
5
Chiral perturbation theory

In Sec. 1.4 we discussed how to formulate an effective chiral Lagrangian for
the self-interactions of low-momentum pseudo-Goldstone bosons, such as the
pion. Chiral Lagrangians can also be used to describe the interactions of pions
with hadrons containing a heavy quark. The use of chiral perturbation theory is
valid for these interactions as long as the pion is soft, that is, has momentum
p � �CSB. Chiral perturbation theory for heavy hadrons makes use of spon-
taneously broken SU(3)L × SU(3)R chiral symmetry on the light quarks, and
spin-flavor symmetry on the heavy quarks. In this chapter, we study the implica-
tions of the combination of chiral and heavy quark symmetries for heavy hadron
pion interactions.

5.1 Heavy mesons

In this section, we will obtain the chiral Lagrangian that describes the low-
momentum interactions of the π, K , and η with the ground state s� = 1

2 spin
symmetry doublet of heavy mesons, Pa and P∗

a . Some applications of the chiral
Lagrangian are described later in this chapter. The chiral Lagrangian for other
heavy hadron multiplets, e.g., heavy baryons, can be obtained similarly and is
left to the problems at the end of the chapter.

As was noted in Chapter 2, we can combine the Pa and P∗
a fields into a 4 × 4

matrix,

Ha = (1 + /v)

2

[
P∗μ

a γμ + i Paγ5
]
, (5.1)

that transforms under the unbroken SU(3)V subgroup of chiral symmetry as an
antitriplet

Ha → HbV †
ba, (5.2)
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132 Chiral perturbation theory

and transforms as a doublet

Ha → DQ(R)Ha, (5.3)

under heavy quark spin symmetry. In Chapter 2, the fields P, P∗ and the matrix
H were also labeled by the flavor and velocity of the heavy quark. In this chapter,
we are mainly concerned with the light quark dynamics, and so these labels are
suppressed whenever possible.

The Lagrangian for the strong interactions of the P and P∗ with low-
momentum pseudo-Goldstone bosons should be the most general one consis-
tent with the chiral and heavy quark symmetries defined in Eqs. (5.2) and (5.3),
and it should contain at leading order the least number of derivatives and inser-
tions of the light quark mass matrix. Fields such as P and P∗, which are not
Goldstone bosons, are generically referred to as matter fields. Matter fields have
a well-defined transformation rule under the unbroken vector SU(3)V symmetry,
but they do not necessarily form representations of the spontaneously broken
SU(3)L × SU(3)R chiral symmetry. To construct the chiral Lagrangian, it is use-
ful to define an H field that transforms under the full SU(3)L × SU(3)R chiral
symmetry group in such a way that the transformation reduces to Eq. (5.2) under
the unbroken vector subgroup. The transformation of H under SU(3)L × SU(3)R

is not uniquely defined, but one can show that all such Lagrangians are related
to each other by field redefinitions and so make the same predictions for any
physical observable.

For example, one can pick a field Ĥa that transforms as

Ĥa → Ĥ b L†
ba, (5.4)

under chiral SU(3)L × SU(3)R . This transformation property is a little unusual
in that it singles out a special role for the SU(3)L transformations. The parity
transform of Ĥ would then have to transform as in Eq. (5.4) but with L replaced
by R. This forces upon us the following choice of parity transformation law:

PĤ a(x, t)P−1 = γ 0 Ĥ b(−x, t)γ 0�ba(−x, t), (5.5)

where � is the matrix defined in Eq. (1.99).
Clearly, Eq. (5.4) is not symmetric under L ↔ R, which causes the parity trans-

formation rule to involve the � field. It is convenient to have a more symmetrical
transformation for H . The key is to introduce a field

ξ = exp(iM/ f ) =
√

�. (5.6)

Because of the square root in Eq. (5.6), ξ transforms in a very complicated way
under chiral SU(3)L × SU(3)R transformations,

ξ → LξU † = Uξ R†, (5.7)

where U is a function of L , R, and the meson fields M(x). Since it depends on
the meson fields, the unitary matrix U is space–time dependent, even though one

https://doi.org/10.1017/9781009402125.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402125.006


5.1 Heavy mesons 133

is making a global chiral transformation with constant values for L and R. Under
a SU(3)V transformation L = R = V, ξ has the simple transformation rule

ξ → V ξV †, (5.8)

and

U = V . (5.9)

The field

Ha = Ĥ bξba (5.10)

transforms as

Ha → HbU †
ba, (5.11)

under SU(3)L × SU(3)R transformations. Under parity

PHa P−1 = γ 0 Ĥ cγ
0�cbξ

†
ba

= γ 0 Haγ
0, (5.12)

which no longer involves �. For a generic matter field, it is convenient to use
a field with a transformation law such as Eq. (5.11) that involves U but not L
and R, and that reduces to the correct transformation rule under SU(3)V . For
example, if X is a matter field that transforms as an adjoint X → V X V † under
SU(3)V , one would pick the chiral transformation law X → U XU †.

H and Ĥ lead to the same predictions for physical observables, since they are
related by the field redefinition in Eq. (5.10),

H = Ĥ + i

f
Ĥ M + · · · , (5.13)

which changes off-shell Green’s functions but not S-matrix elements. In this
chapter we use the H field transforming under SU(3)L × SU(3)R and parity as
in Eqs. (5.11) and (5.12). Unless explicitly stated, traces are over the bispinor
Lorentz indices and repeated SU(3) indices (denoted by lower-case roman letters)
are summed over.

