SUBGROUPS OF THE POWER SEMIGROUP OF A FINITE SEMIGROUP

MOHAN S. PUTCHA

Throughout this paper, S will denote a finite semigroup and \mathbf{Z}^{+}the set of positive integers. $E=E(S)$ denotes the set of idempotents of S. Let $\mathscr{P}(S)=$ $\{A \mid A \subseteq S, A \neq \emptyset\}$. If $A, B \in \mathscr{P}(S)$, then let $A B=\{a b \mid a \in A, b \in B\}$. $\mathscr{P}(S)$ has been studied by many authors, including $[\mathbf{2}, \mathbf{3}, \mathbf{5}, \mathbf{6}, \mathbf{7}]$. If X is a set, then $|X|$ denotes the cardinality of X. For undefined terms in this paper, see [1, 4].

Theorem 1. Let I be an ideal of S, \mathscr{G} a subgroup of $\mathscr{P}(S)$. Then \mathscr{G} has a normal subgroup \mathscr{N} such that \mathscr{N} is isomorphic to a subgroup of $\mathscr{P}(I)$ and $\mathscr{G} / \mathcal{N}$ is isomorphic to a subgroup of $\mathscr{P}(S / I)$.

Proof. Let T denote the identity element of \mathscr{G}. First assume $T \subseteq S \backslash I$. Let $A \in \mathscr{G}$. Then $T=A B$ for some $B \in \mathscr{G}$. So $A \subseteq S \backslash I$. It then follows that \mathscr{G} is isomorphic to a subgroup of $\mathscr{P}(S / I)$ and the theorem is trivial. So assume $T \cap I \neq \emptyset$. Let $\phi: S \rightarrow S / I$ denote the natural homomorphism. Let $\hat{\phi}: \mathscr{P}(S) \rightarrow$ $\mathscr{P}(S / I)$ denote the obvious extension of ϕ. Let ψ denote the restriction of $\hat{\phi}$ to \mathscr{G}. Then $\bar{G}=\psi(\mathscr{G})$ is a subgroup of $\mathscr{P}(S / I)$. Let \mathscr{N} denote the kernel of ψ. It suffices to show that \mathscr{N} is isomorphic to a subgroup of $\mathscr{P}(I)$. Let $T_{1}=T \cap I$ $\neq \emptyset$. Then $T=V \cup T_{1}$ where $V=T \backslash T_{1}$. So $\psi(T)=V \cup\{0\}$ is the identity element of \bar{G}. If $V=\emptyset$, then $\psi(T)=\{0\}$ and $\mathscr{N} \subseteq \mathscr{P}(I)$. We are then trivially done. So assume $V \neq \emptyset$. Then for $A \in \mathscr{N}, \phi(A)=V \cup\{0\}$. So $A=V \cup A_{1}$ for some $A_{1} \in \mathscr{P}(I)$. Now $T^{2}=T$. So

$$
\begin{equation*}
V \cup T_{1}=V^{2} \cup V T_{1} \cup T_{1} V \cup T_{1}^{2} \tag{1}
\end{equation*}
$$

Comparing the ' I-part' and the ' $S \backslash I$-part' of both sides of (1), we have,

$$
\begin{equation*}
V^{2} \cap I \subseteq T_{1}, V \subseteq V^{2}, V T_{1} \cup T_{1} V \cup T_{1}^{2} \subseteq T_{1} \tag{2}
\end{equation*}
$$

Now let $A \in \mathscr{N}$. Then $A=V \cup A_{1}, \emptyset \neq A_{1} \subseteq I$. There exists $n \in \mathbf{Z}^{+}$such that $A^{n}=T$. So $A^{n+1}=A$. Then

$$
T_{1} \subseteq T=A^{n}=\left[V \cup A_{1}\right]^{n}
$$

Let $a \in T_{1}$. Then $a=x_{1} \ldots x_{n}$ for some $x_{1}, \ldots, x_{n} \in V \cup A_{1}$. First assume some $x_{i} \in V$. Then by (2), $x_{i} \in V^{2} \subseteq A^{2}$. So $a=x_{1} \ldots x_{n} \in A^{n+1}=A$. But then $a \in A \cap I=A_{1}$. If $x_{i} \notin V$ for all i, then $a \in A_{1}{ }^{n}$. Thus

$$
\begin{equation*}
T_{1} \subseteq A_{1} \cup A_{1}{ }^{n} \tag{3}
\end{equation*}
$$

Received May 17, 1978 and in revised form July 5, 1978.

