SUBGROUPS OF THE POWER SEMIGROUP OF A FINITE SEMIGROUP

MOHAN S. PUTCHA

Throughout this paper, S will denote a finite semigroup and \mathbb{Z}^+ the set of positive integers. E = E(S) denotes the set of idempotents of S. Let $\mathscr{P}(S) = \{A | A \subseteq S, A \neq \emptyset\}$. If $A, B \in \mathscr{P}(S)$, then let $AB = \{ab | a \in A, b \in B\}$. $\mathscr{P}(S)$ has been studied by many authors, including [2, 3, 5, 6, 7]. If X is a set, then |X| denotes the cardinality of X. For undefined terms in this paper, see [1, 4].

THEOREM 1. Let I be an ideal of S, \mathscr{G} a subgroup of $\mathscr{P}(S)$. Then \mathscr{G} has a normal subgroup \mathscr{N} such that \mathscr{N} is isomorphic to a subgroup of $\mathscr{P}(I)$ and \mathscr{G}/\mathscr{N} is isomorphic to a subgroup of $\mathscr{P}(S/I)$.

Proof. Let T denote the identity element of \mathscr{G} . First assume $T \subseteq S \setminus I$. Let $A \in \mathscr{G}$. Then T = AB for some $B \in \mathscr{G}$. So $A \subseteq S \setminus I$. It then follows that \mathscr{G} is isomorphic to a subgroup of $\mathscr{P}(S/I)$ and the theorem is trivial. So assume $T \cap I \neq \emptyset$. Let $\phi: S \to S/I$ denote the natural homomorphism. Let $\hat{\phi}: \mathscr{P}(S) \to \mathscr{P}(S/I)$ denote the obvious extension of ϕ . Let ψ denote the restriction of $\hat{\phi}$ to \mathscr{G} . Then $\overline{\mathscr{G}} = \psi(\mathscr{G})$ is a subgroup of $\mathscr{P}(S/I)$. Let \mathcal{N} denote the kernel of ψ . It suffices to show that \mathscr{N} is isomorphic to a subgroup of $\mathscr{P}(I)$. Let $T_1 = T \cap I \neq \emptyset$. Then $T = V \cup T_1$ where $V = T \setminus T_1$. So $\psi(T) = V \cup \{0\}$ is the identity element of $\overline{\mathscr{G}}$. If $V = \emptyset$, then $\psi(T) = \{0\}$ and $\mathscr{N} \subseteq \mathscr{P}(I)$. We are then trivially done. So assume $V \neq \emptyset$. Then for $A \in \mathscr{N}$, $\phi(A) = V \cup \{0\}$. So $A = V \cup A_1$ for some $A_1 \in \mathscr{P}(I)$. Now $T^2 = T$. So

(1) $V \cup T_1 = V^2 \cup VT_1 \cup T_1V \cup T_1^2$.

Comparing the 'I-part' and the ' $S \setminus I$ -part' of both sides of (1), we have,

(2)
$$V^2 \cap I \subseteq T_1, V \subseteq V^2, VT_1 \cup T_1V \cup T_1^2 \subseteq T_1.$$

Now let $A \in \mathcal{N}$. Then $A = V \cup A_1$, $\emptyset \neq A_1 \subseteq I$. There exists $n \in \mathbb{Z}^+$ such that $A^n = T$. So $A^{n+1} = A$. Then

 $T_1 \subseteq T = A^n = [V \cup A_1]^n.$

Let $a \in T_1$. Then $a = x_1 \dots x_n$ for some $x_1, \dots, x_n \in V \cup A_1$. First assume some $x_i \in V$. Then by (2), $x_i \in V^2 \subseteq A^2$. So $a = x_1 \dots x_n \in A^{n+1} = A$. But then $a \in A \cap I = A_1$. If $x_i \notin V$ for all *i*, then $a \in A_1^n$. Thus

 $(3) T_1 \subseteq A_1 \cup A_1^n.$

Received May 17, 1978 and in revised form July 5, 1978.