Chiral Lagrangians for matter fields such as H are typically written with ξ

rather than � for the Goldstone bosons. ξ has a transformation law that involves
U , L , and R, whereas the matter field transformation law only involves U . In the
construction of invariant Lagrangian terms, it is useful to form combinations of
ξ whose transformation laws only involve U . Two such combinations with one
derivative are

Vμ = i

2
(ξ †∂μξ + ξ∂μξ †),

Aμ = i

2
(ξ †∂μξ − ξ∂μξ †),

(5.14)
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134 Chiral perturbation theory

which transform under chiral SU(3)L × SU(3)R transformations as

Vμ → UVμU † + iU∂μU †, Aμ → UAμU †, (5.15)

using the transformation rule in Eq. (5.7) for ξ . Thus Aμ transforms like the
adjoint representation under U and has the quantum numbers of an axial vector
field, and Vμ transforms like a U -gauge field and has the quantum numbers of
a vector field. The Vμ field can be used to define a chiral covariant derivative,
Dμ = ∂μ − iVμ, that can be applied to fields transforming under U . Acting on
a field Fa transforming like a 3 the covariant derivative is

(DF)a = ∂ Fa − iVab Fb, (5.16)

and acting on a field Ga transforming like a 3̄ the covariant derivative is

(DG)a = ∂Ga + iGbVba. (5.17)

The H -field chiral Lagrangian is given by terms that are invariant under chiral
SU(3)L × SU(3)R and heavy quark symmetry. The only term with zero deriva-
tives is the H -field mass term MH Tr H̄a Ha . Scaling the heavy meson fields by
e−i MH v · x removes this mass term. Once this is done, derivatives on the heavy
meson fields produce factors of the small residual momentum, and the usual
power counting of chiral perturbation theory applies. Scaling the H field to re-
move the mass term is equivalent to measuring energies in the effective theory
relative to the H -field mass MH , rather than m Q .

The only allowed terms with one derivative are

L = −iTr H̄avμ

(
∂μδab + iVμ

ba

)
Hb + gπTr H̄aHbγνγ5A

ν
ba. (5.18)

Heavy quark spin symmetry implies that no gamma matrices can occur on the
“heavy quark side” of H̄ and H in the Lagrangian, i.e., between the two fields
in the trace. Any combination of gamma matrices can occur on the light quark
side, i.e., to the right of H in the trace. The H fields in Eq. (5.18) are at the same
velocity, since low-momentum Goldstone boson exchange does not change the
velocity of the heavy quark. It is easy to show that the only gamma matrices
that give a nonvanishing contribution to Tr H̄ H� are � = 1 and � = γμγ5. The
� = 1 term was the H -field mass term discussed earlier. The � = γμγ5 is the
axial coupling to Goldstone bosons. Heavy quark symmetry symmetry implies
that at leading order in 1/m Q , the coupling constant gπ is independent of the
heavy quark mass, i.e., it has the same value for the D and B̄ meson systems.
The kinetic terms in Lagrange density Eq. (5.18) imply the propagators

iδab

2(v · k + iε)
,

−iδab(gμν − vμvν)

2(v · k + iε)
, (5.19)

for the Pa and P∗
a mesons, respectively.

The terms in Lagrange density in Eq. (5.18) that arise from Vν contain an even
number of pseudo-Goldstone boson fields, whereas the terms that arise from Aν ,
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5.1 Heavy mesons 135

and are proportional to gπ , contain an odd number of pseudo-Goldstone boson
fields. Expanding Aν , in terms of M , Aν = −∂ν M/ f + · · ·, gives the P∗ P M
and P∗ P∗M couplings

Lint =
(

2igπ

f
P∗ν†

a Pb∂ν Mba + h.c

)
− 2igπ

f
P∗α†

a P∗β

b ∂ν Mbaεαλβνv
λ. (5.20)

The P∗ P M and P∗ P∗M coupling constants are equal at leading order in 1/m Q

as a consequence of heavy quark symmetry; the PPM coupling vanishes by
parity. The coupling gπ determines the D∗ → Dπ decay width at tree level

�(D∗+ → D0π+) = g2
π |pπ |3
6π f 2

. (5.21)

The width for a neutral pion in the final state is one-half of this, by isospin
symmetry. The B∗ − B mass splitting is less than the pion mass so the analogous
B∗ → Bπ decay does not occur.

It is possible to systematically include effects that explicitly break chiral sym-
metry and heavy quark symmetry as corrections to the chiral Lagrangian. At the
order of �QCD/m Q , heavy quark spin symmetry violation occurs only by means
of the magnetic moment operator Q̄vgσμνG A

μνT A Qv, which transforms as a
singlet under SU(3)L × SU(3)R chiral symmetry, and as a vector under heavy
quark spin symmetry. At leading order in the derivative expansion, its effects are
taken into account by adding

δL(1) = λ2

m Q
Tr H̄aσ

μν Haσμν (5.22)

to the Lagrange density in Eq. (5.18). The only effect of δL(1) is to shift the
masses of the P and P∗ mesons, giving rise to the mass difference

�(Q) = m P∗ − m P = −8
λ2

m Q
. (5.23)

Including this effect, the P and P∗ propagators are

iδab

2
(
v · k + 3�(Q)/4 + iε

) , −iδab(gμν − vμvν)

2
(
v · k − �(Q)/4 + iε

) , (5.24)

respectively. In the rest framev = vr , an on-shell P has residual energy−3�(Q)/4
and an on-shell P∗ has residual energy �(Q)/4. It is convenient when dealing
with situations in which there is a real P meson and the P∗ only appears as
a virtual particle to rescale the heavy meson fields by an additional amount,
H → e3i�(Q)v·x/4 H , so that the P and P∗ propagators become

iδab

2(v · k + iε)
and

−iδab(gμν − vμvν)

2
(
v · k − �(Q) + iε

) , (5.25)
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136 Chiral perturbation theory

respectively. This rescaling is equivalent to measuring energies with respect to
the pseudoscalar mass, rather than the average mass of the PP∗ multiplet.

