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Abstract

We study optimal stopping problems related to the pricing of perpetual American options
in an extension of the Black—Merton—Scholes model in which the dividend and volatility
rates of the underlying risky asset depend on the running values of its maximum and
maximum drawdown. The optimal stopping times of the exercise are shown to be the
first times at which the price of the underlying asset exits some regions restricted by certain
boundaries depending on the running values of the associated maximum and maximum
drawdown processes. We obtain closed-form solutions to the equivalent free-boundary
problems for the value functions with smooth fit at the optimal stopping boundaries and
normal reflection at the edges of the state space of the resulting three-dimensional Markov
process. We derive first-order nonlinear ordinary differential equations for the optimal
exercise boundaries of the perpetual American standard options.
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1. Introduction

The main aim of this paper is to present closed-form solutions to the discounted optimal
stopping problem of (4) for the initial process X in a diffusion-type model containing its running
maximum process S and its running maximum drawdown process Y defined in (1)—(3). This
problem is related to the option pricing theory in mathematical finance, where the process X
can describe the price of a risky asset (e.g. a stock) on a financial market. The value of
(4) can therefore be interpreted as the rational (or no-arbitrage) price of a standard perpetual
American call or put option in a diffusion-type extension of the Black—Merton—Scholes model
(see, e.g. [30, Chapter VIII, Section 2a], [26, Chapter VII, Section 25], and [4] for an extensive
overview of other related results in the area).

Optimal stopping problems for running maxima of some diffusion processes given linear
costs were studied by Jacka [15], Dubins et al. [5], and Graversen and Peskir [11], [12],
among others, with the aim of determining the best constants in the corresponding maximal
inequalities. A complete solution of a general version of the same problem was obtained
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by Peskir [22], by means of the established maximality principle, which is equivalent to the
superharmonic characterization of the value function. Discounted optimal stopping problems
for certain payoff functions depending on the running maxima of geometric Brownian motions
were initiated by Shepp and Shiryaev [28], [29], and then considered by Pedersen [21] and
Guo and Shepp [13], among others, with the aim of computing rational values of perpetual
American lookback (Russian) options. More recently, Guo and Zervos [14] derived solutions for
discounted optimal stopping problems related to the pricing of perpetual American options with
certain payoff functions depending on the running values of both the initial diffusion process
and its associated maximum. Glover et al. [10] provided solutions of optimal stopping problems
for integrals of functions depending on the running values of both the initial diffusion process
and its associated minimum. The main feature of the resulting optimal stopping problems is
that the normal reflection condition holds for the value function at the diagonal of the state space
of the two-dimensional continuous Markov process having the initial process and its running
extremum as the components, which implies the characterization of the optimal boundaries as
extremal solutions of one-dimensional first-order nonlinear ordinary differential equations.

Asmussen et al. [1] considered perpetual American options with payoffs depending on the
running maximum of some Lévy processes with two-sided jumps having phase-type distribu-
tions in both directions. Avram et al. [2] studied exit problems for spectrally negative Lévy
processes and applied the results to solving optimal stopping problems for payoff functions
depending on the running values of the initial processes or their associated maxima. Optimal
stopping games with payoff functions of such type were considered by Baurdoux and Kyprianou
[3], within the framework of models based on spectrally negative Lévy processes. Other
complicated optimal stopping problems for the running maxima were considered in [9] for a
jump-diffusion model with compound Poisson processes with exponentially distributed jumps,
and in [19] (see also [20]) for a model based on spectrally negative Lévy processes. More
recently, Peskir [24], [25] studied optimal stopping problems for three-dimensional Markov
processes having the initial diffusion process as well as its maximum and minimum as the
state space components. It was shown that the optimal boundary surfaces depending on the
maximum and minimum of the initial process provide the maximal and minimal solutions of
the associated systems of first-order nonlinear partial differential equations.

In this paper we obtain closed-form solutions to the perpetual American standard options
pricing problem in an extension of the Black—Merton—Scholes model with path-dependent
coefficients. The underlying asset price dynamics are described by a geometric diffusion-type
process X with local drift and diffusion coefficients, which essentially depend on the running
values of the maximum process S and the maximum drawdown process Y. It is shown that the
optimal exercise times are the first times at which the process X exits some regions restricted by
certain boundaries depending on the running values of S and Y. The process Y represents the
maximum of the difference between the running values of the underlying asset price and its max-
imum, and can therefore be interpreted as the maximum of the market depth. We derive closed-
form expressions for the value functions as solutions of the equivalent free-boundary problems
and apply the maximality principle from [22] to describe the optimal boundary surfaces as the
maximal solutions of first-order nonlinear ordinary differential equations. The starting points
for these surfaces at the edges of the three-dimensional state space of (X, S, Y) are specified
from the solutions of the corresponding optimal stopping problem for the two-dimensional
Markov process (X, S) in a corresponding model in which the coefficients of the process X
depend only on the running maximum process S. The Laplace transforms of the drawdown
process and other related characteristics associated with certain classes of the initial processes,
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such as some diffusion models and spectrally positive and negative Lévy processes, were studied
by Pospisil et al. [27] and Mijatovic and Pistorius [18], respectively. Diffusion-type processes
with given joint laws for the terminal level and supremum at an independent exponential time
were constructed by Forde [7], by allowing the diffusion coefficient to depend on the running
value of the initial process and its running minimum. Other important characteristics for such
diffusion-type processes were recently derived by Forde et al. [8].

The paper is organized as follows. In Section 2 we formulate the associated optimal
stopping problems for a necessarily three-dimensional continuous Markov process, which has
the underlying asset price and the running values of its maximum and maximum drawdown as the
state space components. The resulting optimal stopping problems are reduced to their equivalent
free-boundary problems for the value functions, which satisfy the smooth-fit conditions at the
stopping boundaries and the normal reflection conditions at the edges of the state space of
the three-dimensional process. In Section 3 we obtain closed-form solutions of the associated
free-boundary problems in which the sought boundaries are found as either maximal or unique
solutions of first-order nonlinear ordinary differential equations, where we specify the starting
values for the latter at the edges of the three-dimensional state space. In Section 4, by applying
the change-of-variable formula with local time on surfaces, we verify that the resulting solutions
of the free-boundary problems provide the expressions for the value functions and the optimal
stopping boundaries for the underlying asset price process in the initial problem. The main
results of the paper are stated in Theorems 1 and 2.

2. Preliminaries

In this section we introduce the setting and notation of the three-dimensional optimal stopping
problems which are related to the pricing of perpetual American standard options and formulate
the equivalent free-boundary problems.