1077

We claim that $A_1T_1 = T_1A_1$. By symmetry, it suffices to show that $A_1T_1 \subseteq T_1A_1$. So let $u \in A_1T_1$. Then u = ab for some $a \in A_1, b \in T_1$.

Case 1. $a \in T_1$. If $b \in A_1$, then $u = ab \in T_1A_1$. Next assume $b \notin A_1$. By (3), $b \in A_1^n$. So $u = ab \in A_1^{n+1} = A_1^nA_1$. But $A_1^n \subseteq A^n = T$. So $A_1^n \subseteq T \cap I = T_1$. Thus $u \in T_1A_1$.

Case 2. $a \notin T_1$. Now AT = A = TA. Since $A = V \cup A_1$, $T = V \cup T_1$, we have

- $(4) \qquad VT_1 \cup A_1T_1 \subseteq A_1$
- (5) $V \cup A_1 = V^2 \cup VA_1 \cup T_1A_1 \cup T_1V.$

There exists $C \in \mathcal{N}$ such that CA = T. Since $V \subseteq C$, we have

(6) $VA_1 \subseteq T_1$.

Since $a \in A_1 \setminus T_1$, we have $a \in I \setminus T_1$. So by (2), (5), (6) we have $a \in T_1A_1$. So $u = ab \in T_1A_1T_1$. But by (4), $A_1T_1 \subseteq A_1$. So $u \in T_1A_1$.

We have thus shown that

$$(7) A_1 T_1 = T_1 A_1.$$

By (2) $T_1^2 \subseteq T_1$. So $T_1 \supseteq T_1^2 \supseteq T_1^3 \supseteq \dots$

Hence there exists $k \in \mathbb{Z}^+$ such that $T_1^k = T_1^{k+1}$. Let $W = T_1^k$. Then $W = W^2$. By (4), $VT_1 \subseteq A_1$. So

$$AW = (V \cup A_1)T_1^k = VT_1^k \cup A_1T_1^k = VT_1^{k+1} \cup A_1T_1^k = A_1T_1^k$$

= A_1W .

Similarly $WA = WA_1$. By (7), $WA_1 = A_1W$. So

(8)
$$WA = AW = A_1W = WA_1, W^2 = W \subseteq I.$$

Let $f(A) = AW \in \mathscr{P}(I)$. If $A, B \in \mathscr{N}$, then by (8)

(9)
$$f(A)f(B) = AWBW = ABW^2 = ABW = f(AB).$$

Let $\overline{\mathcal{N}} = f(\mathcal{N}) \subseteq \mathscr{P}(I)$. By (8), $f: \mathcal{N} \to \overline{\mathcal{N}}$ is a surjective homomorphism. Thus $\overline{\mathcal{N}}$ is a subgroup of $\mathscr{P}(I)$. We claim that f is an isomorphism. So let $A \in \mathcal{N}$ and suppose

 $(10) \quad f(A) = f(T)$

where $A = V \cup A_1$, $\emptyset \neq A_1 \subseteq I$. First suppose $A_1 \nsubseteq T_1$. Let $a \in A_1 \setminus T_1$. By (2), (5), (6), $a \in T_1A_1$. So a = bc for some $b \in T_1$, $c \in A_1$. If $c \in T_1$, then $a \in T_1$, a contradiction. Thus $c \in A_1 \setminus T_1$. Hence $a \in T_1(A_1 \setminus T_1)$. Therefore

$$A_1 \backslash T_1 \subseteq T_1 (A_1 \backslash T_1)$$

So

$$A_1 \setminus T_1 \subseteq T_1^i (A_1 \setminus T_1)$$
 for all $i \in \mathbb{Z}^+$.

In particular, by (8), (10),

$$A_1 \setminus T_1 \subseteq T_1^k (A_1 \setminus T_1) \subseteq WA_1 = f(A) = f(T) = T_1^k \subseteq T_1,$$

a contradiction. Thus $A_1 \subseteq T_1$. Hence $A \subseteq T$. So

 $A^2 \subseteq TA = A.$

Therefore

(11) $T \supseteq A \supseteq A^2 \supseteq A^3 \supseteq \dots$

There exists $n \in \mathbb{Z}^+$ such that $A^n = T$. By (11), $T = A^n \subseteq A \subseteq T$. So A = T. Hence $\mathscr{N} \cong \widetilde{\mathscr{N}}, \widetilde{\mathscr{N}}$ is a subgroup of $\mathscr{P}(I)$. Since $\mathscr{G}/\mathscr{N} \cong \widetilde{\mathscr{G}}$ is a subgroup of $\mathscr{P}(S/I)$, the theorem is proved.