Chiral symmetry is explicitly broken by the quark mass matrix mq , which
transforms as mq → Lmq R† under SU(3)L × SU(3)R . Chiral symmetry breaking
effects at lowest order are given by adding terms linear in mq to the Lagrange
density,

δL(2) = σ1Tr H̄a Hb(ξm†
qξ + ξ †mqξ †)ab

+ σ ′
1Tr H̄a Ha(ξm†

qξ + ξ †mqξ †)bb, (5.26)

where mq is the light quark mass matrix. Expanding ξ in pion fields, ξ = 1+· · ·,
it is easy to see that the first term gives rise to mass differences between the
heavy mesons due to SU(3)V breaking. The second term is an overall shift in
the meson masses that is due to the light quark masses. It can be distinguished
from the chirally symmetric term Tr H̄ H because it contains π − H interaction
terms. The σ ′

1 term is analogous to the σ term in pion–nucleon scattering. Both
terms contain pion interactions of the pseudo-Goldstone bosons with the heavy
mesons that do not vanish as the four momenta of the pseudo-Goldstone bosons
go to zero, since they contain an explicit factor of chiral symmetry breaking.

The strange quark mass is not as small as the u and d quark masses, and
predictions based just on chiral SU(2)L × SU(2)R typically work much better
than those that use the full SU(3)L × SU(3)R symmetry group. The results of this
section can be used for chiral SU(2)L × SU(2)R , by restricting the flavor indices
to 1–2, and using the upper 2 × 2 block of Eq. (1.100) for M , ignoring η. It is
important to note that the parameters gπ , σ1, σ ′

1, and so on in the SU(2)L × SU(2)R

chiral Lagrangian do not have the same values as those in the SU(3)L × SU(3)R

chiral Lagrangian. The two-flavor Lagrangian can be obtained from the three-
flavor Lagrangian by integrating out the K and η fields.

5.2 gπ in the nonrelativistic constituent quark model

The nonrelativistic constituent quark model is a phenomenological model for
QCD in the nonperturbative regime. The quarks in a hadron are treated as nonrel-
ativistic and interact by means of a potential V (r ) that is usually fixed to be linear
at large distances and Coulombic at short distances. Gluonic degrees of freedom
are neglected apart from their implicit role in giving rise to this potential and
giving the light quarks their large constituent masses mu � md � 350 MeV, ms �
500 MeV. This simple model predicts many properties of hadrons with surprising
accuracy.

We use the quark model to compute the matrix element

〈D+|ūγ 3γ5d|D∗0〉, (5.27)
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5.2 gπ in the nonrelativistic constituent quark model 137

where the D∗0 meson has Sz = 0 along the spin quantization ẑ axis, and the
heavy meson states are at rest. To calculate this transition matrix element, we
need the operator ūγ 3γ5d in terms of nonrelativistic constituent quark fields and
the D+ and D∗0 state vectors. The decomposition of a quark field in terms of
nonrelativistic constituent fields is

q =

⎛
⎜⎜⎜⎜⎜⎜⎝

qnr(↑)

qnr(↓)

−q̄nr(↓)

q̄nr(↑)

⎞
⎟⎟⎟⎟⎟⎟⎠

+ · · · , (5.28)

where the ellipses denote terms with derivatives. The field qnr destroys a con-
stituent quark and q̄nr creates a constituent antiquark, with spins along the ẑ axis
as denoted by the arrow. (The lower two elements follow by acting with the
charge conjugation operator on the upper two.) Using this decomposition, one
finds

ūγ 3γ5d = ū†
nr(↓)d̄nr(↓) − ū†

nr(↑)d̄nr(↑)

+ terms involving quark fields. (5.29)

In the matrix element Eq. (5.27), the overlap of spatial and color wave func-
tions for the D and D∗ states gives unity. The operator only acts nontrivially
on the spin-flavor part of the state vector. In our conventions (see Chapter 2),
2i[S3

Q, D] = −D∗3, and this commutation relation fixes the relative phase of
the D and D∗ state vectors. Explicitly,

|D∗0〉 = |c ↑〉|ū ↓〉 + |c ↓〉|ū ↑〉,
|D+〉 = i(|c ↑〉|d̄ ↓〉 − |c ↓〉|d̄ ↑〉).

(5.30)

Equations (5.29) and (5.30) yield

〈D+|ūγ 3γ5d|D∗0〉 = −2i, (5.31)

where the heavy meson states at rest are normalized to two.
The matrix element in Eq. (5.27) can be related to the coupling gπ in the

chiral Lagrangian by using the same method that was used in Sec. 1.7 to relate
the parameter f to a matrix element of the axial current. Under an infinitesimal
axial transformation

R = 1 + iεB T B, L = 1 − iεB T B, (5.32)

the QCD Lagrange density changes by

δLQCD = −AB
μ∂μεB, (5.33)
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138 Chiral perturbation theory

where AB
μ is the axial current

AB
μ = q̄γμγ5T Bq. (5.34)

In Eq. (5.34), the SU(3) generator T B acts on flavor space, and color indices are
suppressed. The transformation rule, � → L�R†, implies that under the chiral
transformation in Eq. (5.32) the pseudo-Goldstone boson fields transform as

δM = − f εB T B + · · · , (5.35)

where the ellipses denote terms containing M . Equations (5.4) and (5.10) imply
that under an infinitesimal chiral transformation the change in the heavy me-
son fields vanishes up to terms containing the pseudo-Goldstone boson fields.
Consequently the change in the effective chiral Lagrangian Eq. (5.18) under the
infinitesimal axial transformation in Eq. (5.32) is

δLint = (
2gπ i P∗ν

b P†
a T B

ba∂νε
B + h.c.

