Nt)∑

m=1

mµm

)3]

≤ (lNk (Nt))
3 E

[( lNk (Nt)∑
m=1

Zm

)3

+
( lNk (Nt)∑

m=1

µm

)3]

≤ (lNk (Nt))
3
((

1 +
lNk (Nt)∑
m=1

µm

)3

+
( lNk (Nt)∑

m=1

µm

)3)

≤ (lNk (Nt))
3
(

1 + 2

lNk (Nt)∑
m=1

µm

)3

≤ (lNk (Nt))
3(1 + 2λNLl

N
k (Nt))

3

≤ �t�3(1 + 2λNL�t�)3, (9)

where Zm is the number of connections that contribute m arrivals to SNk (t), µm = E[Zm], and
�·� denotes the smallest integer greater than or equal to its argument. The Zm are mutually

independent Poisson random variables and
∑lNk (Nt)

m=1 mµm = λNLl
N
k (Nt). The first inequality

follows because both Zm and µm are nonnegative; the third follows because, for a Poisson
random variable with mean µ, its third moment equals µ3 + 3µ2 +µ < (1 +µ)3; and the final
one follows because lNk (Nt) ≤ �t�.

It will now be shown that the random variable XNt converges in distribution to a Gaussian
random variable. For each integerN ≥ 1 and k = 0, . . . , N−1, letYN,k = (λNLN)

−1/2SNk (t).
Then E[YN,k] = 0 and

N−1∑
k=0

E[Y 2
N,k] = 1

λNLN

N−1∑
k=0

E[SNk (t)2]

= 	Nt
 −N	t

N

(
	t
 + 1 + 2

	t
∑
j=1

(	t
 + 1 − j)g(j + 1)

)

+ N − (	Nt
 −N	t
)
N

(
	t
 + 2

	t
−1∑
j=1

(	t
 − j)g(j + 1)

)

= 	Nt

N

+ 2
	t
∑
j=1

(	Nt

N

− j

)
g(j + 1)

→ t + 2
	t
∑
j=1

(t − j)g(j + 1)

= ρt , (10)
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where the second equality follows from (8) and the fact that t − 	t
 ≥ (k + 1)/N for the first
	Nt
 − N	t
 terms in the sum. The third equality follows from grouping terms. Notice that
ρt < ∞.

Now, for any ε > 0,

N−1∑
k=0

E[|YN,k|2; |YN,k| > ε] ≤
N−1∑
k=0

E

[ |YN,k|3
ε

]
= 1

ε(λNLN)3/2

N−1∑
k=0

E[|SNk (t)|3]

≤ 1

ε(λNLN)3/2

N−1∑
k=0

�t�3(1 + 2λNL�t�)3

≤ N
�t�3(1 + 2�t�)3
ε(λNLN)3/2

≤ �t�3(1 + 2�t�)3
ε(λminL)3/2

1√
N

→ 0,

where the second inequality follows from (9), the third follows because 0 < λNL ≤ 1, and the
fourth because 0 < λmin ≤ λN .

Hence, the sequence {YN,k} satisfies the conditions for the Lindeberg–Feller theorem [4]
and, so,

XNt =
N−1∑
k=0

YN,k
w−→ Xt ∼ N(0, ρt ).

Step 2. Now, for any n ≥ 1 and t1, . . . , tn ≥ 0, the vector XN
n = (XNt1 , . . . , X

N
tn
) is zero

mean. For any real-valuedn-tuple γ = (γ1, . . . , γn), the procedure used in Step 1 can be applied
to represent the random variable γ · XN

n as a sum of N independent random variables, which
converges to a Gaussian random variable. Furthermore, the variance of γ ·XN

n converges to that
of γ · Xn, where Xn = (Xt1 , . . . , Xtn) is an n-dimensional zero-mean Gaussian vector whose
covariance matrix components are E[XtiXtj ] = ρti ,tj . Then, by the Cramér–Wold device [4],
(XNt1 , . . . , X

N
tn
)

w−→ (Xt1 , . . . , Xtn), so the finite-dimensional distributions converge as claimed.
Step 3. We now extend the result to weak convergence of measures on D[0, T ]. The fol-

lowing upper bound on the second moment of XNt is used to carry out this step:

E[(XNt )2] = 1

λNLN

N−1∑
k=0

E[SNk (t)2] = 	Nt

N

+ 2
	t
∑
j=1

(	Nt

N

− j

)
g(j + 1)

≤ t + 2
	t
∑
j=1

(t − j)g(j + 1) ≤ t + 2
	t
∑
j=1

(t − j)

≤ t (1 + 2T ) := F(t), (11)

where the first equality follows from independence of phases and E[SNk (t)] = 0, the second
equality follows from (10), the second inequality follows from the fact that g(l) ≤ g(1) = 1
for l ≥ 1, and the third inequality follows from the fact that 	t
 ≤ T .

Now consider any r , s, and t such that 0 ≤ r < s < t ≤ T . Also, assume that 	Ns
 − 	Nr

and 	Nt
−	Ns
 are both nonzero, for otherwise one of the incrementsXNs −XNr orXNt −XNs
is identically zero. It follows that

	Ns
 − 	Nr
 ≤ N(t − r) and 	Nt
 − 	Ns
 ≤ N(t − r). (12)
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On the one hand, if 0 ≤ 	Nt
 − 	Nr
 ≤ N then the increments XNs −XNr and XNt −XNs
are independent since they correspond to arrivals in different phases. So, in this case, if µ > 0
then

P[|XNs −XNr | ∧ |XNt −XNs | ≥ µ] = P[|XNs −XNr | ≥ µ] P[|XNt −XNs | ≥ µ]
≤ 1

µ2 E[|XNs −XNr |2] 1

µ2 E[|XNt −XNs |2]

≤ 1

µ4F

(	Ns
 − 	Nr

N

)
F

(	Nt
 − 	Ns

N

)
≤ 1

µ4F(t − r)2

= 1

µ4 (F (t)− F(r))2,

where the first inequality follows from Chebyshev’s inequality, the second follows from the
stationarity of the increments ofXNi/N and from (11), the third follows from (12) and from F(·)
being increasing, and the final equality follows from the linearity of F(·). We also use ‘∧’ to
denote the minimum function.

