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0. Introduction

Let G be a ¢nite group and E a number ¢eld. Let OE denote the ring of integers in E,
Y :� Spec�OE�, and

Cl�OYG� :� ker�rank: K0�OEG� ! Z�
the locally free classgroup associated with E and G. For any kX 1, Cassou^Nogue© s
and Taylor have constructed a certain endomorphism cCNT

k of Cl�OYG� which,
via Fro« hlich's Hom-description of Cl�OYG�, is dual to the kth Adams operation
on the classical ring of virtual characters of G (see [CT]). Now, let
gcd�k; ord�G�� � 1 and let k0 2N be an inverse of k modulo ord�G�. In the paper
[K 3], we have shown that then the endomorphism cCNT

k0 is a simply de¢nable sym-
metric power operation sk.

Now, let F=E be a ¢nite tame Galois extension with Galois group G. Let
f : X :� Spec�OF � ! Y denote the corresponding G-morphism and let f� be the
homomorphism

f� : K0�G;X � ! Cl�OYG�; �E� 7! �f��E�� ÿ rank�E� � �OYG�;
from the Grothendieck group K0�G;X � of all locally free OX -modules with
(semilinear) G-action to Cl�OYG�. Furthermore, let D denote the different of
F=E and ck the kth Adams operation on K0�G;X �. The paper [BC] by Burns
and Chinburg together with the identi¢cation of cCNT

k0 with sk mentioned above

Compositio Mathematica 124: 195^217, 2000. 195
# 2000 Kluwer Academic Publishers. Printed in the Netherlands.

https://doi.org/10.1023/A:1026579331113 Published online by Cambridge University Press

https://doi.org/10.1023/A:1026579331113


then implies the following Riemann^Roch type formula for all x 2 K0�G;X �:

sk� f��x�� � f�
Xk0ÿ1
i�0
�Dÿik� � ck�x�

 !
in Cl�OYG�=IndG

1 Cl�OY � �1�

(see Theorem 5.6 and Theorem 3.7 in [K 3]).
We now assume that Y is an arbitrary Dedekind scheme (i.e., Noetherian, regular,

irreducible, and dim�Y � � 1) and that X is the normalization of Y in a ¢nite Galois
extension F of the function ¢eld E of Y with Galois group G. We again assume
that the corresponding G-morphism f : X ! Y is tamely rami¢ed. Similarly to
the number ¢eld case, we de¢ne the locally free classgroup Cl�OYG� (see Section
2 or [AB]), the symmetric power operation sk on Cl�OYG� (see Sections 1 and
2), and the homomorphism f� : K0�G;X � ! Cl�OYG� (see Section 3). The object
of this paper is to study the following natural question. Does the formula (1) still
hold in this more general situation?

First of all, we mention that the paper [BC] also implies that the formula (1) holds
if Y is a projective smooth curve over a ¢nite ¢eld L and the characteristic of L does
not divide the order of G (see Theorem 3.5(b)). In this semisimple function ¢eld case,
a Hom-description of Cl�OYG� again exists and the operation sk is dual to the
Adams operation ck0 as in the number ¢eld case (see Theorem 2.10). In particular,
Fro« hlich's techniques can be applied as in the number ¢eld case (see [BC]).

In this paper, we moreover obtain the following results whose proof however
requires completely different methods since there is no Hom-description of
Cl�OYG� available in general.

THEOREMA. The formula (1) holds if one of the following assumptions is satis¢ed:

(a) k � 1.
(b) The group G is Abelian and f : X ! Y is unrami¢ed.

THEOREM B. The formula (1) holds after passing from Cl�OYG�=IndG
1 Cl�OY � to

K̂0�G;Y ��kÿ1�=�IndG
1K0�Y ��K̂0�G;Y ��kÿ1� via the Cartan homomorphism.

Here, K0�G;Y � denotes the Grothendieck group of all locally free OY -modules
with G-action and K̂0�G;Y ��kÿ1� denotes the I-adic completion of K0�G;Y ��kÿ1�
where I is the augmentation ideal of K0�G;Y ��kÿ1�.

The proof of Theorem A in the case k � 1 relies on the results of the paper [C] by
Chase (see Proposition 3.2). Note that, despite the fact sk � id for k � 1, the formula
(1) is nontrivial since k0 may be an arbitrary natural number in the coset
1� ord�G�Z. If G is Abelian and f : X ! Y is unrami¢ed, the proof of Theorem
A relies on the following two facts (see Theorem 3.5). Firstly, applying the operation
sk to the element �Q� ÿ �P� in Cl�OYG� is the same as pulling back the G-action on P
and Q along the automorphism G! G, g 7! gk (see Theorem 2.7). Secondly, the
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map H1�Y ;G� ! Cl�OYG� which maps a principal G-bundle f : X ! Y to the class
�f��OX �� ÿ �OYG� is a homomorphism (by Theorem 5 in the paper [W] by
Waterhouse). Theorem B follows from the equivariant Adams^Riemann^Roch
theorem (see [K 2]) and the case k � 1 of Theorem A (see Theorem 3.3). Moreover,
in the semisimple function ¢eld case mentioned above, the formula (1) modulo
torsion can be deduced from Theorem B if the order of G is a power of a prime
(see Remark 3.6).