) + 2igπ P∗α†
a P∗β

b T B
baεαλβνv

λ∂νεB + · · · .
(5.36)

Equating δLint with δLQCD implies that for matrix elements between heavy
meson fields, the axial current can be written as

AB
μ = (−2igπ P∗

bμ P†
a T B

ba + h.c.
) − 2igπ P∗α†

a P∗β

b T B
baεαλβμvλ + · · · , (5.37)

where the ellipses denote terms containing the pseudo-Goldstone boson fields.
Using Eq. (5.37) leads to

〈D+|ūγ 3γ5d|D∗0〉 = −2igπ , (5.38)

and so the nonrelativistic constituent quark model predicts gπ = 1. Heavy quark
flavor symmetry implies that it is the same gπ that determines both the DD∗π
and B B∗π couplings. A similar result for the matrix element of the axial current
between nucleons leads to the prediction gA = 5/3 in the nonrelativistic con-
stituent quark model, compared with the experimental value of 1.25. A recent
lattice Monte Carlo simulation by the UKQCD Collaboration found gπ = 0.42
(G.M. de Divitiis et al., hep-lat/9807032).

5.3 B̄ →πeν̄e and D →πēνe decay

The decay rates for B̄ → πeν̄e and D → π ēνe are determined by the transition
matrix elements,

〈π (pπ )|q̄aγμ(1 − γ5)Q
∣∣P (Q)(pP )

〉 = f (Q)
+ (pP + pπ )μ + f (Q)

− (pP − pπ )μ.

(5.39)

Here f (Q)
− can be neglected since its contribution is proportional to the lepton

mass in the decay amplitude. The form factors are usually considered to be
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5.3 B̄ → πeν̄e and D → π ēνe decay 139

functions of q2 = (pP − pπ )2. However, here it is convenient to view the form
factors f (Q)

+ and f (Q)
− as functions of v · pπ , where pP = m Pv. The right-hand

side of Eq. (5.39) can be rewritten as[
f (Q)
+ + f (Q)

−
]
m Pvμ + [

f (Q)
+ − f (Q)

−
]

pπμ. (5.40)

In the region of phase space where v · pπ � m Q , momentum transfers to the
light degrees of freedom are small compared with the heavy quark mass, and a
transition to HQET is appropriate. Apart from logarithms of m Q in matching the
left-handed current onto the corresponding HQET operator, the left-hand side of
Eq. (5.39) depends on m Q only through the normalization of the P (Q) state, and
so it is proportional to

√
m Q . This gives the following scaling for large m Q :

f (Q)
+ + f (Q)

− ∼ O(1/
√

m Q),

f (Q)
+ − f (Q)

− ∼ O(
√

m Q),
(5.41)

and in the limit m Q → ∞, f (Q)
+ = − f (Q)

− .
Neglecting perturbative corrections, we find the relation between B and D

form factors is

f (b)
+ + f (b)

− =
√

m D

m B

[
f (c)
+ + f (c)

−
]
,

f (b)
+ − f (b)

− =
√

m B

m D

[
f (c)
+ − f (c)

−
]
,

(5.42)

where in Eqs. (5.42) the form factors for Q = b and Q = c are evaluated at the
same value of v · pπ . Since the decay rate is almost independent of f (Q)

− , it is
more useful to have a relation just between f (b)

+ and f (c)
+ . Using f (Q)

+ = − f (Q)
−

in Eq. (5.42) yields such a relation:

f (b)
+ =

√
m B

m D
f (c)
+ . (5.43)

Equation (5.43) relates the decay rates for B̄ → πeν̄e and D → π ēνe over the
part of the phase space where v · pπ � m Q .

An implicit assumption about the smoothness of the form factors was made
in deriving Eq. (5.43). We shall see that this assumption is not valid for very
small v · pπ . In this kinematic region chiral perturbation theory can be used to
determine the amplitude.

The operator q̄aγ
ν(1 − γ5)Qv transforms as (3̄L , 1R) under SU(3)L × SU(3)R

chiral symmetry. This QCD operator is represented in the chiral Lagrangian by
an operator constructed out of H and ξ with the same quantum numbers. At
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140 Chiral perturbation theory

P P*

Fig. 5.1. Pole graph contribution to the heavy meson decay form factors. The axial
current insertion is denoted by ⊗. The PP∗π coupling is from the gπ term in the chiral
Lagrangian.

zeroth order in the derivative expansion, it has the form

q̄aγ
ν(1 − γ5)Qv = a

2
Tr γ ν(1 − γ5)Hb ξ

†
ba. (5.44)

Heavy quark symmetry has been used to restrict the form of the right-hand side.
Operators with derivatives and/or insertions of the light quark mass matrix mq are
higher order in chiral perturbation theory. Recall that ξ = exp(iM/ f ) = 1 + · · ·,
so the part of Eq. (5.44) independent of the pseudo-Goldstone boson fields
annihilates P and P∗. This term was already encountered in Sec. 2.8 when we
studied the meson decay constants fD and fB . At μ= m Q, a = √

m P (Q) fP (Q) . The
part of Eq. (5.44) that is linear in the pseudo-Goldstone boson fields contributes
to the P (Q) → π matrix element of Eq. (5.44). There is another contribution from
the Feynman diagram in Fig. 5.1 that is also leading order in chiral perturbation
theory. Here the P∗(Q) P (Q)π coupling has one factor of momentum pπ , but that
is compensated by the P∗(Q) propagator, which is of the order of 1/pπ . The
direct and pole contributions together give

f (Q)
+ + f (Q)

