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SUBGROUPS OF THE POWER SEMIGROUP OF
A FINITE SEMIGROUP

MOHAN S. PUTCHA

Throughout this paper, .S will denote a finite semigroup and Z* the set of
positive integers. E = E(S) denotes the set of idempotents of S. Let 2 (S) =
{A|A C S, 40} If A, B¢ ZP(S), then let AB = {abla € A, b € B}.
2 (S) has been studied by many authors, including [2, 3, 5, 6, 7]. If X is a set,
then | X| denotes the cardinality of X. For undefined terms in this paper, see
(1, 4].

THEOREM 1. Let I be an ideal of S, G a subgroup of P (S). Then G has a
normal subgroup N such that N is isomorphic to a subgroup of P (I) and G /N
is isomorphic to a subgroup of P (S/I).

Proof. Let T denote the identity element of %. First assume 7" C S\I. Let
A€ 9. ThenT = ABforsome B € .So A C S\I. It then follows that 9 is
isomorphic to a subgroup of & (S/I) and the theorem is trivial. So assume
T NI #@. Let ¢:S — S/I denote the natural homomorphism. Let $: % (S) —
2 (S/I) denote the obvious extension of ¢. Let ¢ denote the restriction of é to
%.Then 9 = (9) is a subgroup of Z(S/I). LetA denote the kernel of .
It suffices to show that./#is isomorphic to a subgroup of Z(I). Let T, = T M1
#@. Then T = VU T, where IV = T\T1. So ¢(T) = VU {0} is the identity
element of . If V = @, then y(I) = {0} and A&/ C £ (I). We are then
trivially done. So assume V' 3 @. Then for 4 € A, ¢(4) = V U {0}. So
A =V \UA,forsome 4, € Z(I). Now 1?2 = T. So

(1) I/U Tl = Vv2 U VTl U Tl V'U T12.
Comparing the ‘I-part’ and the ‘S\I-part’ of both sides of (1), we have,
2 MmMNICT, VW VnUnhvuT:CT,.

Nowlet 4 € /. Thend = VU 4,,0 # A, C I. There exists # € Z* such
that 4® = T. So A" = A. Then

T.CT=A4A"=[VU A4

Leta € T7. Thena = x;...x, forsome x1, ...,x, € VU 4,. First assume
some x; € V. Then by (2),x, € V2 C A2 Soa = x;...x, € A" = 4. But
thena € ANI = A, lf x; ¢ Vforall i thena € 4,". Thus

B3) T7<C 4,4
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We claim that 4,7, = T,4,. By symmetry, it suffices to show that 4,77 C
T14,.Soletu € A:T,. Then u = abforsomea € A;,b € T,.

Casel.a € T).1fb € A,,thenu = ab € T,4,. Nextassume b ¢ A;. By (3),
b €A™ Sou =ab € A" = A"4,. But A" C A" =T.S04" T NI =
T]. ThUS u E T1A1.

Case2.a 4 T.. Now AT = A = TA. Since 4 = VU A4, T =V\UT,
we have
4) VLU AT, C 4,
BG) VU4, =10 VA U T4, UV
There exists C € A such that C4 = T. Since V C C, we have
(6) VA, C T,

Since @ € A\T1, we have a € I\T. So by (2), (5), (6) we have a € T14,. So
u = (lb E T1A1T1. But by (4), A1T1 g Al. SO u E T]Al.
We have thus shown that

(7) A1T1 = T1A1.
By (2) 74 C T}. So

Tl QTIZ 2T13 2
Hence there exists £ € Z* such that 7'1* = T/**1. Let W = T'}*. Then W = W2
By (4), VT, € 4,. So

AW = (VU ANTY = VINVFU A\ T = VTP U AT = 4,1

= A]W

Similarly WA = WA,. By (7), WA, = 4,W. So
(8) WA = AW = AW = WA, W2 = W C [I.
Let f(4) = AW € P (I). If A, B ¢ ., then by (8)
9) fA(B) = AWBW = ABW? = ABW = f(AB).
Let A = f(NV) S PU). By (8), f: ¥ — N is a surjective homomorphism.