2.1. Formulation of the problem

For a precise formulation of the problem, let us consider a probability space (2, ¥, P) with
a standard Brownian motion B = (B;);>0. Assume that there exists a process X = (X;);>0
given by

t 2 t
X,:xexp(/ (r—(S(Su,Yu)—M>du+/ o(su,YL,)dBu>, (1)
0 0

where §(s,y) > 0 and o(s,y) > 0 are continuously differentiable bounded functions on
[0, 0o]?. It follows that the process X solves the stochastic differential equation

dX; = (r —06(S;, Y1) X, dt +0(S;, Y1) X, dB;, Xo = x, 2)

where x > 0 is given and fixed. Here the associated with X running maximum process

S = (8;)r>0 and the corresponding running maximum drawdown process ¥ = (¥;);>0 are
defined by

S;=sVv max X, and Y, =yV max (S, — X,) 3)

O<u<t 0<u=<t

for arbitrary 0 < s — y < x < s, so that X is a diffusion-type process representing a unique

solution of the stochastic differential equation in (2) (see, e.g. [17, Chapter IV, Theorem 4.6]).

The main purpose of the present paper is to derive a closed-form solution to the optimal stop-

ping problem for the time-homogeneous (strong) Markov process (X, S, Y) = (X;, S, Yi)r>0
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given by
Vi(x,s,y) = supEy 5 y[e7"G(X1)] “)
T

for any (x, s, y) € E3, where the supremum is taken over all stopping times t with respect
to the natural filtration of X, and the payoff function is either G(x) = (L — x)* or G(x) =
(x — K)T for some given constants 0 < L, K < oco. Here E, s,y denotes the expectation
under the assumption that the (three-dimensional) process (X, S, Y) defined in (1)—(3) starts
at (x,s,y) € E3, where E3 = {(x,s,y) e R3 | 0 <s —y <x < s} is the state space of the
process (X, S,Y). We assume that the process X describes the price of a risky asset on a
financial market, where r is the riskless interest rate, §(s, y) is the dividend rate paid to the
asset holders, and o (s, y) is the volatility rate. The dependence of the dividend and volatility
rates on the past dynamics of the asset in the financial market is often used in practise, although
it has not been well captured by local or stochastic dividend and volatility models studied in
the literature. Moreover, a wide range of quantitative trading strategies are based on capturing
the realised volatility, which increases in the cases of substantial changes in the asset prices,
such as in the model of (1)-(2).

The value of (4) is then actually a rational (or no-arbitrage) price of a perpetual Amer-
ican put or call option with payoff function G(x) = (L — x)* or G(x) = (x — K)™, where
the expectation is taken under the (unique) martingale measure (see, e.g. [30, Chapter VII,
Section 3g]).

2.2. The structure of the optimal stopping times

It follows from the general theory of optimal stopping problems for Markov processes (see,
e.g. [26, Chapter I, Section 2.2]) that the optimal stopping time in the problem of (4) is given
by

T = inf{t = 0 | Vi(Xy, 5, Y1) = G(X0)}, 4)

so that, taking into account the structure of the payoff function G(x) = (L — x)™ or G(x) =
(x — K)* in (4), we further assume that the optimal stopping time from (5) takes either the
form

T =inf{t >0 | X; <a.(S;,Y)} or 1, =inf{t > 0| X; > bu(S;, Y1)} (6)

for some function 0 < a,(s, y) < L or K < b, (s, y) < oo to be determined. This assumption
means that the set

C'={(x.5,y) € E | ax(s.y) <5 = yors <by(s,y)) (7
belongs to the continuation region for the optimal stopping problem of (4) which is given by
Co={(.5,y) € E? | a(s,y) < xorx < by(s, )}, )
and the corresponding stopping region is the closure of the set
Dy ={(x,5,y) € E> | x < ax(s, y) orby(s, y) < x). )

2.3. The free-boundary problem

By means of standard arguments based on the application of It6’s formula, it is shown that
the infinitesimal operator LL of the process (X, S, Y) acts on a function F'(x, s, y) from the class
€211 on the interior of E3 according to the rule

2
o~ (s,
( y)xza)%x

LF)(x,s,y) = (r — (s, y)x0x F(x,s,y) + F(x,s,y)
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forall0 < s —y < x < s. It follows from the fact that both payoff functions G(x) = (L — x)*
and G(x) = (x — K)™ are convex that the value function Vi (x, s, y) is convex in the variable x,
and, thus, it is continuous in x on the interval (0, co). In order to find analytic expressions
for the unknown value function V,(x, s, y) from (4) and the unknown boundary a(s, y) or
by (s, y) from (6), let us build on the results of general theory of optimal stopping problems for
Markov processes (see, e.g. [26, Chapter IV, Section 8]). We can reduce the optimal stopping
problem of (4) to the equivalent free-boundary problem for V. (x, s, y) with a,(s, y) or b, (s, y)

given by
LV)(x,s,y)=rV(x,s,y) for(x,s,y)eC, (10)
VX, s, Vlr=ae.yp+ =L —als,y) or V(x,s, Ylr=bi,y)- = bls,y) — K, (11)
Vx,s,y) =L —-x)T or V(x,s,y)=x—K)t for(x,s,y)eD, (12)
V(x,s,y)> (L —x)T or V(x,s,y)> (x—K)t for(x,s,y)eC, (13)
LV)(x,s,y) <rV(x,s,y) for(x,s,y) €D, 14)

where C and D are defined as C, and D, in (8) and (9) with a(s, y) and b(s, y) instead
of a.(s,y) and b.(s, y), respectively, and the instantaneous-stopping conditions in (11) are
satisfied when s — y < a(s, y) or b(s, y) < s, respectively, for each 0 < y < s. Observe that
the superharmonic characterisation of the value function (see [6] and [26, Chapter IV, Section 9])
implies that Vi (x, s, y) is the smallest function satisfying (10)—(13) with the boundary a. (s, y)
or b, (s, y). Moreover, we further assume that, for the left-hand system of (10)—(14), the smooth
fit and normal reflection conditions

o Vix,s, y)|x:a(s,y)+ =—1 and 9oV(x,s,¥)|x=s— =0 (15)

hold when s — y < a(s,y) < s, and that, for the right-hand system of (10)—(14), the normal
reflection and smooth fit conditions

V(X8 Mlx=—y+ =0 and 8 V(x,s,y)| 1 (16)

x=b(s,y)—

holdwhens—y < b(s, y) < s,foreach0 < y < s. Otherwise, the normal reflection conditions
in the right-hand part of (15) and in the left-hand part of (16) hold when either a(s, y) < s —y
ors < b(s,y), respectively, for each 0 < y < s. The conditions in (15)—(16) follow from
both the structure of the problem and the state space E>. For example, in the right-hand system
of (10)—(14), the optimal stopping time takes the form of the right-hand part of (6) whenever
s —y < b(s,y) <s. Therefore, for every fixed 0 < y < s, the process X either decreases to
the value s — y, and, thus, the value of Y increases and the normal reflection condition in the
left-hand part of (16) holds, or X increases to the value b, (s, y) and the smooth fit condition in
the right-hand part of (16) holds.