− =
[

fP (Q)

f

] [
1 − gπv · pπ

v · pπ + �(Q)

]
,

f (Q)
+ − f (Q)

− = gπ fP (Q)m P (Q)

f
[
v · pπ + �(Q)

] . (5.45)

Note that f (Q)
+ − f (Q)

− is enhanced by m P (Q)/v · pπ over f (Q)
+ + f (Q)

− and so
f (Q)
+ � − f (Q)

− . Using this relation, we find the prediction of chiral perturbation
theory for f (Q)

+ becomes

f (Q)
+ = gπ fP (Q)m P (Q)

2 f
[
v · pπ + �(Q)

] . (5.46)

For v · pπ � �(b,c) the scaling relation between f (b)
+ and f (c)

+ in Eqs. (5.43) holds
if 1/m Q corrections in the relation between fB and fD are small. However, for
pions almost at rest, Eq. (5.43) has large corrections because mπ is almost equal
to �(c). The derivation of Eq. (5.46) only relies on chiral SU(2)L × SU(2)R

symmetry, and it is not necessary to assume that the strange quark mass is also
small.
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5.4 Radiative D∗ decay 141

Using chiral SU(3)L × SU(3)R , a formula similar to Eq. (5.46) holds for the
decay D → K ēνe. Experimental data on the D → K ēνe differential decay rate
indicate that f (D → K )

+ (q2) is consistent with the pole form

f (D → K )
+ (q2) = f (D → K )

+ (0)

1 − q2/M2
, (5.47)

where M = 2.1 GeV. With this form for f (D → K )
+ (q2), the measured decay rate

implies that |Vcs f (D→K )
+ (0)| = 0.73 ± 0.03. Using |Vcs | = 0.94, we find this

implies that at zero recoil, i.e., q2 = q2
max = (m D − mK )2, the form factor has

the value | f (D → K )
+ (q2

max)| = 1.31. The zero-recoil analog of Eq. (5.46) for this
situation is

gπfDs m Ds

2 f
(
mK + m D∗

s
− m D

) = f (D → K )
+

(
q2

max

)
. (5.48)

With the use of the experimental value for f (D → K )
+ (q2

max), this implies that
gπ fDs = 129 MeV. For the lattice value of fDs in Table 2.3, this gives gπ = 0.6.

5.4 Radiative D∗ decay

The measured branching ratios for D∗ decay are presented in Table 5.1. The
decay D∗0 → D+π− is forbidden, since mπ− > m D∗0 − m D+ . For D∗0 decay,
the electromagnetic and hadronic branching ratios are comparable. Naively, the
electromagnetic decay should be suppressed by α compared with the strong one.
However, in this case the strong decay is phase space suppressed since m D∗ −m D

is very near mπ . For D∗+ decays, the electromagnetic branching ratio is smaller

Table 5.1. Measured branching ratios
for radiative D∗ decaya

Decay mode Branching ratio(%)

D∗0 → D0π0 61.9 ± 2.9
D∗0 → D0γ 38.1 ± 2.9
D∗+ → D0π+ 68.3 ± 1.4
D∗+ → D+π0 30.6 ± 2.5
D∗+ → D+γ 1.7 ± 0.5
D∗+

s → D+
s π0 5.8 ± 2.5

D∗+
s → D+

s γ 94.2 ± 2.5

a The branching ratio for D∗+ → D+γ is from
a recent CLEO measurement (J. Bartlet
et al., Phys. Rev. Lett. 80, 1998, 3919).
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than for the D∗0 case because of a cancellation that we will discuss shortly. The
decay D∗+

s → D+
s π0 is isospin violating and its rate is quite small.

The D∗
a → Daγ matrix elements have the form [a is an SU(3) index so

D1 = D0, D2 = D+ and D3 = D+
s ]

M(D∗
a → Daγ ) = eμaε

μαβλε∗
μ(γ )vαkβελ(D∗), (5.49)

where ε(γ ) and ε(D∗) are the polarization vectors of the photon and D∗, v is
the D∗ four velocity (we work in its rest frame where v = vr ), and k is the
photon’s four momentum. The factor eμa/2 is a transition magnetic moment.
Equation (5.49) yields the decay rate

�(D∗
a → Daγ ) = α

3
|μa|2|k|3. (5.50)

The D∗
a → Daγ matrix elements get contributions from the photon coupling

to the light quarks through the light quark part of the electromagnetic current,
2
3 ūγμu − 1

3 d̄γμd − 1
3 s̄γμs, and the photon coupling to the charm quark through

its contribution to the electromagnetic current, 2
3 c̄γμc. The part of μa that comes

from the charm quark part of the electromagnetic current μ(h) is fixed by heavy
quark symmetry. The simplest way to derive it is to examine the D∗ → D matrix
element of c̄γμc with the recoil velocity of the D being given approximately
by v′ � (1, −k/mc). Linearizing in k, and using the methods developed in
Chapter 2, the heavy quark symmetry prediction for this matrix element is

μ(h) = 2

3mc
, (5.51)

which is the magnetic moment of a Dirac fermion. Another way to derive
Eq. (5.51) is to include electromagnetic interactions in the HQET Lagrangian.
Then μ(h) comes from the order �QCD/mc magnetic moment interaction anal-
gous to the chromagnetic term discussed in Chapter 4. The part of μa that comes
from the photon coupling to the light quark part of the electromagnetic current
is denoted by μ

(�)
a . It is not fixed by heavy quark symmetry. However, the light

quark part of the electromagnetic current transforms as an 8 under the unbroken
SU(3)V group, while the D and D∗ states are 3̄’s. Since there is only one way
to combine a 3 and a 3̄ into an 8, the three transition magnetic moments μ

(�)
a are

expressible in terms of a single reduced matrix element β,

μ(�)
a = Qaβ, (5.52)

where Q1 = 2/3, Q2 = −1/3 and Q3 = −1/3.
Equation (5.52) is a consequence of SU(3)V symmetry. Even the relation

between μ
(�)
1 and μ

(�)
2 depends on SU(3)V symmetry. The contribution of u and d

quarks to the electromagnetic current is a combination of I = 0 and I = 1 pieces,
and so isospin symmetry alone does not imply any relation between μ

(�)
1 and μ

(�)
2 .