On the other hand, if 	Nt
 − 	Nr
 > N , the increments are not independent. In this case,
if µ > 0 then

P[|XNs −XNr | ∧ |XNt −XNs | ≥ µ] ≤ P[|XNs −XNr | ≥ µ] ≤ 1

µ2 E[|XNs −XNr |2]

≤ 1

µ2F

(	Ns
 − 	Nr

N

)
≤ 1

µ2F(t − r)

≤ 1

µ2F(t − r)2

= 1

µ2 (F (t)− F(r))2,

where the first inequality follows from the fact that the probability of the intersection of two
events is smaller than the probability of either one of them. Then, the second inequality follows
from Chebyshev’s inequality, the third follows from the stationarity of the increments of XNi/N
and from (11), the fourth follows from (12) and F(·) being increasing, the fifth follows from
the fact that F(t − r) is greater than 1, and the equality follows from the linearity of F(·).

Hence, for any r , s, and t such that the above assumptions hold,

P[|XNs −XNr | ∧ |XNt −XNs | ≥ µ] ≤ 1

µ2 ∧ µ4 (F (t)− F(r))2.

Also, for any δ > 0, the increment XT −XT−δ ∼ N (0, ρδ) and, therefore, XT −XT−δ
w−→ 0

as δ → 0.
Then, by [2, Theorem 13.5], XNt

w−→ Xt , where Xt is a stationary-increment Gaussian
process with variance as indicated by (6). The theorem has thus been proved.

4. Properties of the limit process

In this section, we discuss three properties of the limit processXt : in Section 4.1, we describe
its derivative; in Section 4.2, its distribution between integer time intervals; and, in Section 4.3,
a law of large numbers.
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4.1. The derivative of the limit process

Although the derivative process Ẋt exists only as a generalized Gaussian random process,
its autocorrelation function gives insight into Xt :

E[Ẋt1Ẋt2 ] = ∂2ρt1,t2

∂t1∂t2
= −1

2

∂2ρ|t1−t2|
∂t1∂t2

=
∞∑

n=−∞
g(|n| + 1)δ(t1 − t2 − n),

where the second equality follows from the stationarity of the increments of Xt and δ(·) is the
Dirac delta function. Thus, formally, Ẋt1 is independent of Ẋt2 unless t1 − t2 is an integer, and
E[Ẋt1Ẋt1+n] is proportional to g(|n| + 1). This property mirrors the properties of the original
process, specifically the autocorrelation function (1). It also is consistent with the fact that
{Xt+α −Xt }0≤t≤1 is a standard Brownian motion for fixed α ≥ 0.

4.2. The distribution of the process between integer time intervals

The process (Xt )t∈R+ can be viewed as an interpolation of (Xn)n∈N+ , where Brownian
bridges are used for the interpolation. A Brownian bridge is a stationary-increment, zero-mean,
almost-surely-continuous Gaussian process {Bt }0≤t≤1 with covariance function E[BsBt ] =
min{s, t}(1 − max{s, t}). See Karatzas and Shreve [6] for more details. This characterization
of Xt is helpful in obtaining bounds on the overflow probability of the limit queueing system
since [6], if B is a Brownian bridge, then, for α + β ≥ 0 and β > 0,

P
[

max
0≤t≤1

{Bt − αt} ≤ β
]

= 1 − exp(−2β(α + β)). (13)

Define, for j ∈ N and for 0 ≤ t ≤ 1,

η
j
t := Xt+j − [(1 − t)Xj + tXj+1].

Theorem 3. For each j ∈ N, ηj = {ηjt }0≤t≤1 is a Brownian bridge and is independent of
(Xn)n∈N. Furthermore, cov(ηjs , η

j+n
t ) = g(|n| + 1)min{s, t}(1 − max{s, t}).

Proof. Since (Xt )t∈R is a zero-mean Gaussian process, so is ηj . Hence, the mean and
covariance function of ηj specify its distribution completely. Let j ∈ N and suppose that
0 ≤ s ≤ t ≤ 1. Then,

cov(ηjs , η
j
t ) = ρs+j,t+j − (1 − t)ρs+j,j − tρs+j,j+1 − (1 − s)ρj,t+j + (1 − s)(1 − t)ρj

+ (1 − s)tρj,j+1 − sρj+1,j+t + s(1 − t)ρj+1,j + stρj+1

= s − st,

using (7) and simple algebraic manipulation. Similarly, cov(ηjs , η
j
t ) = t − st if t < s.

Therefore, cov(ηjs , η
j
t ) = min{s, t}(1 − max{s, t}) and, hence, ηj is a Brownian bridge.

Now, to show the claimed independence, it suffices to check that cov(ηjt , Xn) = 0 for any
j, n ∈ N and 0 ≤ t ≤ 1, since (Xn)n∈N and (ηj )j∈N are jointly Gaussian. Indeed,

cov(ηjt , Xn) = ρt+j,n − (1 − t)ρj,n − tρj+1,n = 0,

using (7) and simple algebraic manipulation. Therefore, ηj is independent of t (Xn)n∈N.
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Let j ∈ N, n ∈ Z, and 0 ≤ s, t ≤ 1. Then

cov(ηjs , η
j+n
t ) = cov(ηjs , Xt+j+n − [(1 − t)Xj+n + tXj+n+1])

= ρs+j,t+j+n − (1 − s)ρj,t+j+n − sρj+1,t+j+n

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
g(n+ 1)s(1 − t), n ≥ 0 and t ≥ s,

g(n+ 1)t (1 − s), n ≥ 0 and t < s,

g(−n+ 1)s(1 − t), n < 0 and t ≥ s,

g(−n+ 1)t (1 − s), n < 0 and t < s,

where the second equality follows from independence between ηj and (Xn)n∈N, and the third
from (7) and simple algebraic manipulation.