Thus A is a subgroup of Z(I). We claim that f is an isomorphism. So let
A €./ and suppose

(10) f(4) = f(T)

where 4 = VU 4,0 # A; C I. First suppose 4, &€ T1. Let a € A\1.
By (2), (5), (6),a € ThWA,.Soa = bcforsomed € T,¢c € A, lf ¢ € T, then
a € T, a contradiction. Thus ¢ € A,\T. Hence a € T,(4,\T1). Therefore

ANT: C Th(4:\Th).
So
AI\TI g T]i(Al\Tl) for all ¢ € 7+,
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In particular, by (8), (10),
AN C THANT) S WA, = f(4) = f(T) = TF C T,
a contradiction. Thus 4; C 1. Hence 4 C T". So
A C T4 = 4.
Therefore
(11) TDADA2DA*D. ..

There existsn € Z* such that 4" = T". By (11), 7' =4"C A C 1.S04 =T.
Hence A =~ N, N is a subgroup of Z (I). Since & /AN =~ % isa subgroup of
P (S/I), the theorem is proved.

Example 1. In the proof of Theorem 1, it is tempting to look at A/} =
{A N IA € N} and see if A, is in fact a subgroup of & (I). However, this is
not always true. For example, let I = {0, ¢} be the null semigroup, S = I
Let 9 = {{1, 0, a}}. Then A = {{1,0, a}}, A1 = {{0, a}}.. 4 is not a sub-
group, 412 = {{0}}. However /" = A{{0}} = {{0}} is a group which is iso-

morphic to 4. So the construction of 4 in the proof of Theorem 1 is necessary.

Example 2. Let Gy, G» be disjoint groups with identities e;, e, respectively.
Let S = Gy \U G2 U {0} with g1gs = gog1 = 2.0 = 0g; = 2.0 = 0g, = 00 = 0
for g1 € Gy, g2 € Ga. Let

I =G\ {0},9 = {{g, g, 01 € Gu, g2 € Go.

Then ¥ is a subgroup of Z2(S). If & = {{ei, gs, 0}[g2 € G:}, then NV < G,
Go X N =N = {{gs 0}|g: € Go} S P(I).Also G /N = G, and isalso iso-
morphic to a subgroup of 2 (S/I).

If Jis a Z-class of S, then in J° we define

_b_{ab ifab € J
P70 ifab @ U

Then J° is a semigroup [4; p. 151].

THEOREM 2. Let G be a subgroup of P (S). Then G admits a normal series
(1} = 9, 99, Q... 49, = 9 such that each factor group G,/ ,_,
(i =1,...,m) is isomorphic to a subgroup of P (J°) for some /-class J of S.

Proof. We prove the theorem by induction on [S|. Suppose S has an ideal
I, 1] #|S|, || # 1. If Jisa # -class of S/I, other than {0}, then it is a ,/# -class
of S.If Jisa regular/-class of I, then J is a/-class of S. If J is a non-regular
/—class of I, then J° is null and & (J°) has only trivial subgroups. We are thus
done by Theorem 1 and the induction hypothesis. Next assume S has no proper
ideals. Then S = J or J° for some /-Class J of S. We are then trivially done.

A semigroup with only trivial subgroups is called a combinatorial semigroup.
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THEOREM 3. P (S) 1s combinatorial if and only if S is combinatorial and for

all e, f € E(S), e/f implies efef or e f fe.