Example 1. In the proof of Theorem 1, it is tempting to look at $\mathcal{N}_1 = \{A \cap I | A \in \mathcal{N}\}$ and see if \mathcal{N}_1 is in fact a subgroup of $\mathcal{P}(I)$. However, this is not always true. For example, let $I = \{0, a\}$ be the null semigroup, $S = I^1$. Let $\mathcal{G} = \{\{1, 0, a\}\}$. Then $\mathcal{N} = \{\{1, 0, a\}\}, \mathcal{N}_1 = \{\{0, a\}\}, \mathcal{N}_1$ is not a subgroup, $\mathcal{N}_1^2 = \{\{0\}\}$. However $\overline{\mathcal{N}} = \mathcal{N}_1\{0\} = \{\{0\}\}$ is a group which is isomorphic to \mathcal{N} . So the construction of $\overline{\mathcal{N}}$ in the proof of Theorem 1 is necessary.

Example 2. Let G_1 , G_2 be disjoint groups with identities e_1 , e_2 , respectively. Let $S = G_1 \cup G_2 \cup \{0\}$ with $g_1g_2 = g_2g_1 = g_10 = 0g_1 = g_20 = 0g_2 = 00 = 0$ for $g_1 \in G_1$, $g_2 \in G_2$. Let

$$I = G_2 \cup \{0\}, \ \mathscr{G} = \{\{g_1, g_2, 0\} | g_1 \in G_1, g_2 \in G_2\}.$$

Then \mathscr{G} is a subgroup of $\mathscr{P}(S)$. If $\mathscr{N} = \{\{e_1, g_2, 0\}|g_2 \in G_2\}$, then $\mathscr{N} < G$, $G_2 \cong \mathscr{N} \cong \widetilde{\mathscr{N}} = \{\{g_2, 0\}|g_2 \in G_2\} \subseteq \mathscr{P}(I)$. Also $\mathscr{G}/\mathscr{N} \cong G_1$ and is also isomorphic to a subgroup of $\mathscr{P}(S/I)$.

If J is a \mathcal{J} -class of S, then in J^0 we define

$$a \cdot b = \begin{cases} ab & \text{if } ab \in J \\ 0 & \text{if } ab \notin J. \end{cases}$$

Then J^0 is a semigroup [4; p. 151].

THEOREM 2. Let \mathscr{G} be a subgroup of $\mathscr{P}(S)$. Then \mathscr{G} admits a normal series $\{1\} = \mathscr{G}_0 \triangleleft \mathscr{G}_1 \triangleleft \ldots \triangleleft \mathscr{G}_m = \mathscr{G}$ such that each factor group $\mathscr{G}_i/\mathscr{G}_{i-1}$ $(i = 1, \ldots, m)$ is isomorphic to a subgroup of $\mathscr{P}(J^0)$ for some \mathscr{J} -class J of S.

Proof. We prove the theorem by induction on |S|. Suppose S has an ideal $I, |I| \neq |S|, |I| \neq 1$. If J is a \mathscr{J} -class of S/I, other than $\{0\}$, then it is a \mathscr{J} -class of S. If J is a regular \mathscr{J} -class of I, then J is a \mathscr{J} -class of S. If J is a non-regular \mathscr{J} -class of I, then J^0 is null and $\mathscr{P}(J^0)$ has only trivial subgroups. We are thus done by Theorem 1 and the induction hypothesis. Next assume S has no proper ideals. Then S = J or J^0 for some \mathscr{J} -class J of S. We are then trivially done.

A semigroup with only trivial subgroups is called a *combinatorial* semigroup.

THEOREM 3. $\mathscr{P}(S)$ is combinatorial if and only if S is combinatorial and for all $e, f \in E(S)$, e f f implies e f e f or e f f e.