Therefore, cov(ηjs , η
j+n
t ) = g(|n| + 1)min{s, t}(1 − max{s, t}) and, hence, the theorem

has been proved.

4.3. A strong law of large numbers for X

The following theorem shows that, under a mild condition on ρ, the process X satisfies a
strong law of large numbers (SLLN).

Theorem 4. Suppose that, for some positive constants K and ε, ρt ≤ Kt2−ε for all t .
Then limt→∞Xt/t = 0 almost surely.

Proof. Since X and −X have the same distribution, it is enough to prove that lim supt→∞
Xt/t = 0 almost surely. The key idea of the proof is to treatX at integer times, and then appeal
to the fact that, over any interval of the form [j, j + 1] with j an integer, X can be written
as the sum of the linear interpolation between Xj and Xj+1 plus the Brownian bridge ηj (t).
Thus, for any t ∈ [j, j + 1],

Xt ≤ max{Xj ,Xj+1} + M(ηj ), (14)

where M(ηj ) denotes the (random) maximum value of the Brownian bridge ηj . Let α > 0
and define τ0 = sup{t : Xt ≥ α(2t + 1)}. To complete the proof it suffices to prove that
P[τ0 < ∞] = 1. Define two more random times by τ1 = sup{j : Xj ≥ αj} and τ2 =
sup{j : M(ηj ) ≥ αj}. If t ≥ max{τ1, τ2} + 1 then X	t
 < α	t
 ≤ αt , X�t� < α�t� ≤
α(t + 1), and M(η	t
) < α	t
 ≤ αt . Therefore, by (14), Xt < α(2t + 1) for any t with
t ≥ max{τ1, τ2} + 1. Consequently, τ0 ≤ max{τ1, τ2} + 1. Since, for an integer j , Xj is
Gaussian with mean zero and variance ρj , we have

P[Xj ≥ αj ] ≤ exp

(
−α

2j2

2ρj

)
≤ exp

(
−α

2jε

2K

)
and, since ηj is a standard Brownian bridge for each j , P[M(ηj ) ≥ αj ] = exp(−2(αj)2),
by (13). Combining the above and using a union bound yields

P[τ0 ≥ t] ≤ P[τ1 ≥ t − 1] + P[τ2 ≥ t − 1]

≤
∞∑

j=t−1

P[Xj ≥ αj ] +
∞∑

j=t−1

P[M(ηj ) ≥ αj ]

=
∞∑

j=t−1

[
exp

(
−α

2jε

2K

)
+ exp(−2(αj)2)

]
, (15)
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meaning that P[τ0 ≥ t] → 0 as t → ∞. Thus, P[τ0 < ∞] = 1. In addition, (15) provides an
upper bound on the tail of the distribution of τ0.

Let θ > 0 and define the random variable Q0 by Q0 := supt≥0{Xt − θt}. The following
corollary is an immediate consequence of Theorem 4.

Corollary 1. Under the assumption of Theorem 4, Q0 is finite with probability 1.

5. Convergence of the buffer distribution

We now make the following assumption.

Assumption 1. The probability mass function fL of the connection lifetimeL satisfies fL(i) ≤
Di−(2+ε) for all i ≥ 1, for some positive constants D and ε.

Assumption 1 ensures that L < ∞ but, if ε ≤ 1, it permits long-range dependence, meaning
that E[L2] may be infinite. The proof of the following lemma is left to the reader.

Lemma 1. Under Assumption 1, there exist constants K1,K2, and K3 such that F c
L(n) ≤

K1n
−(1+ε), g(l) ≤ K2l

−ε, and ρt ≤ K3t
2−ε.

Theorem 5. Let Assumption 1 hold and assume that, as N → ∞, λNL → 1 in such a way
that (1 − λNL)(N

1/2/(λNL)
1/2) → θ , for some constant θ > 0. Then

QN
0√

λNLN

w−→ Q0.

The remainder of this section constitutes a proof of Theorem 5. Equation (3) can be rewritten
using (5), as follows:

QN
0 = sup

m≥0
{Ãm −m} = sup

m≥0
{
√
λNLNX

N
(m/N) −m(1 − λNL)}

=
√
λNLN supm≥0

{
XN(m/N) − m(1 − λNL)√

λNLN

}
=

√
λNLN supt≥0

{
XNt − 	Nt
√

N

1 − λNL√
λNL

}
,

where the final equality follows from the change of variable t = m/N and the fact that the
process is constant over the interval [m/N, (m+ 1)/N).

The convergence guaranteed by Theorem 2 holds only on a finite interval of normalized time
[0, T ], where T can be arbitrarily large, but not dependent on N . Thus, we define the random
variables

Q
N,T
0 = sup

0≤m≤NT
{Ãm −m} =

√
λNLN sup0≤t≤T

{
XNt − 	Nt
√

N

1 − λNL√
λNL

}
,

QT
0 = max

0≤t≤T {Xt − θt}.

Theorem 2 and the continuous mapping theorem [2] imply that, for T fixed,

Q
N,T
0√

λNLN

w−→ QT
0 .

https://doi.org/10.1239/aap/1113402404 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1113402404


A queue with semiperiodic traffic 171

Hence, to complete the proof of Theorem 5, it suffices to establish the following two statements,
for some constant N0:

P[QT
0 = Q0] → 1 as T → ∞, (16)

inf
N0≤N<∞ P[QN,T

0 = QN
0 ] → 1 as T → ∞. (17)

Theorem 4 and its proof will be used to prove (16), and will provide a template for the
proof of (17). First, select α so that 2α < θ , let τ0 be the random time defined in the
proof of Theorem 4, and let t0 be a constant large enough that θt ≥ α(2t + 1) for t ≥ t0.
Then Xt − θt ≤ 0 for t ≥ max{τ0, t0}. Consequently, for any T ≥ t0, P[QT

0 = Q0] ≥
P[τ0 ≤ T ] and P[τ0 ≤ T ] converges to 1 as T → ∞. This establishes (16). It remains to
prove (17). The proof is obtained by showing that XN satisfies the upper-bound half of an
SLLN, with the rate of convergence uniform in N . To do so, we will parallel the proof of
Theorem 4. Equation (15) provides a bound on the tail of the distribution of τ0, so the idea will
be to establish a similar bound for the processesXN that holds uniformly inN . The first step is
to bound the process at integer times by using uniform exponential bounds on Poisson random
variables, as was done using exponential bounds on the Gaussian distribution in the proof of
Theorem 4. The second step is to consider bridge processes to handle the fluctuations within
frames. The following lemma takes care of the first step.