We expect that SU(3)V violations are very important for μa = μ(h) + μ
(�)
a . This
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D*+
s D*0 D+

s

K + K +

D*0 D*+
s D0

K− K−

D*0 D*+ D0

π− π−

D*+ D*0 D+

π + π +

Fig. 5.2. The order m1/2
q corrections to the radiative D∗ decay amplitude.

expectation is based on the nonrelativistic constituent quark model. In that model,
the ū, d̄ , and s̄ quarks in a D or D∗ meson are also treated as heavy, and their
contribution to μ

(�)
a can be determined in the same way that the charm quark

contribution μ(h) was. This yields

μ
(�)
1 = 2

3

1

mu
, μ

(�)
2 = −1

3

1

md
, μ

(�)
3 = −1

3

1

ms
. (5.53)

The large SU(3)V violations occur because for the usual values of the constituent
quark masses mu � md = 350 MeV, ms = 500 MeV and mc = 1.5 GeV, μ

(�)
2

and μ
(�)
3 almost cancel against μ(h). This cancellation is consistent with the

suppression of the D∗+ → D+γ rate evident in Table 5.1. With the constituent
quark masses given above, the nonrelativistic quark model predictions for the
μa are μ1 � 2.3 GeV−1, μ2 = −0.51 GeV−1, and μ3 = −0.22 GeV−1.

In chiral perturbation theory the leading SU(3)V violations are of the order of
m1/2

q and come from the Feynman diagrams in Fig. 5.2. The diagrams are calcu-
lated with initial and final heavy mesons at the same four velocity v, but the final
state D has a residual four momentum −k. These diagrams give contributions to
μa of the order of m(π,K )/ f 2, and their nonanalytic dependence on mq ensures
that higher-order terms in the chiral Lagrangian do not give rise to such terms.

For the Feynman diagrams in Fig. 5.2 to be calculated, the chiral Lagrangian
for strong interactions of the pseudo-Goldstone bosons in Eq. (1.102) must be
gauged with respect to the electromagnetic subgroup of SU(3)V transformations.
This is done by replacing a derivative of � with the covariant derivative

∂μ� → Dμ� = ∂μ� + ie[Q, �]Aμ, (5.54)
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where

Q =
⎡
⎣2/3 0 0

0 −1/3 0
0 0 −1/3

⎤
⎦ , (5.55)

and A is the photon field. The electromagnetic interactions arise on gauging
a U (1) subgroup of the unbroken SU(3)V symmetry. Since ξ transforms the
same way as � under SU(3)V , the covariant derivative of ξ is Dμξ = ∂μξ +
ie[Q, ξ ]Aμ.

The strong and electromagnetic interactions are described at leading order in
chiral perturbation theory by the Lagrangian

Leff = f 2

8
Tr Dμ�(Dμ�)† + vTr(mq� + mq�†), (5.56)

where in this case the trace is over light quark flavor indices. It gives rise to the
M Mγ interaction term

Lint = ieAμ{[Q, M]ab∂
μMba}. (5.57)

Using the Feynman rules that follow from Eqs. (5.20) and (5.57), we find the last
diagram in Fig. 5.2 gives the following contribution to the D∗+

s → D+
s γ decay

amplitude:

δM = i
∫

dnq

(2π )n

(
2

f
gπεαλβνv

λqν

)(
2gπ

f
kη

)

× gαη

2v · q
(e2qμ)

(
1

q2 − m2
K

)2

εβ(D∗
s )εμ(γ )

= 4ig2e

f 2
εαλβνv

λkαεβ(D∗
s )ε∗

μ(γ )
∫

dnq

(2π )n

qνqμ(
q2 − m2

K

)2
v · q

. (5.58)

In Eq. (5.58) only the linear dependence on k has been kept. The second term in
large parentheses is the D∗

s DK coupling. It actually is proportional to (q − k)η

but the qη part does not contribute to δM. Similarly, the K Kγ coupling is
proportional to (2q − k)μ, but the kμ part is omitted in Eq. (5.58), since it does
not contribute to δM. Finally, the part proportional to vαvη in the D∗

s propagator
also does not contribute to δM and is not displayed in Eq. (5.58).

Combining denominators using Eq. (3.6) gives

δM = 16ig2
πe

f 2
εαλβνv

λkαεβ(D∗
s )ε∗

μ(γ )

×
∫ ∞

0
dλ

∫
dnq

(2π )n

qνqμ(
q2 + 2λv · q − m2

K

)3 . (5.59)

https://doi.org/10.1017/9781009402125.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402125.006


5.4 Radiative D∗ decay 145

Shifting the integration variable q by λv, we find this becomes

δM = 16ig2
πe

n f 2
εαλβμvλkαεβ(D∗

s )ε∗μ(γ )
∫ ∞

0
dλ

∫
dnq

(2π )n

q2(
q2 − m2

K − λ2
)3 .

