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SUBGROUPS OF THE POWER SEMIGROUP OF 
A FINITE SEMIGROUP 

MOHAN S. PUTCHA 

Throughout this paper, S will denote a finite semigroup and Z+ the set of 
positive integers. E = E(S) denotes the set of idempotents of 5. Let SP (S) = 
\A\A C 5 , A T± 0}. If A, B e S?(S), then let AB = {ab\ a G A, b G B}. 
£P (S) has been studied by many authors, including [2, 3, 5, 6, 7]. If X is a set, 
then \X\ denotes the cardinality of X. For undefined terms in this paper, see 
[1,4]. 

THEOREM 1. Let I be an ideal of S, & a subgroup of & (S). Then CS has a 
normal subgroups such that^V is isomorphic to a subgroup of & (I) and ré /J/ 
is isomorphic to a subgroup of SP (S/I). 

Proof. Let T denote the identity element of c£. First assume T C S\I. Let 
A £&. Then T = AB for some B £ ^. So A C S\L It then follows that ^ is 
isomorphic to a subgroup of &(S/I) and the theorem is trivial. So assume 
T C\ I 9^ 0. Let 4>:S —» S/I denote the natural homomorphism. Let <t>:&(S) —» 
SP (S/I) denote the obvious extension of </>. Let \p denote the restriction of $ to 
^ . Then ^ = iA(^) is a subgroup of 0>(S/I). Le t^ f denote the kernel of ^. 
It suffices to show that^K is isomorphic to a subgroup of ^ (7). Let Tx = T C\I 
9^ 0. Then 7̂__= F U 7\ where F = r \ 7 Y So t(T) = VU {0} is the identity 
element of <&. If V = 0, then ^(JT) = {0} and ^K C ^ ( 7 ) . We are then 
trivially done. So assume V J* 0. Then fox A ^ JV, $(A) = V U {0}. So 
4 = V U Ax for some 4 i G <^(7). Now P = T. So 

(1) 7 U T i = F 2 U F7\ U 7 \ F U 7Y. 

Comparing the '7-part' and the '5\7-part' of both sides of (1), we have, 

(2) p n / ç ^ j c v\ vi\ur^ur^ç TY 
Now let A e JV. Then A = V U Au 0 ^ A1 Q I. There exists n Ç Z+ such 
that ,4" = T. So ^ n + 1 = ,4. Then 

7\ C T = An = [ F U ^ f . 

Let a G 7Y Then a = X\ . . . xn for some Xi, . . . , xn Ç 7 U i i . First assume 
some xt G F. Then by (2), *f £ F2 C yl2. So a = xl . . . JCW G ^w + 1 = A. But 
then flG^n/ = i 1 . I f x ^ V for all i, then a Ç /I A Thus 

(3) Ti QA1UA,n. 
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We claim that A\Ti = T\A\. By symmetry, it suffices to show that A\l\ Ç 
T\A\. So let u G A\T\. Then u = ab for some a £ Ai, b Ç 7\. 

Case 1. a Ç 7\. If b £ ^4i, then u = ab £ T\A\. Next assume 6 S ^4i. By (3), 
6 G ^lin. S o ^ = ab G y4iw+1 = 4 I M L But ,4^ C An = T.SoA? Ç T C\ I = 
T\. Thus u Ç 7Vli. 

Case 2. a G 7V Now AT = A = TA. Since ,4 = W Au T = VU Tu 

we have 

(4) VT,\J A,T, QA1 

(5) F U i i = V2\J VAX\J TxAxKJ T,V. 

There exists C ^_J/ such that CA = T. Since V Q C, we have 

(6) VA1QTl. 

Since a Ç ^4 i \ r b we have a Ç 7\7Y So by (2), (5), (6) we have a Ç T\A\. So 
u = ab £ TxAxTx. But by (4), 4 i 7 \ Ç Ah So w G 7V4i. 

We have thus shown that 

(7) AJ, = r^i. 
By (2) TV Ç 7Y SO 

Hence there exists k € Z+ such that TV = 7Y+1. Let W = TV. Then W7 = W2. 
By (4), F7 \ Ç AL SO 

= AXW. 

Similarly WA = WAX. By (7), WAX = AXW. So 

(8) WA = AW = AiW = WAU W2 = W Q I. 

Let/( ,4) = AW e 0(1). UA,B ^JV, then by (8) 

(9) f(A)f(B) = AWBW = ABW2 = ABW = f(AB). 