Lemma 2. Given any α > 0, there exist T0, N0, and bt,α , for integers t ≥ T0, such that

P[XNt ≥ 3αt] ≤ bt,α for t ≥ T0, N ≥ N0,

∞∑
t=T0

bt,α < ∞.

Lemma 2 will be proved with the help of some other lemmas, stated below. The function
ψ(λ) = 2h(1 + λ)/λ2, with h(λ) = λ(log λ − 1) + 1 for λ ∈ [−1,+∞), plays a very useful
role in the development of exponential bounds for binomial and Poisson random variables
(see [10]). This function is strictly positive and strictly decreasing on the interval [−1,+∞),
with ψ(−1) = 2 and ψ(0) = 1. Also, λψ(λ) is strictly increasing in λ over the interval
[−1,+∞). The following lemma is a useful arrangement of the Chernoff inequality applied
to Poisson random variables.

Lemma 3. Let V be a Poisson random variable with mean µ > 0. Then

P[V − E[V ] ≥ c] ≤ exp

(
− c2

2µ
ψ

(
c

µ

))
for c ≥ 0.

Proof. As the log-moment-generating function of V is given by log E[exp(s(V −E[V ]))] =
µ(es − 1 − s), the Chernoff inequality implies that, for c ≥ 0,

P[V − E[V ] ≥ c] ≤ min
s≥0

exp(−sc + µ(es − 1 − s))

= exp

(
− c2

2µ
ψ

(
c

µ

))
,

which proves the lemma.
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Lemma 4. Let V = ∑i0
i=0 iVi , where Vi is a Poisson random variable with mean µi , i0 is

a positive integer, and the Vi are mutually independent. Suppose that E[V ] > 0, and let
κ = ∑i0

i=0 i
2µi. Then

P[V − E[V ] ≥ c] ≤ exp

(
− c2

2κ
ψ

(
ci0

κ

))
for c ≥ 0. (18)

Furthermore, the right-hand side of (18) is monotonically increasing in κ .

Proof. If 1 ≤ i ≤ i0 then eis − 1 − is = ∑∞
k=2 (is)

k/k! ≤ (i/i0)
2(ei0s − 1 − i0s). Hence,

log E[exp(s(V − E[V ]))] =
i0∑
i=1

µi(e
i s − 1 − is) ≤ κ

i20
(ei0s − 1 − i0s).

Thus, the log-moment-generating function for the centered compound Poisson random variable
V − E[V ] is less than or equal to the log-moment-generating function for i0 times a centered
Poisson random variable with mean κ/i20 . Therefore, we can replace c by c/i0 and µ by κ/i20
in the bound of Lemma 3 to yield the bound of Lemma 4. The monotonicity follows from the
monotonicity of λψ(λ).

Consider an interval of t frames, for some integer t . Let r(i, t) denote the mean number of
connections contributing i packets to one of the phases during the interval, for 1 ≤ i ≤ t . Such
connections (i) either start or end during the interval, but not both; (ii) both start and end during
the interval; or (iii) start before the interval and end after the interval. Accounting for the mean
number of each of these types of connections yields

r(i, t) = λN

[
2

∞∑
j=i+1

fL(j)+ (t − i + 1)fL(i)+ 1{i=t}
∞∑

j=t+2

(j − t − 1)fL(j)

]
.

Comparisons with integrals show that Assumption 1 implies the following bounds, for some
constants D1,D2,D3, and D4:

r(i, t) ≤
{
D1t i

−(2+ε), 1 ≤ i < t,

D2t
−ε, i = t,

t∑
j=	tε


r(j, t) ≤ D3t
−ε, (19)

t∑
j=1

i2r(i, t) ≤ D4t
2−ε.

Connections contributing one or more packets during the interval of frames 0 to t − 1
are classified into two types, as follows. A connection that generates between one and 	tε

packets during the interval is called a type-one connection. A connection that generates between
	tε
 + 1 and t packets during the interval is called a type-two connection. We can then write

XNt = Z1 − E[Z1] + Z2 − E[Z2]√
λNLN

,
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where Zi is the total number of packets contributed by type-i connections during the interval
of t frames. Since λNL → 1 as N → ∞, it can be assumed that N0 is chosen large enough
that 3(λNL)1/2 ≥ 2 for all N ≥ N0. Then

P[XNt ≥ 3αt] ≤ P[Z1 − E[Z1] + Z2 − E[Z2] ≥ 2α
√
Nt]

≤ P[Z1 − E[Z1] ≥ α
√
Nt] + P[Z2 − E[Z2] ≥ α

√
Nt]. (20)

The random variables Z1 and Z2 have compound Poisson distributions, and can be expressed
as

Z1
d=

	tε
∑
i=1

i Poisson(Nr(i, t)),

Z2
d=

t∑
i=	tε
+1

i Poisson(Nr(i, t)).