(5.60)

Consequently, the contribution of this Feynman diagram to the transition mag-
netic moment is

δμ
(�)
3 = 16ig2

π

n f 2

∫ ∞

0
dλ

∫
dnq

(2π )n

q2(
q2 − m2

K − λ2
)3 . (5.61)

Performing the q integration using Eq. (1.44) yields

δμ
(�)
3 = −4g2

π�(2 − n/2)

f 22nπn/2

∫ ∞

0
dλ

(
λ2 + m2

K

)−2+n/2
. (5.62)

Using Eq. (3.11), we find it easy to see that the integral over λ is proportional to
ε = 4 − n and so the expression for δμ

(�)
3 is finite as ε → 0. Taking this limit, we

find

δμ
(�)
3 = g2

πm2
K

2π2 f 2

∫ ∞

0

dλ(
λ2 + m2

K

) = g2
πmK

4π f 2
. (5.63)

A similar calculation can be done for the other diagrams. Identifying f with fK

for the kaon loops, and with fπ for the pion loops, we have

μ
(�)
1 = 2

3
β − g2

πmK

4π f 2
K

− g2
πmπ

4π f 2
π

,

μ
(�)
2 = −1

3
β + g2

πmπ

4π f 2
π

,

μ
(�)
3 = −1

3
β + g2

πmK

4π f 2
K

.

(5.64)

Using fK for kaon loops and fπ for pion loops reduces somewhat the magnitude
of the kaon loops compared with the pion loops. Experience with kaon loops in
chiral perturbation theory for interactions of the pseudo-Goldstone bosons with
nucleons suggests that such a suppression is present.

It remains to consider the isospin violating decay D∗+
s → D+

s π0. The two
sources of isospin violation are electromagnetic interactions and the difference
between the d and u quark masses, md − mu . In chiral perturbation theory the
pole type diagram in Fig. 5.3 dominates the part of the amplitude coming from
the quark mass difference. The η −π0 mixing is given in Eq. (1.104). Using this
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D*+
s D+

s

η0

π0

Fig. 5.3. Leading contribution to the isospin violating decay D∗
s → Dsπ

0.

and Eq. (5.20), we find the decay rate is

�
(
D∗+

s → D+
s π0) = g2

π

48π f 2

[
md − mu

ms − (mu + md )/2

]2

|pπ |3. (5.65)

The measured mass difference m D∗
s
− m Ds = 144.22 ± 0.60 MeV implies that

|pπ | � 49.0 MeV. In chiral perturbation theory, this is the dominant contribu-
tion coming from the quark mass difference because it is suppressed by only
(md − mu)/ms � 1/43.7, as opposed to (md − mu)/4π f . The isospin violating
electromagnetic contribution is expected to be less important since α/π is smaller
than (md − mu)/ms .

The measured branching ratios in Table 5.1 determine the values of gπ and
β. There are two solutions, since one has to solve a quadratic equation. Using
the above results gives either (gπ = 0.56, β = 3.5 GeV−1) or (gπ = 0.24, β =
0.85 GeV−1). In evaluating these parameters, we have set f = fπ for the hadronic
modes. The values obtained for gπ are smaller than the quark model prediction
discussed in Sec. 5.2. Of course there is a large uncertainty in this determination
of gπ , since the experimental errors on branching ratios for the isospin violating
decay D∗+

s → D+
s π0 and the radiative decay D∗+ → D+γ are large, and because

higher-order terms in chiral perturbation theory that have been neglected may
be important.

5.5 Chiral corrections to B̄ → D(∗)eν̄e form factors

In Chapter 4, the nonperturbative order �QCD/m Q , corrections to B decay form
factors, such as the semileptonic B̄ → D(∗)eν̄e form factors, h±(w), hV (w) and
h A j (w), were discussed. It seems reasonable that nonperturbative corrections
to the form factors should be expandable in powers of (�QCD/m Q), since the
Lagrangian has an expansion in inverse powers of the heavy quark mass m Q .
However, because of the small values for the u and d quark masses, this ends
up not being the case because of pole and loop diagrams involving pions. This
point is illustrated below with the help of two examples: B̄ → D∗πeν̄e, which
has pole terms, and B̄ → Deν̄e, which has pion loop terms.
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B D(**) D*

π

B B* D*

π

Fig. 5.4. Pole diagram contribution to the B̄ → D∗πeν̄e form factors. The solid box
is an insertion of the axial current, Eq. (5.66).

B B* D* D

Fig. 5.5. One-loop correction to the B̄ → Deν̄e form factors.

The weak current c̄γμ(1 − γ5)b is a singlet under chiral SU(3)L × SU(3)R

transformations. At leading order in chiral perturbation theory, this operator is
represented in the chiral Lagrangian by

c̄γμ(1 − γ5)b = −ξ (w)Tr H̄ (c)
av′γμ(1 − γ5)H (b)

av , (5.66)

where we have now put back the heavy quark and velocity labels. ξ (w) is the
Isgur-Wise function.

Equation (5.66) contains no powers of the pion fields. This implies that at
leading order in chiral perturbation theory the B̄ → D∗πeν̄e amplitudes come
from pole diagrams in Fig. 5.4. The propagator for the intermediate D meson is

i

pπ · v + �(c)
(5.67)

where pπ is the pion momentum and �(c) is the D∗–D mass difference, which
is of the order of �2

QCD/mc. Clearly, the form factors for this decay depend on
�(c)/v · pπ , and so do not simply have an expansion in �QCD/m Q . A similar
conclusion holds for the B̄ → πeν̄e form factors discussed in Sec. 5.3.