Let^K _= j(J/) C ^(I). By (8), / : JV -+J^ is a surjective homomorphism. 
T h r u s h is a subgroup of SP(I). We claim t h a t / is an isomorphism. So let 
A G « ^ and suppose 

(10) f(A) =f(T) 

where A = V {J Au 0 9* Ai Q I. First suppose 4 i $£ 7\. Let a G ^4i\7\. 
By (2), (5), (6), a £ 7V4i. So a = be for some è G 7\, c G ^ i . If c Ç 7\, then 
a Ç Ti, a contradiction. Thus c Ç yli\7Y Hence a Ç 7\(^4i\7\). Therefore 

So 
M 7 \ Ç r i ' ^ A ^ i ) for all * Ç Z+. 
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In particular, by (8), (10), 

Atfi C TfiA^TJ C WAX =f(A) =f(T) = 7? C Th 

a contradiction. Thus A\ Q Th Hence A C 7". So 

Therefore 

(11) T D 4 2 ^42 2 4» 3 • • • 

There exists » 6_Z^_such tha t An = T. By (11), T = An Ç 4 _ C L. So ,4 = L. 
Hence J/ ^ .JV ,JV \s a subgroup ot^(I). Since ^ / y K ^ ^ is a subgroup of 
ëP{S/I), the theorem is proved. 

Example 1. In the proof of Theorem 1, it is tempting to look aX^Y\ = 
{A C\ I\A 6 ^K} and see if «y^i is in fact a subgroup of 2P(Ï). However, this is 
not always true. For example, let / = {0, a\ be the null semigroup, 5 = P. 
Let & = {{1, 0, a}}. T h e n ^ = J { 1 , 0, a\\,J/x = {{0, a\).J/x is not a sub­
g r o u p , ^ ! 2 = {{0}}. However J/ = «yKj{0}} = {{0j} is a group which is iso­
morphic to <yV. So the construction of J/ in the proof of Theorem 1 is necessary. 

Example 2. Let Gi, G2 be disjoint groups with identities ei, e2, respectively. 
Let 5 = G i U G 2 U {0} with glg2 = g,gl = gl0 = Ogi = g20 = 0g2 = 00 = 0 
for gi G Gi, g2 G G2. Let 

/ = G 2 U { 0 } , ^ = {{gi,g2 f0}|g! G G l f g 2 É G2}. 

Then ^ is a subgroup of £P{S). MJV = {{^, g2, 0)|g2 £ G2}, t h e n ^ K < G, 
G ^ ^ Ê Ë ^ = {{g2, 0} |g2 G G2) C ^ ( / ) . A l s o &/JY^Gi and is also iso­
morphic to a subgroup of & (S/Ï). 

If / is a ^ / -c lass of S, then in 7° we define 

, _ fab iîab £ J 
a l0 iîab ï J. 

Then 7° is a semigroup [4; p. 151]. 

T H E O R E M 2. Le/ & be a subgroup of SP(S). Then ^ admits a normal series 
{1} = ^ o < ^ i < . . . < ^ m = ^ s^c/z / ^ each factor group ^ J^ ^ 
(i = 1, . . . , ra) is isomorphic to a subgroup of SP (J°) for some ^ -class J of S. 

Proof. We prove the theorem by induction on | 5 | . Suppose 5 has an ideal 
I,\I\ ^ \S\i\I\ ^ 1. I f / i s a < / - c l a s s o f S / J , other than {0}, then it is a . / - c l a s s 
of S. If / is a r e g u l a r s - c l a s s of / , then J is a ^ - c l a s s of S. If J is a non-regular 
^ - c l a s s of / , then J° is null and & (J°) has only trivial subgroups. We are thus 
done by Theorem 1 and the induction hypothesis. Next assume 5 has no proper 
ideals. Then S = J or J° for some ^ - c l a s s J of S. We are then trivially done. 

A semigroup with only trivial subgroups is called a combinatorial semigroup. 
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THEOREM 3. SP (S) is combinatorial if and only if S is combinatorial and for 
all e, f Ç E(S), ejf implies ejef or ejfe. 

Proof. First suppose &\S) is combinatorial. If H is a subgroup of S, then 
H is a subgroup of 0* (H) C & (S). So H must be trivial. Hence S is combina­
torial. Suppose there exist e, f Ç £(5) such that e<ff, e^-ef, e^fe. We will 
obtain a contradiction. Let / denote the^-c lass of e. Let T = J°. If / is the 
kernel of 5, then 0 (J) and hence 0 (J°) = 0 (T) is combinatorial. Otherwise 
by [4, p. 151], there exist ideals Iu I2 of S such that I2 Q h, T = I\/I2. Since 
&(I\) is an ideal of 0(S), it is combinatorial. The natural homomorphism 
from Ii onto Ii/I2 extends naturally to a homomorphism from 0{I\) onto 
0{h/h). §o0(h/h)^g?{T) is combinatorial. Thus in all cases, 0>{T) is 
combinatorial. In particular, T is combinatorial. Since e Ç T, T is isomorphic 
to a regular Rees matrix semigroup. Since T is combinatorial, we can assume, 
without loss of generality, that there exist non-empty sets A, B, P:A X B —> 
{0, 1} such that T = (A X B) U | 0 | and in P, 

(12) ( M ) ( M ) = J Q iiF{j}k) = 0, 

Let g - (a, 0) , / = (7,5). Then ef = fe = 0. So 

(13) P(/3, a) = P(ô, T ) = 1, P(/3, 7) = P(«, «) - 0. 