Note that, when §(s, y) = 8(s) and o (s, ¥y) = o(s) holds in (1)—(2), the value function
Vie(x,s,y) = Ux(x,s) together with the boundary a.(s, y) = gx«(s) or by(s,y) = hy(s)
satisfy the left-hand or the right-hand system of (10)—(14), respectively. Moreover, the smooth
fit and normal reflection conditions

0:U(x, $)lxmgieyr = —1 and 8,U(x,s)| __ =0 (17)

hold in addition to the left-hand system of (10)—(14) when 0 < g(s) < s, and the natural
boundary and smooth fit conditions

UG, $)lx=o+ =0 and 8,U(x, $)lempi)— = 1 (18)

https://doi.org/10.1239/jap/1409932675 Published online by Cambridge University Press


https://doi.org/10.1239/jap/1409932675

804 P. V. GAPEEV AND N. RODOSTHENOUS

hold in addition to the right-hand system of (10)—(14) when K < h(s) < s, for each s > 0.
Otherwise, the normal reflection and natural boundary conditions in the right-hand part of (17)
and in the left-hand part of (18) respectively hold for the latter system when s < A(s) for each
s > 0.

3. Solution of the free-boundary problem

In this section we obtain closed-form expressions for the value functions V. (x, s, y) in
(4) for the payoffs of standard put and call options, and derive explicit expressions and first-
order nonlinear ordinary differential equations for the optimal exercise boundaries a. (s, y) and
b.(s, y) from (6), as solutions to the free-boundary problems (10)—(14) with (15) and (16),
respectively.

3.1. The general solution of the free-boundary problem
We first observe that the general solution of the equation in (10) has the form

V(x,s,y) = Ci(s, )x"1 6 4 Co(s, y)x726), (19)
where Ci(s,y), i = 1,2, are some arbitrary continuously differentiable functions and
y2(s,y) <0 < 1 < yi(s,y) are given by

1 r—35(sy) 1 =86 )\ 2r

(5, ) == — ————2 —(=D" /(= — + 20
yl (S }’) 2 0'2(S, y) ( ) 2 GZ(S, y) O'Z(S, y) ( )

for all 0 < y < s. Hence, applying the instantaneous-stopping conditions from (11) to the
function in (19), we conclude that the equalities

Ci(s. y)a” (s, y) + Ca(s, y)a”" Y (s, y) = L — a(s. y). 1)

Ci(s, MOV (5, y) + Cols, )bV (s, y) = b(s, y) — K (22)

hold when s —y < a(s, y) and b(s, y) < s, respectively, for each 0 < y < s. Moreover, using

the smooth fit conditions from the left-hand part of (15) and the right-hand part of (16), we find
that the equalities

C1(s. V)y1(s. )a” OV (s, y) + Ca(s, y)ya(s, )ar Vs, y) = —a(s,y),  (23)

C1(s. My (5. BTV (s, ) + Cals, y)yals, BV (s, y) = b(s. y) (24)

hold when s —y < a(s, y) and b(s, y) < s, respectively, for each0 < y < s. Finally, applying

the normal reflection conditions from the right-hand part of (15) and the left-hand part of (16)
to the function in (19), we conclude that the equalities

2
D (@Ci(s, y)s" Y + Cils, )yi(s, y)s" OV Ins) =0, (25)

i=1
2
D @y Cils, (s = p)EY 4+ Ci(s, Y)dyyi(s, y)(s = )TV s —y) =0 (26)
i=1

hold when either a(s, y) < s or s < b(s, y) and either a(s,y) < s —yors —y < b(s, y),
respectively, for each 0 < y < s. Here the partial derivatives d;y; (s, y) and 9y ; (s, y) take the
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form

_ 3 _
807 (5. ¥) =¢(S’y)_(_1),-¢(s,y)(y1(s,y) y2(s,¥))o> (s, y) 2r8sa(s,y)’ 27
o2(s, YV (1(s, ¥) — v2(s, y) 202 (s, y) + 2r

Vs, V)(yi(s, ¥) — yals, Y)o3(s, y) — 2rdyo (s, y)

dyyi(s, y) = (s, y) — (=) (28)
' o2(s, YV (11(s. y) — vals, y)202(s, y) + 2r
fori = 1, 2, and the functions ¢ (s, y) and ¥ (s, y) are defined by
, )56 (s, 2(r — 8(s, O ,
$Gs.y) = o (s, y)0s8(s, y) ;((Sr > (s, ¥))050 (s y)’ (29)
w(S, y) — U(S, y)aya(sv )’) —;325: ;)S(S, y))a}’a(sr )’) , (30)

forO0 <y <s.

3.2. The solution to the problem in the two-dimensional (X, S) setting

We begin with the case in which §(s, y) = 8(s) and o (s, y) = o(s) holds in (1)—(2),
and, thus, we can define the functions §;(s) = y;(s, ¥), i = 1, 2, as in (20). Then the general
solution V (x, s, y) = U (x, s) of the equation in (10) has the form of (19) with C; (s, y) = D;(s)
and y; (s, y) = Bi(s) fori = 1,2, and the stopping time takes the form of (6) with either the
boundary a. (s, y) = g«(s) or b, (s, y) = h4(s), respectively. We further denote the state space
of the two-dimensional (strong) Markov process (X, S) by E?={(x,s) € R? |0 <x <s}and
its diagonal by d? = {(x,s) e R | 0 < x = s}, as well as recall that the second component of
(X, S) can only increase at d?, that is, when X, = S, fort > 0.

3.2.1. The call option case. Let us first consider the payoff function G(x) = (x — K)T in
(4). In this case, taking into account the fact that B2(s) < 0 < 1 < B1(s), we observe that
D;(s) = 0 should hold in (19), since otherwise U (x,s) — =00 as x | 0, which must be
excluded, by virtue of the obvious fact that the value function in (4) is bounded at 0, due to the
natural boundary condition in the left-hand part of (18). Hence, solving the system of equations
in (22) and (24) for the unknown function C1(s, y) = Di(s) with Ca(s, y) = Da(s) = 0, we
conclude that the function V (x, s, y) = U(x, s) in (19) admits the representation

_ _hi(s) ( x B () ) _ Bi®K
U(x,s; hy(s)) = 51) <h*(s)> with  h(s) = m 3D

for 0 < x < h.(s) < s, sothat h,(s) > K Vv (rK/§(s)) holds due to the facts that S,(s) <
0 <1 < Bi1(s) in (20) and B (s)B2(s)/((B1(s) — 1)(Ba(s) — 1)) =r/8(s) forall s > K.