We claim that $A_{1} T_{1}=T_{1} A_{1}$. By symmetry, it suffices to show that $A_{1} T_{1} \subseteq$ $T_{1} A_{1}$. So let $u \in A_{1} T_{1}$. Then $u=a b$ for some $a \in A_{1}, b \in T_{1}$.

Case 1. $a \in T_{1}$. If $b \in A_{1}$, then $u=a b \in T_{1} A_{1}$. Next assume $b \notin A_{1}$. By (3), $b \in A_{1}{ }^{n}$. So $u=a b \in A_{1}{ }^{n+1}=A_{1}{ }^{n} A_{1}$. But $A_{1}{ }^{n} \subseteq A^{n}=T$. So $A_{1}{ }^{n} \subseteq T \cap I=$ T_{1}. Thus $u \in T_{1} A_{1}$.

Case 2. a $\notin T_{1}$. Now $A T=A=T A$. Since $A=V \cup A_{1}, T=V \cup T_{1}$, we have
(4) $\quad V T_{1} \cup A_{1} T_{1} \subseteq A_{1}$
(5) $\quad V \cup A_{1}=V^{2} \cup V A_{1} \cup T_{1} A_{1} \cup T_{1} V$.

There exists $C \in \mathscr{N}$ such that $C A=T$. Since $V \subseteq C$, we have
(6) $\quad V A_{1} \subseteq T_{1}$.

Since $a \in A_{1} \backslash T_{1}$, we have $a \in I \backslash T_{1}$. So by (2), (5), (6) we have $a \in T_{1} A_{1}$. So $u=a b \in T_{1} A_{1} T_{1}$. But by (4), $A_{1} T_{1} \subseteq A_{1}$. So $u \in T_{1} A_{1}$.

We have thus shown that

$$
\begin{equation*}
A_{1} T_{1}=T_{1} A_{1} \tag{7}
\end{equation*}
$$

$\mathrm{By}(2) T_{1}{ }^{2} \subseteq T_{1}$. So

$$
T_{1} \supseteq T_{1}{ }^{2} \supseteq T_{1}{ }^{3} \supseteq \ldots
$$

Hence there exists $k \in \mathbf{Z}^{+}$such that $T_{1}{ }^{k}=T_{1}{ }^{k+1}$. Let $W=T_{1}{ }^{k}$. Then $W=W^{2}$. By (4), $V T_{1} \subseteq A_{1}$. So

$$
\begin{aligned}
& A W=\left(V \cup A_{1}\right) T_{1}^{k}=V T_{1}^{k} \cup A_{1} T_{1}^{k}=V T_{1}{ }^{k+1} \cup A_{1} T_{1}{ }^{k}=A_{1} T_{1}{ }^{k} \\
&=A_{1} W
\end{aligned}
$$

Similarly $W A=W A_{1}$. By (7), $W A_{1}=A_{1} W$. So

$$
\begin{equation*}
W A=A W=A_{1} W=W A_{1}, W^{2}=W \subseteq I \tag{8}
\end{equation*}
$$

Let $f(A)=A W \in \mathscr{P}(I)$. If $A, B \in \mathscr{N}$, then by (8)
(9) $f(A) f(B)=A W B W=A B W^{2}=A B W=f(A B)$.