To derive a bound for Z1, let κ0 = ND4t
2−ε and observe that N

∑	tε

i=1 i

2r(i, t) ≤
N

∑t
i=1 i

2r(i, t) ≤ κ0. Lemma 4 then yields that, for N ≥ N0 (where N0 is to be specified),

P[Z1 − E[Z1] ≥ αt
√
N ] ≤ exp

(
−α

2t2N

2κ0
ψ

(
αt

√
Nt1−ε

κ0

))
≤ exp

(−α2tε

2D4
ψ

(
α

D4
√
N0

))
. (21)

To derive a bound for Z2, select a constant γ with γ ≥ e. Two cases will be considered. In
the first case, we assume that αN1/2 ≤ γND3t

−ε or, equivalently, that N1/2 ≥ αtε/(γD3).
Inequality (19) shows that the mean number of connections that contribute at least one packet
to Z2 is less than or equal to ND3t

−ε. Therefore, the log-moment-generating function for
Z2 − E[Z2] is less than or equal to the log-moment-generating function of t times a Poisson
random variable with mean ND3t

−ε. Hence, for N1/2 ≥ αtε/(γD3),

P[Z2 − E[Z2] ≥ αt
√
N ] ≤ the Chernoff bound for P[Poisson(ND3t

−ε)− ND3t
−ε ≥ α

√
N ]

= exp

(
− α2N

2ND3t−ε
ψ

(
α
√
N

ND3t−ε

))
≤ exp

(
−α

2tε

2D3
ψ(γ )

)
. (22)

In the second case, we assume that αN1/2 ≥ γND3t
−ε and N ≥ N0, where, again, the

constant N0 is yet to be determined. The following lemma is based on the well-known idea of
bounding the tail of a Poisson distribution by a geometric series.

Lemma 5. Let V be a Poisson random variable with mean µ and let c be a constant such that
c ≥ µe and c ≥ 1. Then P[V ≥ c] ≤ (µe/c)c.

Proof. If µe = c then the lemma is trivial, so suppose that µe < c. Then

P[V ≥ c] =
∞∑

i=�c�

exp(−µ)µi
i! ≤ exp(−µ)µ�c�

�c�!
∞∑

i=�c�

(
µ

c

)i−�c�
= c

c − µ

exp(−µ)µ�c�

�c�! .
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However, exp(−µ) ≤ 1; by Stirling’s formula �c�! ≥ (�c�/e)�c�(2π)1/2; and c/(c − µ) ≤
e/(e − 1) ≤ (2π)1/2, so P[V ≥ c] ≤ (µe/�c�)�c� ≤ (µe/c)c, as required.

The variable Z2 is less than what it would be if additional packets were counted in such a
way that every type-two connection generated t packets. Again, using that the mean number
of such connections is less than or equal to λ = ND3t

−ε, and using Lemma 5, yields

P[Z2 − E[Z2] ≥ αt
√
N ] ≤ P[Z2 ≥ αt

√
N ]

≤ P[Poisson(ND3t
−ε) ≥ α

√
N ]

≤
(√

ND3t
−εe

α

)α√
N

. (23)

The logarithm of the right-hand side of (23) is a convex function of N1/2, so it is maximized
over the relevant range of N1/2, namely N1/2

0 ≤ N1/2 ≤ αtε/(γD3), at one of the endpoints.
Thus, for N in this range,

P[Z2 − E[Z2] ≥ αt
√
N ] ≤ max

{(
e

γ

)−α2tε/γD3

,

(√
N0D3t

−εe
α

)α√
N0

}
. (24)

Patching together the bound (22) for the first case and the bound (24) for the second case yields
that, for all N ≥ N0 and T ≥ T0,

P[Z2 − E[Z2]≥αt
√
N ]

≤ max

{
exp

(
−α

2tε

2D3
ψ(γ )

)
,

(
e

γ

)−α2tε/γD3

,

(√
N0D3t

−εe
α

)α√
N0

}
. (25)

To ensure that the right-hand side of (25) is summable in t , we require N0 to be large enough
that εαN1/2

0 > 1. Combining (20), (21), and (25) completes the proof of Lemma 2.
The second step of the proof of (17) is to bound the fluctuations of XN within one frame

by using a uniform exponential bound on discrete versions of the Brownian bridge, similar to
the exact distribution for M(ηj ) used in the proof of Theorem 4. Given an integer j ≥ 0,
and N ≥ 1, let ηN,j denote the bridge process, defined in terms of XN the same way the
Brownian bridge ηj was defined in terms of X, namely ηN,jt = XNt+j − ((1 − t)XNj + tXNj+1)

for 0 ≤ t ≤ 1.

Lemma 6. Fix a constant s0 > 0. If N is large enough that NλNL ≥ s0, then

P[M(ηN,j ) ≥ c] ≤ 4 exp

( −2c2

(1 + 12c/
√
s0)

)
.

Proof. The process ηN,j has the same distribution as a standard Poisson bridge process
(for the same mean number of points s = NλNL) on the interval [0, 1], sampled at times of
the form j/M , 0 ≤ j ≤ M . The process in between such points is nonincreasing, so that ηN,j

is maximized at a point of this form. Thus, M is stochastically smaller than the maximum of
the standard Poisson bridge. By Inequality 7 of [10, p. 575] (with b = 1

2 in that expression),
P[M(ηN,j ) ≥ c] ≤ 4 exp(−2c2ψ(4c/s1/2)), where s = NλNL is the mean number of packets
arriving in the interval (or points, as above). The proof is completed by applying the bound
ψ(u) ≤ 1/(1 + u/3) for u ≥ −1, also found in [10].
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Lemmas 2 and 6 and the method of proof of Theorem 4 together imply (17), which completes
the proof of Theorem 5.

6. On the distribution of buffer length for the limit process

The authors have not found a feasible way of exactly computing the overflow probability
P[Q0 ≥ β], but lower bounds can be obtained for it, for β > 0. In this section, we present
three different lower bounds, and also describe the most likely path that the process will take
to overflow.

6.1. Three lower bounds

Here, we present three different lower bounds. Let A ⊂ R+ and let β > 0. Then

P

[
sup
t≥0

{Xt − θt} ≥ β

]
≥ P

[
sup
t∈A

{Xt − θt} ≥ β

]
:= P lb

θ (β).

This lower bound is considered for three different choices of A.

6.1.1. A = [0, 1]. In this case, since Xt is a Wiener process on [0, 1], the first lower bound
P

lb1
θ (β) is obtained as follows:

P
lb1
θ (β) =

∫ β+θ

−∞
P

[
max

0≤t≤1
{Xt − θt} ≥ β

∣∣∣∣ X1 = u

]
P[X1 ∈ [u, u+ du)] + P[X1 ≥ β + θ ]

=
∫ β+θ

−∞
exp(−2β(β + θ − u))P[X1 ∈ [u, u+ du)] +Q(β + θ)

= exp(−2θβ)[1 −Q(θ − β)] +Q(β + θ), (26)

where Q(·) denotes the complementary distribution function of a Gaussian random variable
with zero mean and unit variance. The second equality follows because conditioning on the
right endpoint of A (t = 1) yields a Brownian bridge [2, p. 101], and (13) can be used.