In this case, we set 5) = oo and define a decreasing sequence (5;,),en such that the boundary
h(s) from (31) exits the region EZ at (55_1, 52—1) and re-enters EZ downwards at (55, 527).
Namely, we define 55— = sup{s < 52;—2 | hs(s) > s} and sy = sup{s < 527—1 | h«(s) < s},
I € N, whenever they exist, and put 5;—1 = 53; = 0 otherwise. Note that K < 53, < 53j_1 <
00, I € N, by construction. Then the candidate value function admits the representation of (31)
in the regions

R, ={(x,s) € E* |5y_1 <5 <5u_2) (32)

for [ € N (see Figure 1).
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FIGURE 1: A computer drawing of the state space of the process (X, S) and the boundary function /.. (s).

On the other hand, the candidate value function V (x, s, y) = U (x, s) takes the form of (19)
with C1(s, y) = Di(s) solving the first-order linear ordinary differential equation in (25) and
Ca(s,y) = Da(s) = 0, in the regions

R =((x,5) € E* |5y <5 <1} (33)

for/ € N, which belong to C” in (7). Note that the process (X, S) can pass from the region ﬁ%z
in (33) to the region ﬁ%l_l in (32) only through the point (52/—1, $2/—1), for I € N. Thus, the
candidate value function should be continuous at the point (52,1, 52;—1), which is expressed
by the equality

D1 Gy 1) G )P0 = UGy 1+, 514 haGa_14)), 34

where the right-hand side is given by (31). Hence, solving the first-order linear ordinary
differential equation in (25) for the unknown function Ci(s,y) = Di(s) with Ca(s, y) =
D> (s) = 0 and using the condition of (34), we conclude that the candidate value function
V(x,s,y) =U(x,s)in (19) admits the expression

Ga_q) 1 P162-1) A

35
B1(521-1) (%)

$20-1
U(x,s;5u-1) = €XP<—f Bi(g)Ing d4>
S

in the regions ﬁ%l given by (33) for/ € N.

3.2.2. The put option case. Let us now consider the payoff function G(x) = (L — x) in
(4). In this case, solving the system of equations in (21) and (23) for the unknown functions
Ci(s,y) = Di(s), i = 1,2, we conclude that the function V (x, s, y) = U(x, s) in (19) admits
the representation

U(x, 55 g4(8)) = Di(s; g()xP'® + Dy (s; gu(s))xF2®) (36)
for 0 < g,(s) < x <s, with

(B3—i(s) — 1)gs(s) — B3—i(s)L

D;(s; g«(s)) = Bi(s) — B (s))g*(s)ﬁi(s)

(37
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forall s > 0 andi = 1, 2. Hence, assuming that the boundary function g.(s) is continuously
differentiable, we apply condition (25) to the functions C; (s, y) = D;(s; g«(s)), i = 1,2, 1in
(37) and conclude that g, (s) solves the first-order nonlinear ordinary differential equation

g'(s) = 22: ((B3-i(s) — Dg(s) — B3—i(s))g(s)
= (Bi(s) = D(B3-i(s) = 1)g(s) — Bi(s)B3-i ()L

X( ! L (s/8()P In(s/g(s))
Bri(s) = Bis) ~ (s/8(sDP) — (s/g ()i

where the derivatives ﬁi’ (s) = 0syi(s,y), i = 1,2, are given by (27) with (29). Taking into
account the fact that 8;(s), i = 1, 2, and the boundary g, (s) are continuously differentiable
functions in the neighbourhood of co, we observe that the function in (36) should satisfy the
property U (x, s; 8«(s)) — U(x, 00; g«(00)) as s — oo for each x > g.(s). Thus, using the
fact that B2(s) < 0 < 1 < Bj(s), we obtain the expressions

gs(00) [ x \P _
/32(00)<g*(00)> and g()=p 51

for x > g.(00). The form of the function U (x, 00; g«(00)) and the boundary g.(c0) in (39)
follows from the fact that U (x, 00; g4«(00)) — 200 should not hold as x — oo since the value
function in (4) is bounded at co. Observe that the expressions in (39) coincide with those of
the value function in the corresponding continuation region and the exercise boundary of the
perpetual American put option in the Black—Merton—Scholes model with constant coefficients
(see, e.g. [30, Chapter VIII, Section 2a]).

Let us now consider the maximal solution g.(s) of the first-order ordinary differential
equation in (38) with the starting value g, (co) from (39) as s 1 oo and such that this solution
stays below the curve x = L A (rL/8(s)). Then we put 5p = oo and define a decreasing
sequence (5,).eN such that the solution gy (s) of the equation in (38) exits the region E? at
the points ($>_1, 52x—1) and enters E2 downwards at the points (53¢, $2;). Namely, we define
Sok—1 = sup{s <Sa—2 | g«(s) > s} and Sy = sup{s < Sxu—_1 | g«(s) < s}, k € N, whenever
they exist, and put $5; = S2¢_1 = 0 otherwise. Note that 0 <sp; <S3_1 < L, k € N, by
construction. Then the candidate value function takes the form of (36)—(37) in the regions

)ﬁ{(S), (38)

U (x, 00; g4(00)) = B2(o0) L

0% ={(x.s) € E? | 1 <5 <Sn_2) (40)

fork € N, and the boundary function g, (s) provides the maximal solution of the equation in (38)
started at g, (oco) from (39) and such that it stays strictly below the curve x = L A (rL/§(s)).
Finally, we note that the candidate value function should be given by the condition in the
left-hand part of (12) in the regions

0% = {(x.5) € E? | Sy < s <y 1)
for k € N, which belong to the stopping region D, in (9).

3.3. The solution to the problem in the three-dimensional (X, S, Y) setting

We now continue with the general form of the coefficients § (s, y) and o (s, y) in (1)—(2), and,
thus, of the functions y; (s, y), i = 1,2, from (20). We denote the border planes of the state
space E3byd; = {(x,s5,y) e R} | 0 <x =s}andd; = {(x,s,y) e R | 0 <x =5 — y},as
well as recall that the second and third components of the process (X, S, Y) can increase only
at the planes d13 and d;’, that is, when X, = §; and X; = §; — Y; for t > 0, respectively.
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3.3.1. The call option case. Let us now return to the payoff function G(x) = (x — K)* in (4).
In this case, solving the system of equations in (22) and (24), we conclude that the function in
(19) admits the representation

V(x, 8, 95 bil(s, ¥)) = C1(s, y; buls, )X 4 Co(s, y; bu(s, y)x2EY (41)
for0 <s —y <x < by(s,y) <sands > K, with

(y3—i(s,y) — Dby(s,y) — y3_i(s, ))K
(y3—i (s, ¥) — ¥i (s, Y)) by (s, y)Vi©s:y)

Ci(s, y: bi(s, y)) = (42)

forall0 < y < sandi = 1, 2. Hence, assuming that the boundary function b, (s, y) is contin-
uously differentiable, we apply condition (26) to the functions C;(s, y) = Ci(s, y; by (s, y)),
i = 1,2, in (42) to conclude that b, (s, y) solves the first-order nonlinear ordinary differential
equation

dyb(s, y)

_ 22: ((r3-i(s,y) = Db(s, y) = y3-i (s, ) K)b(s, y)
= WiGs,y) = D(y3-i(s, y) = Db(s, ) = vi(s, y)ys-i(s, K
" < 1 ((s = »)/b(s, ) In (5 = ) /b(s, ) )
Vazi(s,y) = vi(s,y) (s = )/b(s, y)1ie¥) — ((s = y)/b(s, y))3-i Y
X dyi(s,y) (43)

for 0 < y < s, where the partial derivatives d,y; (s, y), i = 1, 2, are given by (28) with (30).