Let $\bar{N}=f(\mathscr{N}) \subseteq \mathscr{P}(I)$. By (8), $f: \mathscr{N} \rightarrow \bar{N}$ is a surjective homomorphism. Thus \mathscr{N} is a subgroup of $\mathscr{P}(I)$. We claim that f is an isomorphism. So let $A \in \mathscr{N}$ and suppose
(10) $\quad f(A)=f(T)$
where $A=V \cup A_{1}, \emptyset \neq A_{1} \subseteq I$. First suppose $A_{1} \nsubseteq T_{1}$. Let $a \in A_{1} \backslash T_{1}$. By (2), (5), (6), $a \in T_{1} A_{1}$. So $a=b c$ for some $b \in T_{1}, c \in A_{1}$. If $c \in T_{1}$, then $a \in T_{1}$, a contradiction. Thus $c \in A_{1} \backslash T_{1}$. Hence $a \in T_{1}\left(A_{1} \backslash T_{1}\right)$. Therefore

$$
A_{1} \backslash T_{1} \subseteq T_{1}\left(A_{1} \backslash T_{1}\right)
$$

So

$$
A_{1} \backslash T_{1} \subseteq T_{1}{ }^{i}\left(A_{1} \backslash T_{1}\right) \quad \text { for all } i \in \mathbf{Z}^{+}
$$

In particular, by (8), (10),

$$
A_{1} \backslash T_{1} \subseteq T_{1}^{k}\left(A_{1} \backslash T_{1}\right) \subseteq W A_{1}=f(A)=f(T)=T_{1}^{k} \subseteq T_{1}
$$

a contradiction. Thus $A_{1} \subseteq T_{1}$. Hence $A \subseteq T$. So

$$
A^{2} \subseteq T A=A
$$

Therefore

$$
\begin{equation*}
T \supseteq A \supseteq A^{2} \supseteq A^{3} \supseteq \ldots \tag{11}
\end{equation*}
$$

There exists $n \in \mathbf{Z}^{+}$such that $A^{n}=T$. By (11), $T=A^{n} \subseteq A \subseteq T$. So $A=T$. Hence $\mathcal{N} \cong \overline{\mathcal{N}}, \overline{\mathcal{N}}$ is a subgroup of $\mathscr{P}(I)$. Since $\mathscr{G} / \mathscr{N} \cong \bar{G}$ is a subgroup of $\mathscr{P}(S / I)$, the theorem is proved.

Example 1. In the proof of Theorem 1, it is tempting to look at $\mathcal{N}_{1}=$ $\{A \cap I \mid A \in \mathscr{N}\}$ and see if \mathscr{N}_{1} is in fact a subgroup of $\mathscr{P}(I)$. However, this is not always true. For example, let $I=\{0, a\}$ be the null semigroup, $S=I^{1}$. Let $\mathscr{G}=\{\{1,0, a\}\}$. Then $\mathscr{N}=\{\{1,0, a\}\}, \mathscr{N}_{1}=\{\{0, a\}\} . \mathscr{N}_{1}$ is not a subgroup, $\mathscr{N}_{1}{ }^{2}=\{\{0\}\}$. However $\overline{\mathcal{N}}=\mathscr{N}\{\{0\}\}=\{\{0\}\}$ is a group which is isomorphic to \mathscr{N}. So the construction of $\overline{\mathcal{N}}$ in the proof of Theorem 1 is necessary.

Example 2. Let G_{1}, G_{2} be disjoint groups with identities e_{1}, e_{2}, respectively. Let $S=G_{1} \cup G_{2} \cup\{0\}$ with $g_{1} g_{2}=g_{2} g_{1}=g_{1} 0=0 g_{1}=g_{2} 0=0 g_{2}=00=0$ for $g_{1} \in G_{1}, g_{2} \in G_{2}$. Let

$$
I=G_{2} \cup\{0\}, \mathscr{G}=\left\{\left\{g_{1}, g_{2}, 0\right\} \mid g_{1} \in G_{1}, g_{2} \in G_{2}\right\}
$$

Then \mathscr{G} is a subgroup of $\mathscr{P}(S)$. If $\mathscr{N}=\left\{\left\{e_{1}, g_{2}, 0\right\} \mid g_{2} \in G_{2}\right\}$, then $\mathscr{N}<G$, $G_{2} \cong \mathscr{N} \cong \bar{N}=\left\{\left\{g_{2}, 0\right\} \mid g_{2} \in G_{2}\right\} \subseteq \mathscr{P}(I)$. Also $\mathscr{G} / \mathscr{N} \cong G_{1}$ and is also isomorphic to a subgroup of $\mathscr{P}(S / I)$.