Proof. First suppose $\mathscr{P}(S)$ is combinatorial. If H is a subgroup of S, then H is a subgroup of $\mathscr{P}(H) \subseteq \mathscr{P}(S)$. So H must be trivial. Hence S is combinatorial. Suppose there exist $e, f \in E(S)$ such that $e \not f, e \not f e f, e \not f f e$. We will obtain a contradiction. Let J denote the \mathscr{J} -class of e. Let $T = J^0$. If J is the kernel of S, then $\mathscr{P}(J)$ and hence $\mathscr{P}(J^0) = \mathscr{P}(T)$ is combinatorial. Otherwise by $[\mathbf{4}, p. 151]$, there exist ideals I_1, I_2 of S such that $I_2 \subseteq I_1, T \cong I_1/I_2$. Since $\mathscr{P}(I_1)$ is an ideal of $\mathscr{P}(S)$, it is combinatorial. The natural homomorphism from I_1 onto I_1/I_2 extends naturally to a homomorphism from $\mathscr{P}(I_1)$ onto $\mathscr{P}(I_1/I_2)$. So $\mathscr{P}(I_1/I_2) \cong \mathscr{P}(T)$ is combinatorial. Thus in all cases, $\mathscr{P}(T)$ is combinatorial. In particular, T is combinatorial. Since $e \in T$, T is isomorphic to a regular Rees matrix semigroup. Since T is combinatorial, we can assume, without loss of generality, that there exist non-empty sets $A, B, P:A \times B \to \{0, 1\}$ such that $T = (A \times B) \cup \{0\}$ and in T,

(12)
$$(i, j)(k, l) = \begin{cases} (i, l) & \text{if } P(j, k) = 1 \\ 0 & \text{if } P(j, k) = 0. \end{cases}$$

Let $e = (\alpha, \beta), f = (\gamma, \delta)$. Then ef = fe = 0. So

(13)
$$P(\beta, \alpha) = P(\delta, \gamma) = 1, P(\beta, \gamma) = P(\delta, \alpha) = 0.$$

In particular, $\beta \neq \delta$, $\alpha \neq \gamma$. Let $L = \{(\alpha, \beta), (\gamma, \delta), 0\}$, $K = \{(\alpha, \delta), (\gamma, \beta), 0\}$. Then $K \neq L$, $L^2 = L$, KL = LK = K, $K^2 = L$. So $\{K, L\}$ is a two element subgroup of $\mathscr{P}(T)$, a contradiction.

Conversely assume S is combinatorial and for all $e, f \in E(S)$,

(14) $e \mathscr{J} f$ implies $e \mathscr{J} e f$ or $e \mathscr{J} f e$.

Let J be a \mathscr{J} -class and let $T = J^0$. By Theorem 2, it suffices to show that $\mathscr{P}(T)$ is combinatorial. If T is null, this is trivial. So assume T is a regular Rees matrix semigroup. Since S is combinatorial, so is T. Se we can assume that T has the structure given by (12). By (14),

(15)
$$e, f \in E(T), e, f \neq 0$$
 implies $ef \neq 0$ or $fe \neq 0$.

Let (i, j), $(k, l) \in T$ such that P(j, i) = P(l, k) = 1. Then (i, j), $(k, l) \in E(T)$. By (15), P(j, k) = 1 or P(l, i) = 1. Thus we have that if $i, k \in A, j, l \in B$, then

(16) P(j, i) = P(l, k) = 1 implies P(j, k) = 1 or P(l, i) = 1.

Let $K \in \mathscr{P}(T)$. Suppose K lies in a subgroup of $\mathscr{P}(T)$. Then $K^m = K$ for some $m \in \mathbb{Z}^+$, m > 1. We claim that $K^3 \subseteq K^2$. So let $u \in K^3$. First assume u = 0. Then $0 \in K^3$. So $0 \in K^r$ for $r \ge 3$. In particular $0 \in K^{m+1} = K^2$. So $u \in K^2$. Next assume $u \ne 0$. So there exist $i_1, i_2, i_3 \in A, j_1, j_2, j_3 \in B$ such that $(i_1, j_1), (i_2, j_2), (i_3, j_3) \in K$,

(17)
$$u = (i_1, j_1)(i_2, j_2)(i_3, j_3) = (i_1, j_3).$$

Since $u \neq 0$, $P(j_1, i_2) = P(j_2, i_3) = 1$. By (16)

(18) $P(j_1, i_3) = 1$ or $P(j_2, i_2) = 1$.