Since the functions §(s, y) and o (s, y) are assumed to be continuously differentiable and
bounded, it follows that the limits §(s, s—) and o (s, s—) exist for each s > 0. Then the limits
yi (s, s—) can be identified with the functions §;(s), i = 1,2, from Subsection 3.2, and the
function in (41) should satisfy the property V(x, s, y; by(s, ¥)) — V(x,s,s—; bi(s,s—)) as
y 1 sforeachs —y < x < by(s, y). Thus, taking into account the fact that y»(s,y) < 0 <
1 < y1(s, y), we conclude that the equalities

Vix,s,s—; by(s,5=)) =U(x,s; bi(s,s—)) and by(s,s—) = hy(s)

hold for 0 < x < by(s,s—) and s > K, with U(x, s; h(s)) and h.(s) given by (31), since
otherwise V (x, s, s—; by(s,s—)) — £oo as x | 0, which must be excluded by virtue of the
obvious fact that the value function in (4) is bounded at 0.

For any fixed s > K, let us now consider the solution b, (s, y) of (43) started from the
value &, (s) given by (31) at y 1 s, given that this solution stays strictly above the surface x =
KV (rK/8(s,y)). Thenweputyo(s) = s and define a decreasing sequence (¥, (s)),en such that
Ya-1(s) = sup{y < Y21-2(s) | bx(s, y) > s} and Yo;(s) = sup{y < Yo—1(s) | bs(s,y) < s},
whenever they exist, and put yy—1(s) = yp(s) = 0, [ € N, otherwise. Moreover, we can
also define a decreasing sequence (¥, (s))nen such that the boundary b, (s, y) exits the region
E3 from the side of d23 at the points (s — Yax_1(s), 5, Y2x—1(s)) and enters E 3 downwards
at the points (s — y2x(s), s, Y2k (s)). Namely, we put yo(s) = s and define yy_1(s) =
sup{y < Yak—2(s) | bi(s,y) < s — y} and yor(s) = sup{y < yu—1(s) | bs(s,y) = 5 — y}
whenever such points exist, and put y2;_1(s) = y2x(s) = 0 otherwise for k € N. Note that
0 < Yar(s) < Yu—1(s) < s — K, k € N, by construction. Therefore, the candidate value
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FIGURE 2: A computer drawing of the state space of the process (X, S, ¥) for some fixed s, which increases
to s’, and the boundary function b, (s, y).

function admits the expression in (41)—(42) in either the region

Ry_ =10, 5,9 € E> | Yu—1(s) <y < min{Ta—2(5) | Yu—-1(s) < Fok—2()} A -2 (s)
keN

(44)
or
Ry, ={(x, 5,9) € EY | Yu1(s) <y < rlréil\fll{yzzfl(S) | Y2r—1(s) < Yok—2(s)} /\5’\2k72(5)}
(45)

for k,I € N, and the boundary b, (s, y) provides the unique solution of the equation in (43)
started from the value b, (s, s—) = h4(s) from (31) and such that this solution stays strictly
above the surface x = K v (rK /5(s, y)) (see Figure 2).

On the other hand, the candidate value function takes the form of (19) with C; (s, y), i =1, 2,
solving the linear system of first-order partial differential equations in (25) and (26) in the regions

Ry = {(x,5,) € E> | Tu(s) <y < Fu-1(5) (46)
for/ € N, which belong to C” "in (7). Note that the process (X, S, Y) can enter the region R 5 in
(46) from one of the regions RZI 41 in(44)or k\glg in(45) forsomek € N only through the point
(s — ¥21(5), s, ¥21(5)), and can exit the region R 21 passmg to the region R2l | only through the
point (s — y2;_1(s), 5, Y21—1(s)) by hitting the plane d and increasing its third component Y.
Thus, the candidate function should be continuous at the points (s — yo;(s), s, y2(s)) and
(s — Y2—1(s), s, y21—1(s)), which is expressed by the equalities

Ci(s, F21()+H) (s — T () =) SF2OD L Co (s, Ty (5)+) ((s — Far(s))—) 26720

= V(s — Yu(s), s, Ya(s); b(s, T2 (s))), 47)
C1(s, Fo—1())(s — Fa—1 () ST L Cy (s, Far—1(8)) (s — Fa—1 ()26 72-16)
= V((s — Ya—1(8))—, 8, Yar—1(8)+; bu(s, Yo—1(s)+)), (48)

fors > K and! € N, where the right-hand sides are given by (41)—~(42) with b (s, Yo—1(s)+) =
by (s, Y2 (s)) = s. However, if by (s, s—) = hy(s) > s holds with A,(s) given by (31) then we
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have y1(s) = s— and condition (48) for / = 1 changes its form to C»(s, s—) = 0 for s > K,
since otherwise V (x, s, s—) — *oo as x | 0, which must be excluded by virtue of the obvious
fact that the value function in (4) is bounded at 0. _

In addition, the process (X, S, Y) can exit the region Rgl in (46) passing to the stopping
region D, from (9) only through the point (s(y), s(y), ¥), by hitting the plane d13 and increas-
ing its second component S until it reaches the value s(y) = inf{g > s | b«(q,y) < ¢q}.
Observe that the boundary b, (q, y) provides the unique solution of (43) with the starting value
b.(q,q—) = h.(q) for each g < 5(y), given that this solution stays strictly above the surface
x =K Vv (rK/5(q,y)). Then the candidate value function should be continuous at the point
(5(y),5(y), ¥), which is expressed by the equality

CIGE() = NEM) =)™ 4 Cy(5(y)—, y) (5 (3)—)2EW Y
=VEO),5(), y; b« (5(y), ¥))
=5(y)— K 49)
for each yy(s) < y < yy_1(s), I € N, and s > K. We can therefore conclude that the
candidate value function admits the representation

V(x, s, v 50, ¥a-1(5), 521()) = Ci(s, y3 5, Fai—1(), T ()71

+ Cals, y3 5(0), Fa—1(8), Tu () (50)
in the regions E;I given by (46), where C;(s, y; 5(y), Y2i—1(s), yu(s)), i = 1,2, provide a
unique solution of the two-dimensional system of first-order linear partial differential equations
in (25)—(26) with boundary conditions (47)—(49) for [ € N. Finally, we observe that the
candidate value function should be given by the condition in the right-hand part of (12) in the
regions

Ry =1{(x,5,5) € E? | 9uls) < y < Pu1(5)

for k € N, which belong to the stopping region D, in (9).
3.3.2. The put option case. Let us finally consider the payoff function G(x) = (L —x)™ in (4).