If J is a \mathscr{J}-class of S, then in J^{0} we define

$$
a \cdot b= \begin{cases}a b & \text { if } a b \in J \\ 0 & \text { if } a b \notin J .\end{cases}
$$

Then J^{0} is a semigroup [4; p. 151].
Theorem 2. Let \mathscr{G} be a subgroup of $\mathscr{P}(S)$. Then \mathscr{G} admits a normal series $\{1\}=\mathscr{G}_{0} \triangleleft \mathscr{G}_{1} \triangleleft \ldots \triangleleft \mathscr{G}_{m}=\mathscr{G}$ such that each factor group $\mathscr{G}_{i} / \mathscr{G}_{i-1}$ $(i=1, \ldots, m)$ is isomorphic to a subgroup of $\mathscr{P}\left(J^{0}\right)$ for some \mathscr{J}-class J of S.

Proof. We prove the theorem by induction on $|S|$. Suppose S has an ideal $I,|I| \neq|S|,|I| \neq 1$. If J is a \mathscr{J}-class of S / I, other than $\{0\}$, then it is a \mathscr{J}-class of S. If J is a regular \mathscr{J}-class of I, then J is a \mathscr{J}-class of S. If J is a non-regular \mathscr{J}-class of I, then J^{0} is null and $\mathscr{P}\left(J^{0}\right)$ has only trivial subgroups. We are thus done by Theorem 1 and the induction hypothesis. Next assume S has no proper ideals. Then $S=J$ or J^{0} for some \mathscr{J}-class J of S. We are then trivially done.

A semigroup with only trivial subgroups is called a combinatorial semigroup.

Theorem 3. $\mathscr{P}(S)$ is combinatorial if and only if S is combinatorial and for all e, $f \in E(S)$, e $\mathscr{J} f$ implies $\mathscr{\mathscr { J }}$ ef or e $\mathscr{J} f$ e.

Proof. First suppose $\mathscr{P}(S)$ is combinatorial. If H is a subgroup of S, then H is a subgroup of $\mathscr{P}(H) \subseteq \mathscr{P}(S)$. So H must be trivial. Hence S is combinatorial. Suppose there exist $e, f \in E(S)$ such that $e \mathscr{J} f$, $e \mathscr{F} e f, e \mathscr{J} f e$. We will obtain a contradiction. Let J denote the \mathscr{J}-class of e. Let $T=J^{0}$. If J is the kernel of S, then $\mathscr{P}(J)$ and hence $\mathscr{P}\left(J^{0}\right)=\mathscr{P}(T)$ is combinatorial. Otherwise by $\left[\mathbf{4}\right.$, p. 151], there exist ideals I_{1}, I_{2} of S such that $I_{2} \subseteq I_{1}, T \cong I_{1} / I_{2}$. Since $\mathscr{P}\left(I_{1}\right)$ is an ideal of $\mathscr{P}(S)$, it is combinatorial. The natural homomorphism from I_{1} onto I_{1} / I_{2} extends naturally to a homomorphism from $\mathscr{P}\left(I_{1}\right)$ onto $\mathscr{P}\left(I_{1} / I_{2}\right)$. So $\mathscr{P}\left(I_{1} / I_{2}\right) \cong \mathscr{P}(T)$ is combinatorial. Thus in all cases, $\mathscr{P}(T)$ is combinatorial. In particular, T is combinatorial. Since $e \in T, T$ is isomorphic to a regular Rees matrix semigroup. Since T is combinatorial, we can assume, without loss of generality, that there exist non-empty sets $A, B, P: A \times B \rightarrow$ $\{0,1\}$ such that $T=(A \times B) \cup\{0\}$ and in T,

$$
(i, j)(k, l)= \begin{cases}(i, l) & \text { if } P(j, k)=1 \tag{12}\\ 0 & \text { if } P(\jmath, k)=0\end{cases}
$$