6.1.2. A = {t}. In this case, we recover a well-known lower bound (i.e. the basic approximation
in Addie et al. [1] and Norros [8]), since Xt ∼ N(0, ρt ) with ρt as defined in (6). Hence,
P

lb2
θ (β, t) := P[Xt − θt ≥ β] = Q((θt + β)/ρ

1/2
t ). This lower bound can be further refined

by taking the supremum over t ≥ 0, to obtain the second lower bound

P
lb2
θ (β) = sup

t≥0
P

lb2
θ (β, t) =

⎧⎪⎨⎪⎩
1, β = 0,

Q

(
min
t≥0

θt + β

ρ
1/2
t

)
, β > 0.

(27)

Since ρt is a piecewise linear function, P lb2
θ (β) can be easily computed by numerical means.

P
lb2
θ (β) is expected to be a tighter bound than P lb1

θ (β) for large values of β since, in this
case, overflow is most likely to occur over larger time-scales than t = 1, making P lb1

θ (β) a
looser bound. We denote by t∗lb2

the optimizing value of t in (27).

6.1.3. A = [T , T + 1], for nonnegative integer T . In this case, the property presented in
Theorem 3, namely thatX is a Brownian bridge between integer time intervals, independent of
the values it takes at the endpoints, becomes very useful.
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For any given integer T ≥ 0, the following lower bound P lb3
θ (β, T ) can be obtained:

P
lb3
θ (β, T )

:= P

[
max

T≤t≤T+1
{Xt − θt} ≥ β

]
= P

[
max

0≤t≤1
{ηt − (θ +XT −XT+1)t} ≥ β + θT −XT

]
= P[XT ≥ β + θT or XT+1 ≥ β + θ(T + 1)]

+
∫ β+θT

−∞

∫ β+θ(T+1)

−∞
exp

(
− 2

σ 2 (β + θT − xT )(β + θT − xT + θ + xT − xT+1)

)
× fX(xT , xT+1) dxT+1 dxT

= P[X̂T ≥ β or X̂T+1 ≥ β]

+
∫ β

−∞

∫ β

−∞
exp

(
− 2

σ 2 (β − xT )(β − xT+1)

)
f
X̂
(xT , xT+1) dxT+1 dxT

= 1 −Q

(
−β − m̂T

ρT
,−β − m̂T+1

ρT+1
, ρ̂

)
+ c0 exp(c1)Q

(
−β −m1

σ1
,−β −m2

σ2
, ρ̃

)
,

(28)

where the second equality uses the definition of ηt presented in Theorem 3, and the third and
fourth follow from (13), with fX being the joint probability density function of(

XT
XT+1

)
∼ N

((
0
0

)
,

(
ρT ρT,T+1

ρT,T+1 ρT+1

))
in the third equality, and with f

X̂
being the joint probability density function of(

X̂T

X̂T+1

)
∼ N

((
m̂T
m̂T+1

)
,

(
ρT ρT,T+1

ρT,T+1 ρT+1

))
in the fourth. The values of the constants in (28) can be found in Appendix A. Here σ 2 = 1 and
Q(x, y, ρ) is the two-dimensional Gaussian Q function, and it can be numerically computed
as indicated in Appendix B.

This lower bound can be further refined by taking the supremum over nonnegative integers T ,
to obtain the third desired lower bound

P
lb3
θ (β) = sup

T≥0
P

lb3
θ (β, T ). (29)

We denote the optimizing value of T in (29) by T ∗
lb3

.

It is clear that P lb3
θ (β) is always a tighter bound than (i.e. greater than) both P lb1

θ (β) and
P

lb2
θ (β). This is because P lb3

θ (β) is the maximum, over all integer intervals, of the probability
that X exceeds β during such an interval, whereas P lb2

θ (β) is the same for the first interval
alone, and P lb2

θ (β) is the maximum of the probability of exceeding β only at a single time.

6.2. The most likely path to overflow

An interesting question concerns the path that the process takes when it overflows. It is
shown in Norros [8] that, if Zt is a stationary-increment Gaussian process with E[Zt ] = 0,
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cov(Zs, Zt ) = ρs,t , and var(Zt ) = ρt , then the most likely path that Zt will take to overflow a
queue of size β with constant service rate θ is given byZ∗

s = −(β+θt∗)/(ρt∗)ρ−t∗,s ,where t∗
minimizes (β + θt)2/ρt . Notice that this t∗ is the same as the optimal time-scale t∗lb2

obtained
for P lb2

θ (β) – see Norros [8] for more details.

7. Numerical results

In this section, we consider a specific lifetime distribution for the connections in order
to present a quantitative analysis of the bounds obtained in Section 6.1. Let the lifetime of
a connection have a geometric distribution with parameter 1 − α for 0 ≤ α < 1. Then
F c
L(l) = αl−1 for l ∈ {1, 2, 3, . . .}, L = 1/(1 − α), and E[L2] < ∞. Hence, the process is not

long-range dependent. The variance function is

ρt = t + 2
∞∑
j=1

αj (t − j)+. (30)

Exact overflow probabilities are presented for two specific values of this distribution, namely
α = 0 and α = 1, whereas bounds are obtained for 0 < α < 1. These three cases are examined
in Sections 7.1, 7.2, and 7.3, respectively. We denote by Pα,θ (β) the overflow probability for
a particular value of α.

7.1. The case α = 0

In the case α = 0, the process has no periodicity at all since connections depart after one
transmission. It is straightforward to see from (30) and (7) that X becomes a simple Wiener
process for t ≥ 0. Therefore [3], the overflow probability is P0,θ (β) = exp(−2θβ).