In this case, solving the system of equations in (21) and (23) we conclude that the function in
(19) admits the representation

Ve, ysas(s, y) = Ci(s, v ax(s, ) + Cols, yi as(s, y)aS? (51
for0 <s —y < ay(s,y) <x <s, with
(y3—i(s, ¥) — Dax(s, y) — y3-i(s, y)L
(€5, ¥) = va-i(s, )l (s, y)
forall0 < y < sandi = 1, 2. Hence, assuming that the boundary function a. (s, y) is contin-
uously differentiable, we apply condition (25) to the functions C; (s, y) = Ci(s, y; a«(s, y)),

i = 1,2, 1in (52) to conclude that a,(s, y) solves the first-order nonlinear ordinary differential
equation

B,a(s. y) = 22: ((r3-i(s,y) = DaCs, y) — y3—i(s, y))as, y)
= (s, y) = D(y3-ils, y) = Dals, y) = vi(s, y)ys—i(s, y) L
» ( 1 (s/a(s, )Y In(s/a(s, y)) )
Y3-i(s,y) = vi(s,y) - (s/a(s, y))76) = (s/als, y))r-i®»
x 357i(s, y) (53)

for 0 < y < s, where the partial derivatives dsy; (s, y), i = 1, 2, are given by (27) with (29).

Ci(s, yiax(s, y)) = (52)
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Since the functions §(s, y) and o (s, y) are assumed to be continuously differentiable and
bounded, the limits 6(y+, y) and o (y+, y) exist for each y > 0. Then the limits y; (y+, y)
can be identified with the functions §;(y), i = 1, 2, from Subsection 3.2, and the function in
(51) should satisfy the property V (x, s, y; ax(s, y)) — V(x, y+, y; ax(y+,y)) as s | y for
each s —y < a.(s,y) < x <s. Thus, we conclude that the equalities

Vi, y+, y;a.(y+,y) = U, y; ax(y+,y)) and a.(y+,y) = g«(y) 54

hold for 0 < a,(y+,y) < x < y and U(x, s; g«(s)) given by (36) with g.(s) obtained in
Subsection 3.2.2. To see this, we observe that the candidate value function evaluated at s | y
in (54) satisfies the normal reflection condition only at the diagonal d3 ={(x,s,y) eR}|0<
x = s = y} of the plane d3, and, thus, the function a,(y+, y) = g«(y) is the maximal solution
of (38) with the boundary condition a, (00, 00) = g«(c0) of (39) as y = s — oo and such that
this solution stays strictly below the curve x = L A (rL/5(y)).

For any y > O fixed, let us now consider the unique solution a,(s, y) of (53) started
at the value a.(y+,y) = g«(y), given that this solution stays strictly below the surface
x =LA (rL/8(s,y)). Then we put 5o(y) = y and define an increasing sequence (5, (¥))neN
such that the boundary a. (s, y) exits the region E> from the side of the plane d13 at the points
(2-1(y), 52-1(y), ) and enters E> upwards at the points (53 (y), 52 (y), y). Namely, we de-
fine 531 (y) = inf{s > 5212(y) | ax(s,y) > s} and 531 (y) = inf{s > 52-1(y) | ax(s,y) <
s}, I € N, whenever they exist, and put 5p;—1(y) = 52;(y) = oo otherwise for ! € N. Note that
y < 52-1(y) <33(y) < L, 1 € N, by construction. Moreover, we put 5o(y) = y and define
an increasing sequence (5,,(y))nen such that 5o, _1(y) = inf{s > Sox_2(y) | asx(s,y) < s —y}
and 53 (y) = inf{s > S3—1(y) | ax(s,y) > s — y}, k € N, whenever they exist, and put
Fu-1(0) = Su(y) = oo otherwise. Note that y < Fp-2(y) < Su-1(y) < L+ y, by
construction, for k = 1, ..., k, where k = sup{k € N | 53x_1(y) — y < L}. Therefore, the
candidate value function admits the expression in (51) in either the region

O3n ={(x,5,y) € E? | Sya(y) <5 < min(For-1 () | 521109 > Fox-2(0) A T2 1 ()

(55)
or

03, ={(x.s. ) € E? | Sya(y) <y < g§{§2k—1(y) | S26-1() > 52120} AS2-1(0)}

~ (56)

fork =1,...,k,and [ € N, and the boundary function a. (s, y) provides the unique solution

of (53) started at the value a.(y+, y) = g«(y), given that this solution stays strictly below the
surface x = L A (rL/5(s, y)) (see Figure 3).

On the other hand, the candidate value function takes the form of (19) with C; (s, y), i = 1, 2,

solving the linear system of first-order partial differential equations in (25) and (26) in the regions

031 =1(x,5,9) € E> | S5-1(y) <5 <5u(»)} (57)

fork =1, k which belong to C’ in (7). Note that the process (X, S, Y) can enter sz 1
in (57) from one of the regions sz , in (55) or Q21 5 in (56) for some [ € N only through
the point (52¢—1(y), s2x—1(¥), y), and can exit sz | Passing to Q2k only through the point
(526(»), 52,(y), ¥) by hitting the plane d and increasing its second component S. Thus,
the candidate value function should be contmuous at the points (52¢—1(y), S2k—1(»), ¥) and
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FIGURE 3: A computer drawing of the state space of the process (X, S, Y) for some fixed y, which increases
to y’, and the boundary function a,(s, y).