Let $e=(\alpha, \beta), f=(\gamma, \delta)$. Then $e f=f e=0$. So

$$
\begin{equation*}
P(\beta, \alpha)=P(\delta, \gamma)=1, P(\beta, \gamma)=P(\delta, \alpha)=0 \tag{13}
\end{equation*}
$$

In particular, $\beta \neq \delta, \alpha \neq \gamma$. Let $L=\{(\alpha, \beta),(\gamma, \delta), 0\}, K=\{(\alpha, \delta),(\gamma, \beta), 0\}$. Then $K \neq L, L^{2}=L, K L=L K=K, K^{2}=L$. So $\{K, L\}$ is a two element subgroup of $\mathscr{P}(T)$, a contradiction.

Conversely assume S is combinatorial and for all $e, f \in E(S)$,
(14) $e \mathscr{J} f$ implies $e \mathscr{J}$ ef or $e \mathscr{J} f e$.

Let J be a \mathscr{J}-class and let $T=J^{0}$. By Theorem 2, it suffices to show that $\mathscr{P}(T)$ is combinatorial. If T is null, this is trivial. So assume T is a regular Rees matrix semigroup. Since S is combinatorial, so is T. Se we can assume that T has the structure given by (12). By (14),

$$
\begin{equation*}
e, f \in E(T), e, f \neq 0 \text { implies } e f \neq 0 \text { or } f e \neq 0 . \tag{15}
\end{equation*}
$$

Let $(i, j),(k, l) \in T$ such that $P(j, i)=P(l, k)=1$. Then $(i, j),(k, l) \in E(T)$. By (15), $P(j, k)=1$ or $P(l, i)=1$. Thus we have that if $i, k \in A, j, l \in B$, then

$$
\begin{equation*}
P(j, i)=P(l, k)=1 \text { implies } P(j, k)=1 \text { or } P(l, i)=1 . \tag{16}
\end{equation*}
$$

Let $K \in \mathscr{P}(T)$. Suppose K lies in a subgroup of $\mathscr{P}(T)$. Then $K^{m}=K$ for some $m \in \mathbf{Z}^{+}, m>1$. We claim that $K^{3} \subseteq K^{2}$. So let $u \in K^{3}$. First assume $u=0$. Then $0 \in K^{3}$. So $0 \in K^{r}$ for $r \geqq 3$. In particular $0 \in K^{m+1}=K^{2}$. So $u \in K^{2}$. Next assume $u \neq 0$. So there exist $i_{1}, i_{2}, i_{3} \in A, j_{1}, j_{2}, j_{3} \in B$ such that $\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right),\left(i_{3}, j_{3}\right) \in K$,

$$
\begin{equation*}
u=\left(i_{1}, j_{1}\right)\left(i_{2}, j_{2}\right)\left(i_{3}, j_{3}\right)=\left(i_{1}, j_{3}\right) \tag{17}
\end{equation*}
$$

Since $u \neq 0, P\left(j_{1}, i_{2}\right)=P\left(j_{2}, i_{3}\right)=1$. By (16)

$$
\begin{equation*}
P\left(j_{1}, i_{3}\right)=1 \text { or } P\left(j_{2}, i_{2}\right)=1 \tag{18}
\end{equation*}
$$

First assume $P\left(j_{1}, i_{3}\right)=1$. Then by $(17), u=\left(i_{1}, j_{1}\right)\left(i_{3}, j_{3}\right) \in K^{2}$. Next assume $P\left(j_{2}, i_{2}\right)=1$. Then $\left(i_{2}, j_{2}\right)$ is idempotent. So by (17),

$$
u=\left(i_{1}, j_{1}\right)\left(i_{2}, j_{2}\right)^{\tau}\left(i_{3}, j_{3}\right) \text { for all } r \in \mathbf{Z}^{+}
$$