In particular, 0 ^ 5,a ^ y. Let L = {(a, 0), (7, <5),0j,i£ = {(a, <5), (7, 0),Oj. 
Then K ^ L, L2 = L, KL = LK = K, K2 = L. So {j£, L} is a two element 
subgroup of &(T), a contradiction. 

Conversely assume 5 is combinatorial and for all e, f £ E(S), 

(14) e/f implies e/ef or e/fe. 

Let J be a ^/-class and let P = 7°. By Theorem 2, it suffices to show that 
0(T) is combinatorial. If P is null, this is trivial. So assume T is a regular 
Rees matrix semigroup. Since 5 is combinatorial, so is P. Se we can assume that 
P has the structure given by (12). By (14), 

(15) e,f e E(T), e,f ?* 0 implies ef j* 0 or fe 7* 0. 

Let (i,j), (fe,/) G P such that P ( j , i ) = p(l>k) = L Then (*', j ) , (fe,/) 6 E(T). 
By (15), P ( j , fe) = 1 or P(/ , i) = 1. Thus we have that if i,keA,j,l£ B, 
then 

(16) P(j, i) = P(/, fe) = 1 implies P(j, fe) = 1 or P(/, i) = 1. 

Let K £ 0>(T). Suppose i£ lies in a subgroup of 0>{T). Then Km = K for 
some m € Z+ , m > 1. We claim that i£3 C i£2. So let u £ X3. First assume 
u = 0. Then 0 Ç X3. So 0 G i£r for r ^ 3. In particular 0 £ Km+l = X2. So 
w G i£2. Next assume w j* 0. So there exist ii, i2, is G A,ji,j2,jz G -S such that 
(*i,ji), (*2,j2), (i3, ja) G 2£, 

(17) u = (ii,ji)(i2J2)(ù,jz) = (ii, js). 
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Since u * 0, P(jh i2) = P(j2} i3) = 1. By (16) 

(18) P(jhu) = I or P(j2}i2) = 1. 

First assume P(jhù) = 1. Then by (17), u = (iuji)(ihjz) £ K2. Next assume 
P(ji, ù) = 1. Then (22,72) is idempotent. So by (17), 

« = (iujOiitjJïYfafJ*) for all r Ç Z+. 

So zi £ i£ r for all r G Z+, r ^ 3. In particular u £ i£m + 1 = i£2. Thus we have 
shown tha t K2 2 K\ So 

i£2 2 i£3 3 ^4 3 

In part icular K2 ^ Km ^ Km+l = i£2. So K2 = Km = K. Thus ^ ( F ) is 
combinatorial . This proves the theorem. 

If 5i , 5 2 are semigroups, then 5 i |S 2 (Si divides S2) if Si is a homomorphic 
image of a subsemigroup of 52. In the following let 

F = l \ o 0/ ' \o 0/ ' \o 1/ ' \o 0 / ' u o/l 

be the Rees matr ix semigroup with sandwich matrix I n I . 

COROLLARY 1. Suppose S is combinatorial. Then & (S) is combinatorial if and 
only ifYfS. 

Proof. Suppose Y\S. Then it is obvious tha t SP(Y)\SP(S). Since F does not 
satisfy the hypothesis of Theorem 3, SP (Y) is not combinatorial . Hence £P (S) 
is not combinatorial . 

Conversely, assume SP (S) is not combinatorial. By Theorem 3, there exist 
e,f£ E(S) such tha t e<yf, e^~ef, e^-fe. In part icular e is not in the kernel of S. 
Let J denote the f -class of e. Then / is not the kernel of S. So by [4, p . 151], 
T = J°\S. T, of course, must have the s t ructure given by (12). As in the proof 
of Theorem 3, there must exist (a, f3), (7,6) Ç T such t ha t 

(19) P ( 0 , a) = P(8, 7) = 1, P(0, 7) = P(à, a) = 0. 

Let Y' = {(a, /3), (7, ô), (a, ô), (7, 0) , 0 j . Using (19) it is easy to see t h a t 
F ^ Y'. So Y\T\S. Hence Y\S. This proves the corollary. 