(526(»), 526(»), ¥), which is expressed by the equalities
C1Gak=1 ()2 Y) Gakmt (M) CE DD L Co Gt (), ) Gt ()2 F21 00

= VGu-10)—,52%-100)—, ¥; axGu—1(y)—, ¥)) (58)
C1 G (3) =, V) Go (1) )N EHOI =Y 4 €y G (9) =, y) Gag () —) 2E% )=o)
= VEu(y), 52k (y), y; ax (526 (y), ¥)) (59)

fory > Oand k = 1, ,75 — 1, where the right-hand sides are given by (51)—(52) with
ax (S2u-1(3)—, ¥) = G2x—1(y) — y)— and a, (521 (), y) =52x(y) — y, respectively. More-
over, in the region Q;E— , we have 's\zg( y) = oo and condition (59) for k = k changes its form
to Cy(o0, y) = 0 for y > 0, since otherwise V (x, 00, y) — 400 as x 1 0o, which must be
excluded due to the fact that the value function in (4) is bounded at oo, while condition (58)
holds for k = k as well. R

In addition, the process (X, S, Y) can exit Q%k_l in (57), passing to the stopping region D,
in (9) only through the point (s — y(s), s, ¥(s)) by hitting the plane d;’ and increasing its third
component Y until it reaches the value y(s) = inf{z > y | a«(s, z) > s — z}. Observe that
the boundary a, (s, z) provides the unique solution of (53) with the starting value a,(z+, z) =
g«(z) from (38) for each z < y(s), given that this solution stays strictly below the surface
x = L A(L/é(s,z)). Then the candidate value function should be continuous at the point
(s —¥(s), s, y(s)), which is expressed by the equality

C1 (s, 5(8)=) (s — (&) ETOD 1 Oy (s, 7(5) =) (s — F(s)) )22
= V(s —¥(s), 5, ¥(s); ax(s, ¥(5)))

=L—(s—Y() (60)
foreachsy;_1(y) <s <Su(y), k=1,... .k, and y > 0. We can therefore conclude that the

candidate value function admits the representation

V(x, 8, Y5 Su-100), 526 (1), 7(5)) = C1(5, ¥; S2u—1(3), S2x(), Y(5))x11 6
+ Ca(s, ¥5 51 (3), 52 (), P2 (61)
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in the regions ng—l in (57), where C; (s, y; 521—1(3), 52t (), ¥(s5)), i = 1, 2, provide a unique
solution of the two-dimensional system of linear pa}r\tial differential equations in (25)—(26) with
the boundary conditions (58)—(60) for k = 1, ..., k. Finally, we note that the candidate value
function should be given by the condition in the left-hand part of (12) in the regions

031 ={(.5.) € B> | 5 1(y) <5 < (1)}

for I € N, which belong to the stopping region D, from (9).

4. Main results and proof

In this section, taking into account the facts proved above, we formulate and prove the main
results of the paper. We recall that the process (X, S, Y) is defined in (1)—(3).

Theorem 1. In the perpetual American call option case with payoff function G (x) = (x —K)™,
the value function of the optimal stopping problem (4) has the expression

V(-x7svy;b*(s’y)) ifs_yfx<b*(sa)’)55,
V*(.X,S, J’) = V(xv Sv )’»E(y), yZI—l(S)v yZI(S)) l..fs _y S X S s < b*(ss )’):
x—K fbi(s,y) =x <,

and the optimal stopping time is given by the right-hand part of (6), where the functions
V(x,s,y;bi(s, y)) and V(x, s, y; 5(y), Yu—-1(5), y2(s)) as well as the boundary b (s, y) are
specified as follows.

(1) In the particular case §(s,y) = 8(s) and o(s,y) = o(s), the function V(x,s,y;
by(s,y)) = U(x,s; hi(s)) and the boundary b*(s y) = hy(s) are given by (3]) for
(x,s) € RZZ | defined in (32), and V(x 8,y 5(), Ya—1(s), yu(s)) = U(x, s;5-1) is
given by (35) whenever (x, s) € R ; defined in (33) for 1 € N.

(i1) In the general case for 6(s,y) and o (s, ), the function V(x, s, y; bi(s, y)) is given
by (41)—(42) and the boundary b (s, y) provides the unique solution of (43) started
at the value b, (s, s— ) =h (s) from (31), given that b,(s,y) > K VvV (rK/(s,y))
holdsfor (x,s8,y) € Rzl Y Rzk | defined in (44) and (45), resgectzvely, andV(x,s,y;
S(Y), Ya—1(s), ¥ (s)) is given by (50) whenever (x,s, y) € Rzl defined in (46) with
Ci(s, y;5(3), Y2r—1(s), y21(s)), i = 1,2, solving the system of equations in (25)—(26)
and satisfying conditions (47)—(49) for k,1 € N, where (48) changes its form to
Co(s,s—) =0whenl =1, if byu(s,s—) = hy(s) > s holds.

Theorem 2. In the perpetual American put option case with payoff function G(x) = (L —x)™,
the value function of the optimal stopping problem (4) has the expression

Vi(x,s,y:as(s,y)) ifs—y <ax(s,y) <x <s,
Vi(x,5,9) = 1 V(x, 8,y 5%-1(0), 5% (), ¥(s)) ifas(s,y) <s—y=<x=<s, (62
L—x ifs —y <x <a(s,y),

and the optimal stopping time is given by the left-hand part of (6), where the functions
V(x,s,y;ax(s, y) and V(x, s, y; 5u-1(), 52(y), ¥(s)) as well as the boundary a.(s, y) are
specified as follows.

https://doi.org/10.1239/jap/1409932675 Published online by Cambridge University Press


https://doi.org/10.1239/jap/1409932675

814 P. V. GAPEEV AND N. RODOSTHENOUS

(1) In the particular case §(s,y) = 6(s) and o(s,y) = o(s), the function V(x,s,y;
ax(s,y)) = Ulx,s; g«(s)) is given by (36)—(37) and the boundary a.(s,y) = g«(s)
provides the maximal solution of (38) started at g4+(00) from (39) such that g.(s) <
L A (rL/8(s)) holds for (x, s) € sz | defined in (40) and k € N.

(i1) In the general case for (s, y) and o (s, ), the function V(x, s, y; a.(s,y)) is given
by (51)—(52) and the boundary a.(s, y) provides the unique solution of (53) started
from the value a*(y—l— y) = g*(y)from part (i), given that a,(s,y) < L A (rL/5(s,y))
holdsfor (x,s,y) € Q2k U Qzl , definedin (55) and (56), respecnvely, andV(x,s,y;
G 1(y) (), Y(s)) is given by (61) whenever (x, s, y) € Q2k | defined in (57) with
Ci(s, V5100, 5% (), ¥(s)), i = 1,2, solving tﬁe system of equations in (25)—(26)
and satisfying conditions (58)—(60) for k =1, ...,k and | € N, where (59) changes its
formto Ci1(c0,y) = 0 when k = k.

Since all the parts of the assertions formulated above are proved using similar arguments, we
only give a proof for the three-dimensional optimal stopping problem related to the perpetual
American put option in part (ii) of Theorem 2, which represents the most complicated and
informative case.