7.2. The case α = 1

In the case α = 1, the process has sample paths with periodic increments since

Xt =
{
Wt, 0 ≤ t ≤ 1,

Xt−1 +W1, t ≥ 1,

where W is a Wiener process.
The overflow probability can be obtained noting that

sup
t≥0

{Xt − θt} =
⎧⎨⎩∞, W1 > θ,

max
0≤t≤1

{Wt − θt}, W1 ≤ θ.

This is due to the fact that if W1 > θ , then the periodic repetition will start above 0 and will
always increase, meaning that the sample path becomes unbounded above. If, instead,W1 ≤ θ

then the process will exceed β only if it does so in the first interval. With this in mind, this
overflow probability can be calculated by following a procedure similar to the one used in (26),
to obtain

P1,θ (β) = Q(θ)+ exp(−2θβ)[1 −Q(θ − 2β)].
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Figure 2: Comparisons forα = 0.9, θ = 1, andλN = 0.077 93: (a) lower bounds; (b) optimal time-scale.

7.3. The general case 0 < α < 1

This section presents the overflow probability, obtained from simulations, for both the limit
process and the original process in the case that 0 < α < 1, and compares them to the lower
bounds presented in Section 6.1. The variables B and β are related by B = β(λnLN)

1/2,
and Theorem 5 suggests the approximation P[QN

o ≥ B] ≈ P[Qo ≥ β]. The probabilities are
plotted in Figure 2(a) with θ = 1, α = 0.9, and λN = 0.077 93, which, for the original system
with N = 16 phases, corresponds to a load of 0.7793. First, it is clear that the limit process
is a very good approximation to the N = 16 process. As required, the tightest lower bound is
P

lb3
1 . However, P lb2

1 is very close to P lb3
1 for β > 5 (B > 17.66). Notice in Figure 2(b) that,

for β > 0.85 (B > 3), the most likely integer time interval for the process to exceed β is after
the first interval (i.e. T ∗

lb3
≥ 1). This causes P lb1

1 , which corresponds to T ∗
lb3

= 0, to decrease
in accuracy. It can also be observed in Figure 2 that, as expected, P lb1

1 is a tighter bound than
P

lb2
1 when the frame in which the process is most likely to exceed β is the first. While P lb3

1
is the tightest lower bound, it is also that which requires the most computation – it requires
computation of the integrals in (28). Here, the lower bounds are not a good approximation
when the actual overflow probability is larger than 0.1, but they are good for smaller overflow
probabilities, which are usually the ones that are of interest to system designers.
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Figure 3: Comparisons for α = 0.9, θ = 0.2, and λN = 0.095 123: (a) lower bounds; (b) optimal
time-scale.

Figure 2 shows a clear change in the slope of the overflow probability atβ = 0.33 (B = 1.16)
for P lb2

1 and at β = 0.85 (B = 3) for P lb3
1 , where it is more likely for the process to exceed

β after the first frame. As was discussed by Pazhyannur and Fleming [9], for small values of
average queueing delay (which, by Little’s law, is proportional to the average queue length),
the delay behaves exponentially with mean λ1, while for larger values it behaves exponentially
but with mean λ2 �= λ1. This ‘two-scaled exponential distributions’ effect, as it is called in [9],
is easy to observe in the semilog plot of [9, Figure 7]. This two-scale behavior is due to
correlation since, if the number of buffered packets is small, then most likely they all arrived
within the space of one frame and, hence, there is no correlation between them. However, a
larger number of buffered packets is most likely due to packets that arrived over multiple frames,
and correlation comes into the picture. This is a characteristic of the semiperiodic behavior of
the system, which is preserved in the diffusion limit. This two-scale behavior is also observed
in the most likely path to overflow considered by Norros [8].

Figure 3 shows the overflow probabilities and optimal time-scales for θ = 0.2, α = 0.9, and
λN = 0.095 123, which corresponds to a load of 0.951 23 forN = 16 phases. Again, it is clear
that the limit process is already a very good approximation to the N = 16 process. The same
pattern is observed for the lower bounds.
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Figure 4: Comparisons for α = 0.9, θ = 2.5, and λN = 0.064 505: (a) lower bounds; (b) optimal
time-scale.

The overflow probabilities and optimal time-scales for θ = 2.5, α = 0.9, and λN =
0.064 505, which corresponds to a load of 0.645 054 forN = 32 phases, are plotted in Figure 4.
The same conclusions are reached as for Figure 3. A plot for N = 32 rather than for N = 16
is shown since, for N = 16, the overflow probability is small even for very small buffer sizes.

7.4. The effect of mean load and correlation

Of course, overflow probabilities increase significantly as the mean load increases (i.e. as the
draining rate θ decreases). This can be observed in Figure 5, where overflow probabilities below
0.1 are achieved for β > 0.1 in a lightly loaded system (θ = 10), while they are achieved for
β > 1.5 in a heavily loaded system (θ = 1). The effect of correlation on the overflow probability
is a little more subtle than the effect of mean load. As discussed in Section 7.3, the impact
is significant only if overflow probabilities for large enough buffers are considered, and the
impact is greater for more heavily loaded systems. Figure 5 indicates a marked dependence on
the correlation α only in the more heavily loaded system (θ = 1) and for β sufficiently large
(β > 1).
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Figure 5: Overflow probability for (a) small draining rate (θ = 10); (b) large draining rate (θ = 1).

8. Conclusions

In this paper, we have presented a diffusion limit approximation of the cumulative arrival
process in a discrete-time queueing system with constant bit rate connections. The diffusion
scaling retains the semiperiodic behavior of the process, allowing for both short-time (within
one frame) and long-time (over multiple frames) analysis in the limit. Several properties of the
limit process were discussed. The limit process can be viewed as an interpolation of a stationary-
increment discrete-time Gaussian process, where interpolation is done with Brownian bridges.
Under a mild condition on the tail of the connection lifetime distribution, the limit of the
cumulative arrival process satisfies a strong law of large numbers. Related bounds for the
actual cumulative arrival process were used to establish the limit in distribution for the scaled
equilibrium buffer length.