1. Symmetric Power Operations on K0-, K1-, and Relative
Grothendieck Groups

Let X be a Noetherian scheme and G a ¢nite group which, in this section, is assumed
to act trivially on X .

First, we introduce the category of locally projective modules over the group ring
OXG. Then, we (purely algebraically) construct symmetric power operations on
the Grothendieck group K0�OXG� and the Bass group Kdet

1 �OXG� associated with
this category. While these constructions are more or less obvious generalizations
of the constructions in Section 1 of [K 3] (for K0 andK1), the subsequent construction
of symmetric power operations on relative Grothendieck groups (in the sense of [B])
is new. We furthermore show that these operations are compatible with the maps in
the localization sequence. Finally, we present some cases in which the relative
Grothendieck groups can be identi¢ed with Grothendieck groups of certain torsion
modules.

By a (quasi-)coherent OXG-module we mean a (quasi-)coherent OX -module P
together with an action of G on P by OX -homomorphisms. Homomorphisms
and exact sequences of quasi-coherentOXG-modules are de¢ned in the obvious way.
We call a coherent OXG-module P locally projective iff the stalk Px is a projective
OX ;xG-module for all x 2 X . Let K0�OXG� denote the Grothendieck group of all
locally projective OXG-modules.

Remark 1.1. If X � Spec�A� is af¢ne, then P is locally projective if and only if
P :� H0�X ;P� is a ¢nitely generated projective AG-module. (Easy to prove.)

We are now going to construct the above-mentioned symmetric power operations.
As in Section 1 of [K 3], it is convenient to introduce the following categories. For
any iX 1, let Mi denote the smallest full subcategory of the Abelian category of
all coherent OXG-modules which is closed under extensions and kernels of
OXG-epimorphisms and which contains all the modules of the form
Symi1

OX
�P1� 
OX . . .
OX Symir

OX
�Pr� where P1; . . . ;Pr are locally projective coherent

OXG-modules, i1; . . . ; ir are natural numbers with i1 � � � � � ir � i, and G acts
diagonally. So,M1 is the category of all locally projective coherent OXG-modules.
By Proposition 1.1 in [K 3], the category Mi is contained in M1 if gcd�i; ord�G��
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is invertible on X . It is easy to see that, for all i; jX 1, the functor

Mi �Mj !Mi�j; �P;Q� 7!P 
OX Q;
is well-de¢ned and bi-exact (cf. Lemma 1.2 in [K 3]). In particular, we obtain prod-
ucts K0�Mi� � K0�Mj� ! K0�Mi�j�, i; jX 1, and the set 1�QiX 1 K0�Mi�ti consist-
ing of all power series 1�PiX 1 ait

i with ai 2 K0�Mi� forms an Abelian group
with respect to multiplication of power series. As usual, one shows that the associ-
ation �P� 7! P

iX 0�Symi
OX
�P��ti can be extended to a well-de¢ned homomorphism

s : K0�OXG� ! 1�
Y
iX 1

K0�Mi�ti

(see Section 1 of Chapter V in [FL] and Lemma 1.3 in [K 3]). The ith component of
this homomorphism is denoted by si. We have for all x; y 2 K0�OXG�:

si�xÿ y� �
X

aX 0;b1;...;bu X 1
a�b1�...�bu�i

�ÿ1�usa�x�sb1 �y� � � �sbu �y�

�
X

a;b1 ;...;bu X 1
a�b1�...�bu�i

�ÿ1�u�sa�x� ÿ sa�y��sb1�y� � � � sbu�y�

inK0�Mi� (cf. Section 2 in [G 2]). If gcd�i; ord�G�� is invertible onX , let si also denote
the composition

K0�OXG� ÿ!s
i

K0�Mi� ÿ!can
K0�OXG�:

The map si is called ith symmetric power operation.
Now, letK0�Z;Mi� denote the Grothendieck group of all pairs �P; a�where P is an

object of Mi and a is an OXG-automorphism of P. We put K0�Z;OXG� :�
K0�Z;M1�. As above, the association ��P; a�; �Q; b�� 7! �P 
OX Q; a
OX b� induces
a multiplication map

K0�Z;Mi� � K0�Z;Mj� ! K0�Z;Mi�j�
(for all i; jX 1) and the association �P; a� 7! P

iX 0�Symi
OX
�P�; Symi

OX
�a��ti induces a

homomorphism

s : K0�Z;OXG� ! 1�
Y
iX 1

K0�Z;Mi�ti:

By restricting, we obtain symmetric power operations

si : ~K0�Z;OXG� � ~K0�Z;M1� ! ~K0�Z;Mi�; iX 1;

between the reduced Grothendieck groups

~K0�Z;Mi� :� ker�K0�Z;Mi� ! K0�Mi�; �P; a� 7! �P��; iX 1:
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We denote the factor group of K0�Z;Mi� modulo the subgroup generated by the
relations of the form �P; ab� ÿ �P; a� ÿ �P; b� by Kdet