Proof of Theorem 2. In order to verify the assertion, it remains to show that the function
defined in (62) coincides with the value function in (4) and that the stopping time 7, in the
left-hand part of (6) is optimal with the boundary a. (s, y) specified above. For this, let a(s, y)
be the unique solution of (53) starting from the value a(y+, y) = g(y), being any solution
of (38) starting from a, (0o, 00) = g.«(00) in (39) and satisfying g(y) < L A (rL/3(y))
for all y > 0. Let us also denote by V,(x, s, y) the right-hand side of (62) associated with
this a(s, y). It then follows using straightforward calculations and the assumptions presented
above that the function V,(x, s, y) solves the left-hand system of (10)—(12), while the normal
reflection and smooth-fit conditions satisfy (15) and the left-hand part of (16). Hence, taking
into account the fact that the function V,(x, s, y) is C2 L1 and the boundary a(s, y) is assumed
to be continuously differentiable for all 0 < y < s, by applying the change-of-variable formula
from [23, Theorem 3.1] to e "'V, (X;, S;, Y;), we obtain

e_rtVu(Xtr Sl’ YI) = ‘/Ll(-x’ s, y) + Ml
t
+/ e M (LVy — rVa)(Xu, Sus Yu)
0
x I (Xy # Sy — Yy, Xy Za(Su, V), Xy # Sy)du
t
+/ e_ruaxva(Xua Su, YW I(Xy = S,)dS,
0
t
b [ eV 1 Y1 = 5, V), (63)
0
where I (-) denotes the indicator function and the process M = (M;);>0, given by
t
Mt = / e_ruaxva(xu, Su: Yu)I(Xu 75 Su - Yu’ Xu 75 SL!)G(Suv Yu)Xu dBuv (64)
0
is a square-integrable martingale under P, ; . Note that since the time spent by the process X

at the boundary surface {(x, s, y) € E3 | x = a(s, y)} as well as at the planes d? and d; is of
Lebesgue measure 0, the indicators in the second line of (63) as well as in (64) can be ignored.
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Moreover, since the process S increases only at the plane df and the process Y increases only
at the plane d;’, the indicators in the third line of (63) can also be set equal to 1.

By using straightforward calculations and the arguments from the previous section, it is
verified that (ILV, — rV,)(x, s, y) <0 forall (x, s, y) € E3 such that x Za(s,y),x#£s—Yy,
and x # s. Moreover, it is shown by means of standard arguments that the property in the
left-hand part of (13) also holds, which together with the left-hand parts of (11)—(12) implies
that the inequality V,, (x, s, y) > (L —x) ™ is satisfied for all (x, s, y) € E3. Tt therefore follows
from (63) that the inequalities

e (L — Xo)T <e"Vu(Xe, Sp, Vo) < Valx,s,y) + M, (65)

hold for any finite stopping time t with respect to the natural filtration of X.
Taking the expectation with respect to Py 5 y in (65) by means of the optional sampling
theorem (see, e.g. [16, Chapter I, Theorem 3.22]), we obtain

Ex,s,y[e_r(TN) (L — Xr/\t)+] =< Ex,s,y[e_r(rN) Va(Xzat, Scars Year)]
< Valx,s,y)+ Ex,s,yMt/\t
= Vu(x,s,y) (66)

forall (x,s,y) € E 3. Hence, letting ¢ go to oo and using Fatou’s lemma, we conclude that, for
any finite stopping time t, the inequalities

Ex,s,y[e_” (L — Xr)+] =< Ex,s,y[e_” Va(Xe, Se, Yo)l < Valx, s, y) (67)

are satisfied for all (x, s, y) € E3. Taking first the supremum over all stopping times t and
then the infimum over all a, we conclude that

E}C,S,V[e_rr*(l‘ - X‘L'*)Jr] S lnf Va(xv S, )’) = Va*(-xv S? y)’ (68)
7 a

where a. (s, y) is the unique solution of (53) starting from the value a..(y+, y) = g«(y), which
is the maximal solution to (38) being started at a,. (00, 00) = g.(00) in (39) and staying strictly
below the curve x = L A (rL/§(y)). Using the fact that V, (x, s, ¥) is decreasing in the function
a < L A (rL/é§), we see that the infimum in (68) is attained over any sequence of solutions
(an(s, y))nen to (53) started at the values a,(y+,y) = gn(y), solving (38) and such that
gn(y) 1 g«(v),and, thus, a, (s, y) 1 a«(s, y) asn — oo. Since the inequalities in (67) also hold
for a. (s, y), we see that (68) holds for a. (s, y) and (x, s, y) € E3 as well. Note that Valx,s,y)
in (66) is superharmonic for the Markov process (X, S, Y) on E 3, Taking into account the facts
that V,(x, s, y) is decreasing in a < L A (rL/8) and the inequality V,(x,s, y) > (L — x)*
holds for all (x,s,y) € E 3. we observe that the selection of the maximal solution as (s, y),
which stays strictly below the surface x = L A (rL/3(s, y)) whenever such a choice exists,
is equivalent to invoking the superharmonic characterization of the value function, which
consists of constructing the smallest superharmonic function dominating the payoff function
(see, e.g. [22] or [26, Chapter 1]).

In order to prove that a (s, y) is optimal on E>, we consider the sequence of stopping times
7, defined as in the left-hand part of (6) with a, (s, y) instead of a.(s, y), where a, (s, y) is
the unique solution of (53) started from the value a, (y+, y) = g,(y) which solves (38) and
starts at a, (00, 00) = g4(00) in (39), and such that g, (y,) = L A (rL/5(y,)) for some y, | ¢
as n — oo, where ¢ > 0 such that goo(y) < L A (rL/8(y)) for all y < c¢. By virtue of the
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fact that the function V,, (x, s, y) from the right-hand side of (62) associated with this a, (s, y)
satisfies the left-hand system of (10)—(13) with (15), and taking into account the structure of t,
given by the left-hand part of (6) with a,, (s, y) instead of a, (s, y), it follows from the equivalent
expression of (63) that the equalities

e "ANL — X a) T =TTV, (X Sounes Yognt) = Vi, (X, 8, ¥) + My, o (69)

hold for all (x,s,y) € E 3. Observe that 1, 1 74 (Px5,y-almost surely) and the variable
e "(L - X r*)+ is bounded on the set {t, = oo}. Taking into account the fact that the
boundary a.(s, y) is bounded, it is easily seen that the property P s (7« < 00) = 1 holds for
all (x,s,y) € E3. Hence, letting t and n go to oo and using the conditions in the left-hand
part of (11) and (15), as well as the fact that 7, 1 7, (Px 5, y-almost surely), we can apply the
Lebesgue dominated convergence theorem to (69) to obtain the equality

Ex,s,y[e_”* (L — Xr*)+] = Va* (x,8,)
forall (x,s,y) € E 3 which together with (68) directly implies the desired assertion.
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