So $u \in K^{r}$ for all $r \in \mathbf{Z}^{+}, r \geqq 3$. In particular $u \in K^{m+1}=K^{2}$. Thus we have shown that $K^{2} \supseteq K^{3}$. So

$$
K^{2} \supseteq K^{3} \supseteq K^{4} \supseteq \ldots
$$

In particular $K^{2} \supseteq K^{m} \supseteq K^{m+1}=K^{2}$. So $K^{2}=K^{m}=K$. Thus $\mathscr{P}(T)$ is combinatorial. This proves the theorem.

If S_{1}, S_{2} are semigroups, then $S_{1} \mid S_{2}\left(S_{1}\right.$ divides $\left.S_{2}\right)$ if S_{1} is a homomorphic image of a subsemigroup of S_{2}. In the following let

$$
Y=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\right\}
$$

be the Rees matrix semigroup with sandwich matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
Corollary 1. Suppose S is combinatorial. Then $\mathscr{P}(S)$ is combinatorial if and only if $Y \nsucc S$.

Proof. Suppose $Y \mid S$. Then it is obvious that $\mathscr{P}(Y) \mid \mathscr{P}(S)$. Since Y does not satisfy the hypothesis of Theorem $3, \mathscr{P}(Y)$ is not combinatorial. Hence $\mathscr{P}(S)$ is not combinatorial.

Conversely, assume $\mathscr{P}(S)$ is not combinatorial. By Theorem 3, there exist $e, f \in E(S)$ such that $e \mathscr{J} f, e \mathscr{f} e f, e \mathscr{f} f e$. In particular e is not in the kernel of S. Let J denote the \mathscr{J}-class of e. Then J is not the kernel of S. So by [4, p. 151], $T=J^{0} \mid S . T$, of course, must have the structure given by (12). As in the proof of Theorem 3, there must exist $(\alpha, \beta),(\gamma, \delta) \in T$ such that

$$
\begin{equation*}
P(\beta, \alpha)=P(\delta, \gamma)=1, P(\beta, \gamma)=P(\delta, \alpha)=0 . \tag{19}
\end{equation*}
$$

Let $Y^{\prime}=\{(\alpha, \beta),(\gamma, \delta),(\alpha, \delta),(\gamma, \beta), 0\}$. Using (19) it is easy to see that $Y \cong Y^{\prime}$. So $Y|T| S$. Hence $Y \mid S$. This proves the corollary.
Example 3. Let

$$
Y_{1}=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)\right\}
$$

be the Rees matrix semigroup with sandwich matrix $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. Then $Y \nmid Y_{1}$ and so by Corollary $1, \mathscr{P}\left(Y_{1}\right)$ is combinatorial.

Theorem 4. S is a band if and only if $\mathscr{P}(S)$ has the property that $A \subseteq A^{2}$ for all $A \in \mathscr{P}(S)$. Suppose S is a band. Then $\mathscr{P}(S)$ has the following properties.
(i) $\mathscr{P}(S)$ is a combinatorial semigroup which is a disjoint union of nil semigroups.
(ii) Let $A, B \in \mathscr{P}(S), A^{i}=K, B^{j}=L$ where $K^{2}=K, L^{2}=L$. If $K L=L$ then there exists $r \in \mathbf{Z}^{+}$such that $(A B)^{r}=L$. If $K L=K$, then there exists $r \in \mathbf{Z}^{+}$such that $(A B)^{r}=K$.
(iii) If T is a subsemigroup of $\mathscr{P}(S)$ and if T has a zero, then the nilpotent elements of T form an ideal of T.