Example 3. Let 

* - {(J S) • (S S) • (Ï S) • (S Î) • (S ! )} 
be the Rees matr ix semigroup with sandwich matrix I I . Then F \ Y\ 

and so by Corollary 1, SP (Y\) is combinatorial . 
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THEOREM 4. S is a band if and only if SP(S) has the property that A Ç A2 for 
all A £ 0(S). Suppose S is a band. Then 0 (S) has the following properties. 

(i) 0 (S) is a combinatorial semigroup which is a disjoint union of nil 
semigroups. 

(ii) Let A, B G 0(S), A* = K, Bj = L wAere X2 = K, L2 = L. If KL = L 
/feen there exists r £ Z + ŝ cfe /fcz/ (^4^)r = L. / / i£L = X, //zew there exists 
r Ç Z+ such that (AB)r = X. 

(iii) 7/ r is a sub semigroup of 0 (S) and if T has a zero, then the nilpotent 
elements of Tform an ideal of T. 

Proof. Suppose S is a band, A £ 0(S). U e £ A, then e = e2 £ A2. So 
A Ç A2. Conversely, assume A Ç A2 for all ^ G ^ ( 5 ) . Then for g £ 5, 
{e} C {ep and so g = e2. Now let 5 be a band, A 6 0{S). Then 4 Ç A2. So 

There exists n £ Z + such that ,4n = ylw+1. So ^ ( 5 ) is combinatorial. The 
second part of (i) clearly follows from (ii) if we let K = L. We now prove (ii). 

By symmetry we can assume KL = L. Let b Ç B. Then b G Bj = L - KL. 
So b = eh for some e £ K. Now e = a\ . . . at for some ai, . . . , at Ç ^4. So 
«ie = e whence ci\b = b. So b £ AB. Thus B Çj 4̂72. There exists r G Z+ such 
that AB Ç (,4£)' = (AB)r+1. So L = 5 ' Ç ( ^ 5 ) r . Since ^ Ç K, B Q L, 
AB Ç L. So (,4£) r Ç L. Thus (yl£) r = I . Next we prove (iii). Suppose 0 is 
the zero of T. T, being a subsemigroup of 0{S), satisfies (ii). Let b G T be 
nilpotent, say bj = 0. Let a £ T. Then a1 = e £ E(T) for some i Ç Z+ . Since 
eO = 0, we see by (ii) that (aô)r = 0 for some r £ Z+ . Similarly (/;a)s = 0 for 
some s G Z+ . This proves the theorem. 

Example 4. The power semigroup of a rectangular band is an inflation of a 
rectangular band [6]. The structure of the power semigroup of a band can be 
considerably more complicated. Let Se be the free band on letters e, f, g. 
LetS = SSKLetA = {1, e,f,fe},L = {eg, egfeg, egefeg}. Then IJ = L, .42 = 
K = K2 = {1, e,/, */,/*, e/e,/g/}. KL = M = M2 = [eg, egfegjeg, efeg, egefeg}. 
However, AL = P = P2 = {eg, egfeg, egefeg, feg}. Clearly P ^ M. Thus even 
though, by Theorem 4, 0*{S) must be a disjoint union of nil semigroups, it is 
not a band of nil semigroups. Also note that in 0 (S), a product of idempotents 
need not be an idempotent. For instance, {1, e}, {1,/} are idempotents, but 
their product {1, e, f, ef} is clearly not idempotent. 

REFERENCES 

1. A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. 1, Amer. Math. Soc. 
(Providence, Rhode Island, 1961). 

2. D . J . McCarthy and D. L. Hayes, Subgroups of the power semigroup of a group, J. of Comb. 
Theory, ser. A. 14 (1973), 173-186. 

3. M . S . Putcha, On the maximal semilattice decomposition of the power semigroup of a semigroup, 
Semigroup Forum 15 (1978), 263-267. 

https://doi.org/10.4153/CJM-1979-099-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1979-099-1


FINITE SEMIGROUP 1083 

4. J. L. Rhodes and B. R. Tilson, Local structure of finite semigroups, in "Algebraic Theory of 
Machines, Languages, and Semigroups," M. A. Arbib, éd., Chapter 7 (Academic Press, 
1968). 

5. T. Tamura and J. Shafer, Power semigroups, Math. Japan. 12 (1967), 25-32. 
6. Power semigroups II, Notices AMS, 15 (1968), 395. 
7. V. Trnkova, On a representation of commutative semigroups, Semigroup Forum 10 (1975), 

203-214. 

North Carolina State University, 
Raleigh, North Carolina 

https://doi.org/10.4153/CJM-1979-099-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1979-099-1