First assume $P(j_1, i_3) = 1$. Then by (17), $u = (i_1, j_1)(i_3, j_3) \in K^2$. Next assume $P(j_2, i_2) = 1$. Then (i_2, j_2) is idempotent. So by (17),

$$u = (i_1, j_1)(i_2, j_2)^r (i_3, j_3)$$
 for all $r \in \mathbf{Z}^+$.

So $u \in K^r$ for all $r \in \mathbb{Z}^+$, $r \ge 3$. In particular $u \in K^{m+1} = K^2$. Thus we have shown that $K^2 \supseteq K^3$. So

$$K^2 \supseteq K^3 \supseteq K^4 \supseteq \ldots$$

In particular $K^2 \supseteq K^m \supseteq K^{m+1} = K^2$. So $K^2 = K^m = K$. Thus $\mathscr{P}(T)$ is combinatorial. This proves the theorem.

If S_1 , S_2 are semigroups, then $S_1|S_2$ (S_1 divides S_2) if S_1 is a homomorphic image of a subsemigroup of S_2 . In the following let

$$Y = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right\}$$

be the Rees matrix semigroup with sandwich matrix $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

COROLLARY 1. Suppose S is combinatorial. Then $\mathscr{P}(S)$ is combinatorial if and only if $Y \nmid S$.

Proof. Suppose Y|S. Then it is obvious that $\mathscr{P}(Y)|\mathscr{P}(S)$. Since Y does not satisfy the hypothesis of Theorem 3, $\mathscr{P}(Y)$ is not combinatorial. Hence $\mathscr{P}(S)$ is not combinatorial.

Conversely, assume $\mathscr{P}(S)$ is not combinatorial. By Theorem 3, there exist $e, f \in E(S)$ such that $e \mathscr{J} f, e \mathscr{J} e f, e \mathscr{J} f e$. In particular e is not in the kernel of S. Let J denote the \mathscr{J} -class of e. Then J is not the kernel of S. So by [4, p. 151], $T = J^0 | S. T$, of course, must have the structure given by (12). As in the proof of Theorem 3, there must exist $(\alpha, \beta), (\gamma, \delta) \in T$ such that

(19)
$$P(\beta, \alpha) = P(\delta, \gamma) = 1, P(\beta, \gamma) = P(\delta, \alpha) = 0.$$

Let $Y' = \{(\alpha, \beta), (\gamma, \delta), (\alpha, \delta), (\gamma, \beta), 0\}$. Using (19) it is easy to see that $Y \cong Y'$. So Y|T|S. Hence Y|S. This proves the corollary.

Example 3. Let

$$Y_1 = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right\}$$

be the Rees matrix semigroup with sandwich matrix $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Then $Y \not\in Y_1$ and so by Corollary 1, $\mathscr{P}(Y_1)$ is combinatorial.

MOHAN S. PUTCHA

THEOREM 4. S is a band if and only if $\mathscr{P}(S)$ has the property that $A \subseteq A^2$ for all $A \in \mathscr{P}(S)$. Suppose S is a band. Then $\mathscr{P}(S)$ has the following properties.

(i) $\mathscr{P}(S)$ is a combinatorial semigroup which is a disjoint union of nil semigroups.

(ii) Let $A, B \in \mathscr{P}(S), A^i = K, B^j = L$ where $K^2 = K, L^2 = L$. If KL = Lthen there exists $r \in \mathbb{Z}^+$ such that $(AB)^r = L$. If KL = K, then there exists $r \in \mathbb{Z}^+$ such that $(AB)^r = K$.

(iii) If T is a subsemigroup of $\mathscr{P}(S)$ and if T has a zero, then the nilpotent elements of T form an ideal of T.