Proof. Suppose S is a band, $A \in \mathscr{P}(S)$. If $e \in A$, then $e=e^{2} \in A^{2}$. So $A \subseteq A^{2}$. Conversely, assume $A \subseteq A^{2}$ for all $A \in \mathscr{P}(S)$. Then for $e \in S$, $\{e\} \subseteq\{e\}^{2}$ and so $e=e^{2}$. Now let S be a band, $A \in \mathscr{P}(S)$. Then $A \subseteq A^{2}$. So

$$
A \subseteq A^{2} \subseteq A^{3} \subseteq \ldots
$$

There exists $n \in \mathbf{Z}^{+}$such that $A^{n}=A^{n+1}$. So $\mathscr{P}(S)$ is combinatorial. The second part of (i) clearly follows from (ii) if we let $K=L$. We now prove (ii).

By symmetry we can assume $K L=L$. Let $b \in B$. Then $b \in B^{j}=L=K L$. So $b=e b$ for some $e \in K$. Now $e=a_{1} \ldots a_{i}$ for some $a_{1}, \ldots, a_{i} \in A$. So $a_{1} e=e$ whence $a_{1} b=b$. So $b \in A B$. Thus $B \subseteq A B$. There exists $r \in \mathbf{Z}^{+}$such that $A B \subseteq(A B)^{r}=(A B)^{r+1}$. So $L=B^{j} \subseteq(A B)^{r}$. Since $A \subseteq K, B \subseteq L$, $A B \subseteq L$. So $(A B)^{r} \subseteq L$. Thus $(A B)^{r}=L$. Next we prove (iii). Suppose 0 is the zero of T. T, being a subsemigroup of $\mathscr{P}(S)$, satisfies (ii). Let $b \in T$ be nilpotent, say $b^{j}=0$. Let $a \in T$. Then $a^{i}=e \in E(T)$ for some $i \in \mathbf{Z}^{+}$. Since $e 0=0$, we see by (ii) that $(a b)^{r}=0$ for some $r \in \mathbf{Z}^{+}$. Similarly $(b a)^{s}=0$ for some $s \in \mathbf{Z}^{+}$. This proves the theorem.

Example 4. The power semigroup of a rectangular band is an inflation of a rectangular band [6]. The structure of the power semigroup of a band can be considerably more complicated. Let \mathscr{B} be the free band on letters e, f, g. Let $S=\mathscr{B}^{1}$. Let $A=\{1, e, f, f e\}, L=\{e g$, egfeg, egefeg $\}$. Then $L^{2}=L, A^{2}=$ $K=K^{2}=\{1, e, f, e f, f e$, efe,fef $\} . K L=M=M^{2}=\{e g$, egfeg,feg, efeg, egefeg $\}$. However, $A L=P=P^{2}=\{e g$, egfeg, egefeg, feg $\}$. Clearly $P \neq M$. Thus even though, by Theorem $4, \mathscr{P}(S)$ must be a disjoint union of nil semigroups, it is not a band of nil semigroups. Also note that in $\mathscr{P}(S)$, a product of idempotents need not be an idempotent. For instance, $\{1, e\},\{1, f\}$ are idempotents, but their product $\{1, e, f, e f\}$ is clearly not idempotent.

References

1. A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. 1, Amer. Math. Soc. (Providence, Rhode Island, 1961).
2. D. J. McCarthy and D. L. Hayes, Subgroups of the power semigroup of a group, J. of Comb. Theory, ser. A. 14 (1973), 173-186.
3. M. S. Putcha, On the maximal semilattice decomposition of the power semigroup of a semigroup, Semigroup Forum 15 (1978), 263-267.
4. J. L. Rhodes and B. R. Tilson, Local structure of finite semigroups, in "Algebraic Theory of Machines, Languages, and Semigroups," M. A. Arbib, ed., Chapter 7 (Academic Press, 1968).
5. T. Tamura and J. Shafer, Power semigroups, Math. Japan. 12 (1967), 25-32.
6. -Power semigroups II, Notices AMS, 15 (1968), 395.
7. V. Trnkova, On a representation of commutative semigroups, Semigroup Forum 10 (1975), 203-214.

North Carolina State University, Raleigh, North Carolina