Proof. First suppose & (S) is combinatorial. If H is a subgroup of S, then
H is a subgroup of Z (H) C 2 (S). So H must be trivial. Hence S is combina-
torial. Suppose there exist ¢, f € E(S) such that e/f, e;éef, effe. We will
obtain a contradiction. Let J denote the #-class of e. Let 7" = J°. If J is the
kernel of S, then 2 (J) and hence & (J°) = Z(T') is combinatorial. Otherwise
by [4, p. 151], there exist ideals Iy, I, of S such that I, C I,, T = I,/I,. Since
P (1)) is an ideal of Z2(S), it is combinatorial. The natural homomorphism
from I; onto I,/I, extends naturally to a homomorphism from £ (I,) onto
P(I,/1,). So P (1,/1,) =~ P (T) is combinatorial. Thus in all cases, Z(T") is
combinatorial. In particular, 7" is combinatorial. Since e € T', T is isomorphic
to a regular Rees matrix semigroup. Since 7" is combinatorial, we can assume,
without loss of generality, that there exist non-empty sets 4, B, P:4 X B —
{0, 1} such that " = (4 X B) U {0} and in T,

(12) @)k = {é’ ! iﬁﬁﬁjii _ é

Lete = (a,8),f = (y,0). Thenef = fe = 0. So
(13) PB,a) = P@,v) =1, PB,v) =P@B a) =0.
In particular, 8 # §,a # v. Let L = {(«, B8), (v,9),0}, K = {(a, ), (v,8),0}.
Then K ¢ L, L2 =L, KL = LK = K, K2 = L. So {K, L} is a two element
subgroup of & (1), a contradiction.

Conversely assume .S is combinatorial and for all e, f € E(S),

(14) e Zf implies ¢Zef or ¢/ fe.

Let J be a /—Class and let 7" = J° By Theorem 2, it suffices to show that
P(T) is combinatorial. If T is null, this is trivial. So assume 7 is a regular
Rees matrix semigroup. Since S is combinatorial, so is 7. Se we can assume that
T has the structure given by (12). By (14),

(15) e, f € E(T), e, f # 0 implies ef # 0 or fe # 0.

Let (¢,7), (k, 1) € T such that P(j,7) = P(l,k) = 1.Then (¢,7), (k, ) € E(T).
By (15), P(j, k) = 1 or P(l,7) = 1. Thus we have thatif i, 2 € 4,5,1 € B,
then

(16) P(j,1) = P(l, k) = 1 implies P(j, k) = 1 or P(l,7) = 1.

Let K € Z(T). Suppose K lies in a subgroup of #(T). Then K™ = K for
some m € Zt, m > 1. We claim that K® C K2 So let u € K3 First assume
u = 0. Then 0 € K3. So 0 € K" for r = 3. In particular 0 € K™ = K2 So
u € K2 Nextassume u # 0. So there exist 11, 79, 73 € 4, j1, j2, j3 € B such that
(11, 41), (32, 72), (13, 73) € K,

(17)  u = (@1, j1) (22, J2) (35, 73) = (41, Ja)-
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Since u # 0, P(j1,12) = P(js, 23) = 1. By (16)
(18) P(jl, ’Lg) =1or P(jz, tz) = 1.
Firstassume P(j1,73) = 1. Thenby (17),u = (11,7,) (45, 73) € K% Next assume
P(js, 1) = 1. Then (is, 7») is idempotent. So by (17),
u = (i1, j1) (L2, J2)" (43, J3) for all r € Z+.

Sou € K'forallr € Z+,r = 3. In particular « € K™ = K2 Thus we have
shown that K? D K?* So

K*2DK DK D ...,

In particular K2 D K™ D K™ = K2 So K? = K" = K. Thus 2 (1) is
combinatorial. This proves the theorem.

If S, S, are semigroups, then Si|S: (S divides S,) if S; is a homomorphic
image of a subsemigroup of Ss. In the following let

=40 06 o) (626 8. B

be the Rees matrix semigroup with sandwich matrix ((l) (1)) .

COROLLARY 1. Suppose S is combinatorial. Then P (S) is combinatorial if and
onlyif ¥ + S.