Bounds on the overflow probability of the limit queueing system, as a function of the arrival
rate and the connection lifetime distribution, were presented and some numerical results used to
illustrate the approximate analysis. We found that the bounds are a good approximation when
the actual probability of overflow is smaller than 0.1. These bounds on the limit system were
also compared to the overflow probability of the original system. The results of our simulations
also showed that the limit approximation to the system is a very good one.
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Finally, we pointed out that the correlation effect is significant only for large buffer build
up, and its effect is enhanced when the average load is high.

Appendix A.

In this appendix, we present the values of the constants that appear in the calculation of
P

lb3
θ (β) in Section 6.1:

m̂T = −θT , m̂T+1 = −θ(T + 1), ρ̂ = ρT,T+1√
ρT ρT+1

,

σ 2
1 = σ 4ρT

(σ 2 + 2ρT,T+1)2 − 4ρT ρT+1
, σ 2

2 = σ 4ρT+1

(σ 2 + 2ρT,T+1)2 − 4ρT ρT+1
,

ρ̃ = ρT,T+1(σ
2 + 2ρT,T+1)− 2ρT,T+1

σ 2√ρT ρT+1
, c0 = σ 2√

(σ 2 + 2ρT,T+1)2 − 4ρT ρT+1
,

c1 = 2((β+θT )((β+(T +1)θ)(σ 2+2ρT,T+1)−ρT+1(θT +β))− ρT (β+(T +1)θ)2)

4ρT ρT+1−(σ 2+2ρT,T+1)2
,

m1 = 2ρT (2βρT+1 − σ 2(θ(T + 1)+ β))+ (σ 2 + 2ρT,T+1)(T θσ
2 − 2βρT,T+1)

4ρT ρT+1 − (σ 2 + 2ρT,T+1)2
,

m2 = 2ρT+1(2βρT − σ 2(θT + β))+ (σ 2 + 2ρT,T+1)((T + 1)θσ 2 − 2βρT,T+1)

4ρT ρT+1 − (σ 2 + 2ρT,T+1)2
.

Appendix B.

Here, we present a method to simplify the integration of the two-dimensional Gaussian Q
function

Q(x1, y1, ρ)

:= 1

2π
√

1 − ρ2

∫ ∞

x1

∫ ∞

y1

exp

(
−x

2 + y2 − 2ρxy

2(1 − ρ2)

)
dx dy

= 1

2π
√

1 − ρ2

∫ ∞

0

∫ ∞

0
exp

(
− (x + x1)

2 + (y + y1)
2 − 2ρ(x + x1)(y + y1)

2(1 − ρ2)

)
dx dy,

where the equality follows from a simple change of variables. This can be further simplified
by another change of variables that arises from the geometry of the area of interest. Define N ,
θ , and φs , using j = (−1)1/2, by

N exp (jθ) = (x + x1)+ j (y + y1) and φs = arctan

(
y1

x1

)
.

Changing variables from (x, y) to (N, θ) and using the equality

(x + x1)
2 + (y + y1)

2 − 2ρ(x + x1)(y + y1) = N2(1 − ρ sin 2θ)

(presented in Simon and Alouini [11]), makes Q a finite double integral that can be further
simplified to single integrals.
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We now present the final integrals for evaluation. The integrals are different depending on
which quadrant the vector (x1, y1) lies in.

• First quadrant:

Q(x1, y1, ρ) =
√

1 − ρ2

2π

∫ φs

0

1

1 − ρ sin 2θ
exp

(
−y

2
1 (1 − ρ sin 2θ)

2(1 − ρ2) sin2 θ

)
dθ

+
√

1 − ρ2

2π

∫ π/2

φs

1

1 − ρ sin 2θ
exp

(
−x

2
1 (1 − ρ sin 2θ)

2(1 − ρ2) cos2 θ

)
dθ.

• Second quadrant:

Q(x1, y1, ρ) =
√

1 − ρ2

2π

∫ π/2

0

1

1 − ρ sin 2θ
exp

(
−y

2
1 (1 − ρ sin 2θ)

2(1 − ρ2) sin2 θ

)
dθ

+
√

1 − ρ2

2π

∫ φs

−π/2
1

1 − ρ sin 2θ
exp

(
−y

2
1 (1 − ρ sin 2θ)

2(1 − ρ2) sin2 θ

)
dθ

−
√

1 − ρ2

2π

∫ φs

−π/2
1

1 − ρ sin 2θ
exp

(
−x

2
1 (1 − ρ sin 2θ)

2(1 − ρ2) cos2 θ

)
dθ.

• Third quadrant:

Q(x1, y1, ρ) = 1 −
√

1 − ρ2

2π

∫ π/2

φs

1

1 − ρ sin 2θ
exp

(
−y

2
1 (1 − ρ sin 2θ)

2(1 − ρ2) sin2 θ

)
dθ

−
√

1 − ρ2

2π

∫ φs

0

1

1 − ρ sin 2θ
exp

(
−x

2
1 (1 − ρ sin 2θ)

2(1 − ρ2) cos2 θ

)
dθ

−
√

1 − ρ2

2π

∫ 0

−π/2
1

1 − ρ sin 2θ
exp

(
−y

2
1 (1 − ρ sin 2θ)

2(1 − ρ2) sin2 θ

)
dθ

−
√

1 − ρ2

2π

∫ 0

−π/2
1

1 − ρ sin 2θ
exp

(
−x

2
1 (1 − ρ sin 2θ)

2(1 − ρ2) cos2 θ

)
dθ.

• Fourth quadrant:

Q(x1, y1, ρ) =
√

1 − ρ2

2π

∫ π/2

φs

1

1 − ρ sin 2θ
exp

(
−x

2
1 (1 − ρ sin 2θ)

2(1 − ρ2) cos2 θ

)
dθ

−
√

1 − ρ2

2π

∫ 0

φs

1

1 − ρ sin 2θ
exp

(
−y

2
1 (1 − ρ sin 2θ)

2(1 − ρ2) sin2 θ

)
dθ.
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