To compute B̄ → Deν̄e form factors, one needs the B̄ → D matrix element
of Eq. (5.66). The leading order of chiral perturbation theory is the tree-level
matrix element of this operator. At higher order in chiral perturbation theory
one needs loop diagrams, as well as additional terms in Eq. (5.66) involving
derivatives and insertions of the light quark mass matrix. At one loop the diagram
in Fig. 5.5 contributes to the form factors for B̄ → Deν̄e decay. This contribution
is proportional to g2

π/(4π f )2 and depends also on the pion mass, mπ , and the
D∗ − D mass difference, �(c) (here, for simplicity, we neglect the B∗ − B mass
difference). At zero recoil, Fig. 5.5, the wave-function renormalization diagrams
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and a tree-level contribution from an order 1/m2
c operator give the contribution

δh+(1) = − 3g2
π

32π2 f 2
�(c)2

{
ln

μ2

m2
π

+ F
[
�(c)/mπ

] + C

}
, (5.68)

where μ is the scale parameter of dimensional regularization, and F is a dimen-
sionless function that can be computed by explicitly evaluating the diagrams.
Here C is the contribution of the local order 1/m2

c operator. Any dependence on
μ in a Feynman diagram is logarithmic. The mass difference �(c) is of the order
of 1/mc, and the pion mass is of the order of

√
mq . Expanding F in a power

series in �(c) is equivalent to an expansion in powers of 1/mc. Expanding in
powers of �(c) gives

F = −3π

4

�(c)

mπ

+ 6

5

�(c)2

m2
π

+ · · · . (5.69)

Dimensional analysis dictates that for terms in δh+(1) of the order of [�(c)]n ∼
(1/mc)n, n = 3, 4 . . ., the coefficients have the form 1/mn−2

π and diverge as
mπ → 0. Nonperturbative corrections to the form factor h+(1) are not suppressed
by powers of (�QCD/mc) but are much larger, of the order of �

3n/2 + 2
QCD /mn + 2

c

mq
n/2 for n ≥ 0. Note that in accordance with Luke’s theorem there is no order

1/mc term in δh+(1).
The heavy quark limit is mc large, and the chiral limit is mq small. Expanding

F in powers of �(c) is equivalent to taking the heavy quark limit where mc

is large while keeping mq fixed. If one first takes the chiral limit where mq is
small while keeping mc fixed, one should instead expand in powers of mπ . This
expansion has the form

F =
[

2

3
− ln

4�(c)2

m2
π

]
+ m2

π

�(c)2

[
9

2
− 3

2
ln

4�(c)2

m2
π

]
−2π

m3
π

�(c)3 +· · · , (5.70)

with coefficients with positive powers of mc in the higher order terms, which
diverge as mc → ∞.

While the expansions in Eqs. (5.69) and (5.70) have divergent coefficients in
the mπ → 0 and mc → ∞ limits, respectively, the contribution of Fig. 5.5 and
the wave-function renormalization diagrams to h+(1) is perfectly well defined.
The chiral Lagrangian for heavy mesons can be used as long as �(c) and mπ

are both much smaller than �CSB, and the correction Eq. (5.68) is smaller than
unity, irrespective of the value for the ratio �(c)/mπ . The interesting terms which
cause divergent coefficients arise because of the ratio of two small scales, mπ

and �(c), and all such effects are computable in chiral perturbation theory.
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5.6 Problems

1. Compute the magnetic moments of the baryon octet in the nonrelativistic constituent quark
model, and compare the results with the experimental data.

2. Neglecting the u and d quark masses, show that in chiral perturbation theory

fBs

fB
= 1 − 5

6

(
1 + 3g2

π

) m2
K

16π2 f 2

(
ln

m2
K

μ2
+ C

)
+ · · · .

C is a constant and the ellipsis denotes terms of higher order in chiral perturbation theory.
The ln(m2

K /μ2) term is referred to as a “chiral logarithm.” The μ dependence of this term is
canceled by a corresponding μ dependence in the coefficient C . If mK were extremely small,
the logarithm would dominate over the constant C .

3. The form factors for D → Kπ ēνe are defined by

〈π (pπ )K (pK )|s̄γμ PL c|D(pD)〉 = iω+ Pμ + iω− Qμ

+ ir (pD − P)μ + hεμαβγ pα
D Pβ Qγ ,

where

P = pK + pπ , Q = pK − pπ .

Use chiral perturbation theory to express the form factors ω±, r and h for D+ → K −π+ēνe in
terms of fD , f , gπ , �(c) = m D∗ − m D and μs = m Ds − m D .

4. Verify Eqs. (5.64) and (5.65).

5. Evaluate F(�/mπ ) in Eq. (5.68). Expand in 1/mc and mπ and verify Eqs. (5.69) and (5.70).

6. The low-lying baryons containing a heavy quark Q transforms as a 6 and 3̄ under SU(3)V .
Under the full chiral SU(3)L × SU(3)R the fields that destroy these baryons transform as

Sμ

ab → UacUbd Sμ

cd , Ta → TaU †
ab,

where (see Problem 10 in Chapter 2)

Sμ

ab = 1√
3

(γμ + vμ)γ5 Bab + B∗μ

ab .

Velocity and heavy quark labels are suppressed here.

(a) In the case Q = c identify the various components of the fields Ta , Bab, and B∗μ

ab with
baryon states in Table 2.1.

(b) Argue that at leading order in 1/m Q , mq , and derivatives, the chiral Lagrangian for heavy
baryon pseudo-Goldstone boson interactions is

L = −i S̄μ

ab(v · D)Sμab + �M S̄μ

ab Sμab + i T̄a(v · D)Ta + ig2εμνσλ S̄μ

abv
ν Sλ

cbA
σ
ac

+ g3

(
εabc T̄a SμcdA

μ

bd + h.c.
)
.

Define how the covariant derivative D acts on Sμ

ab and Ta .
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