Proof. Suppose S is a band, $A \in \mathscr{P}(S)$. If $e \in A$, then $e = e^2 \in A^2$. So $A \subseteq A^2$. Conversely, assume $A \subseteq A^2$ for all $A \in \mathscr{P}(S)$. Then for $e \in S$, $\{e\} \subseteq \{e\}^2$ and so $e = e^2$. Now let S be a band, $A \in \mathscr{P}(S)$. Then $A \subseteq A^2$. So

 $A \subseteq A^2 \subseteq A^3 \subseteq \ldots$

There exists $n \in \mathbb{Z}^+$ such that $A^n = A^{n+1}$. So $\mathscr{P}(S)$ is combinatorial. The second part of (i) clearly follows from (ii) if we let K = L. We now prove (ii).

By symmetry we can assume KL = L. Let $b \in B$. Then $b \in B^j = L = KL$. So b = eb for some $e \in K$. Now $e = a_1 \dots a_i$ for some $a_1, \dots, a_i \in A$. So $a_1e = e$ whence $a_1b = b$. So $b \in AB$. Thus $B \subseteq AB$. There exists $r \in \mathbb{Z}^+$ such that $AB \subseteq (AB)^r = (AB)^{r+1}$. So $L = B^j \subseteq (AB)^r$. Since $A \subseteq K$, $B \subseteq L$, $AB \subseteq L$. So $(AB)^r \subseteq L$. Thus $(AB)^r = L$. Next we prove (iii). Suppose 0 is the zero of T. T, being a subsemigroup of $\mathscr{P}(S)$, satisfies (ii). Let $b \in T$ be nilpotent, say $b^j = 0$. Let $a \in T$. Then $a^i = e \in E(T)$ for some $i \in \mathbb{Z}^+$. Since e0 = 0, we see by (ii) that $(ab)^r = 0$ for some $r \in \mathbb{Z}^+$. Similarly $(ba)^s = 0$ for some $s \in \mathbb{Z}^+$. This proves the theorem.

Example 4. The power semigroup of a rectangular band is an inflation of a rectangular band [6]. The structure of the power semigroup of a band can be considerably more complicated. Let \mathscr{B} be the free band on letters e, f, g. Let $S = \mathscr{B}^1$. Let $A = \{1, e, f, fe\}, L = \{eg, egfeg, egefeg\}$. Then $L^2 = L, A^2 = K = K^2 = \{1, e, f, ef, fe, efe, fef\}$. $KL = M = M^2 = \{eg, egfeg, feg, efeg, egefeg\}$. However, $AL = P = P^2 = \{eg, egfeg, egefeg, feg\}$. Clearly $P \neq M$. Thus even though, by Theorem 4, $\mathscr{P}(S)$ must be a disjoint union of nil semigroups, it is not a band of nil semigroups. Also note that in $\mathscr{P}(S)$, a product of idempotents need not be an idempotent. For instance, $\{1, e\}, \{1, f\}$ are idempotents, but their product $\{1, e, f, ef\}$ is clearly not idempotent.

References

- 1. A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups*, Vol. 1, Amer. Math. Soc. (Providence, Rhode Island, 1961).
- D. J. McCarthy and D. L. Hayes, Subgroups of the power semigroup of a group, J. of Comb. Theory, ser. A. 14 (1973), 173-186.
- 3. M. S. Putcha, On the maximal semilattice decomposition of the power semigroup of a semigroup, Semigroup Forum 15 (1978), 263-267.

1082

FINITE SEMIGROUP

- J. L. Rhodes and B. R. Tilson, Local structure of finite semigroups, in "Algebraic Theory of Machines, Languages, and Semigroups," M. A. Arbib, ed., Chapter 7 (Academic Press, 1968).
- 5. T. Tamura and J. Shafer, Power semigroups, Math. Japan. 12 (1967), 25-32.
- 6. —— Power semigroups II, Notices AMS, 15 (1968), 395.
- 7. V. Trnkova, On a representation of commutative semigroups, Semigroup Forum 10 (1975), 203-214.

North Carolina State University, Raleigh, North Carolina