Proof. Suppose Y|S. Then it is obvious that £ (V)|Z(S). Since ¥ does not
satisfy the hypothesis of Theorem 3, Z?(Y) is not combinatorial. Hence £ (S)
i1s not combinatorial.

Conversely, assume £ (S) is not combinatorial. By Theorem 3, there exist
e,f € E(S) such that e,Zf, e£ef, e#fe. In particular ¢ is not in the kernel of .S.
Let J denote the /-Class of e. Then J is not the kernel of S. So by (4, p. 151],
T = JYS. T, of course, must have the structure given by (12). As in the proof
of Theorem 3, there must exist (a, 8), (v,8) € T such that

(19) P(B,@) = P(6,v) =1, P(B,v) = P(3,a) = 0.

Let V' = {(a, B), (v, 8), (a, 8), (v, B), 0}. Using (19) it is easy to see that
Y= V'.So Y|T|S. Hence Y|S. This proves the corollary.

Example 3. Let

=0 060 606 8-GO

be the Rees matrix semigroup with sandwich matrix ((1) i) . Then YV ¢ YV,

and so by Corollary 1, 2 (Y;) is combinatorial.
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THEOREM 4. S 15 a band if and only if 2P (S) has the property that A C A* for

all A € P(S). Suppose S is a band. Then P (S) has the following properties.

(i) P(S) is a combinatorial semigroup which is a disjoint union of nil
semigroups.

(i) Let A, B € P(S), A* = K, B! = L where K* = K, L = L. If KL = L
then there extists r € Z* such that (AB)" = L. If KL = K, then there exists
r € Lt such that (AB)" = K.

(ii) If T is a subsemigroup of P (S) and if T has a zero, then the nilpotent
elements of T form an ideal of T

Proof. Suppose S is a band, 4 € Z(S). If e € 4, then e = ¢ € 42 So
A C A2 Conversely, assume 4 C A2 for all 4 € Z(S). Then for ¢ € S,
{e} C {e}?and so e = e2 Now let S be a band, 4 ¢ Z(S). Then 4 C A2 So

AC AT 43 C ...

There exists # € Z* such that 4* = A", So Z(S) is combinatorial. The
second part of (i) clearly follows from (ii) if we let K = L. We now prove (ii).

By symmetry we can assume KL = L. Letb € B. Thenb ¢ B/ = L = KL.
So b = eb for somee ¢ K. Nowe = a,...a;for someay, ..., a; € 4. So
are = ¢ whence a1b = b.So b € AB. Thus B C AB. There exists » ¢ Z* such
that AB C (AB)" = (AB)™*'.So L = B’ C (4AB)". Since 4 C K, B C L,
AB C L.So (AB)" C L. Thus (4B)" = L. Next we prove (iii). Suppose 0 is
the zero of 7. T, being a subsemigroup of & (S), satisfies (ii). Let b € T be
nilpotent, say b’ = 0. Let ¢« € 7. Then a® = ¢ € E(T) for some 1 € Z*. Since
e0 = 0, we see by (ii) that («b)” = 0 for some r € Z*. Similarly (ba)* = 0 for
some s € Z*. This proves the theorem.

Example 4. The power semigroup of a rectangular band is an inflation of a
rectangular band [6]. The structure of the power semigroup of a band can be
considerably more complicated. Let & be the free band on letters ¢, f, g.
LetS = ' Let A = {1,e¢,f, fe}, L = {eg, egfeg, egefegt. Then L2 = L, A2 =
K = K?={l1,e¢,f,¢f, fe,efe, fef}. KL = M = M?* = {eg, egfeg, feg, efeg, egefeg}.
However, AL = P = P?* = {eg, egfeg, egefeg, feg}. Clearly P # M. Thus even
though, by Theorem 4, 2 (S) must be a disjoint union of nil semigroups, it is
not a band of nil semigroups. Also note that in & (S), a product of idempotents
need not be an idempotent. For instance, {1, e}, {1, f} are idempotents, but
their product {1, e, f, ef} is clearly not idempotent.
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