1 �Mi�. (Note that in particular
�P; id� is in the group of relations.) If X � Spec�A� is af¢ne, the group
Kdet

1 �OXG� � Kdet
1 �M1� coincides with the usual Bass-Whitehead group K1�AG�

of the group ring AG (by Remark 1.1). In the sequel, we consider Kdet
1 �Mi� as

the factor group of ~K0�Z;Mi� modulo the subgroup Ii generated by the relations
of the form �P; ab� ÿ �P; a� ÿ �P; b� � �P; id�. Since

��P; ab� ÿ �P; a� ÿ �P; b� � �P; id�� � �Q; g�
� �P 
 Q; ab
 g� ÿ �P 
 Q; a
 g� ÿ �P 
 Q; b
 id� � �P 
 Q; id
 id�� � ÿ
ÿ �P 
Q; b
 g� ÿ �P 
 Q; id
 g� ÿ �P 
 Q; b
 id� � �P 
 Q; id
 id�� �;

the group IiK0�Z;Mj� is contained in Ii�j and we obtain a multiplication map

Kdet
1 �Mi� � Kdet

1 �Mj� � ~K0�Z;Mi�=Ii � ~K0�Z;Mj�=Ij ! Kdet
1 �Mi�j�

(for all i; jX 1) which is obviously trivial, i.e., the product of any two power seriesP
iX 0 xit

i,
P

iX 0 yit
i in 1�QiX 1 K

det
1 �Mi�ti is 1�PiX 1�xi � yi�ti.

LEMMA 1.2. The homomorphism s : ~K0�Z;OXG� ! 1�QiX 1
~K0�Z;Mi�ti induces

a homomorphism s : Kdet
1 �OXG� ! 1�QiX 1 K

det
1 �Mi�ti. Each component

si : Kdet
1 �OXG� ! Kdet

1 �Mi� of s is a homomorphism.
Proof. Let P 2 M1 and a; b 2 AutOXG�P�. We write S for Sym. Then, for all aX 1,

the element

�Sa�P � P�; Sa�ab� id�� ÿ �Sa�P � P�; Sa�a� b��

�
Xa
c�0

�
�Sc�P� 
 Saÿc�P�; Sc�ab� 
 Saÿc�id�� ÿ �Sc�P� 
 Saÿc�P�; Sc�a� 
 id� ÿ

ÿ �Sc�P� 
 Saÿc�P�; Sc�b� 
 id� � �Sc�P� 
 Saÿc�P�; id
 id�
�
ÿ

ÿ
Xa
c�0

�
�Sc�P� 
 Saÿc�P�; Sc�a� 
 Saÿc�b�� ÿ �Sc�P� 
 Saÿc�P�; Sc�a� 
 id� ÿ

ÿ �Sc�P� 
 Saÿc�P�; id
 Saÿc�b�� � �Sc�P� 
 Saÿc�P�; id
 id�
�

is contained in Ia. Since

si�xÿ y� �
X

a;b1 ;...;bu X 1
a�b1�...�bu�i

�ÿ1�u�sa�x� ÿ sa�y��sb1 �y� � � � sbu �y�

(for all x; y 2 K0�Z;M1�), this implies that the element

si �P; ab� ÿ �P; a� ÿ �P; b� � �P; id�� � � si �P � P; ab� id� ÿ �P � P; a� b�� �
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is contained in Ii, as was to be shown. For all x; y 2 Kdet
1 �M1�, we have

s�x� y� � s�x� � s�y� � 1�
X
iX 1

�si�x� � si�y��ti in 1�
Y
iX 1

Kdet
1 �Mi�ti;

thus, si is a homomorphism for all iX 1.

Now, let j : U ! X be a morphism between Noetherian schemes. Similarly to
Secion 5 of Chapter VII in [B], let K0�co� j�i �� denote the Grothendieck group of
all triples �P; a;Q� where P and Q are objects in Mi and a : j��P� ! j��Q� is an
OUG-isomorphism. As above, the association

��P; a;Q�; �P0; a0;Q0�� 7! �P 
OX P0; a
OU a0;Q
OX Q0�
induces, for all i; i0X 1, a multiplication map

K0�co�j�i �� � K0�co�j�i0 �� ! K0�co�j�i�i0 ��
and the association �P; a;Q� 7! P

iX 0�Symi
OX
�P�; Symi

OU
�a�; Symi

OX
�Q��ti induces a

homomorphism

s : K0�co�j�1 �� ! 1�
Y
iX 1

K0�co�j�i ��ti:

By restricting, we obtain symmetric power operations

si : ~K0�co�j�1 �� ! ~K0�co�j�i ��; iX 1;

between the reduced Grothendieck groups

~K0�co�j�i �� :� ker�K0�co�j�i �� ! K0�Mi�; �P; a;Q� 7! �P��:
Let K0�j�i � denote the factor group of K0�co�j�i �� modulo the subgroup generated by
the relations of the form �P; ba;R� ÿ �P; a;Q� ÿ �Q; b;R� (see also Proposition (5.1)
on p. 370 in [B]). In the sequel, we consider K0�j�i � as the factor group of ~K0�co�j�i ��
modulo the subgroup Ii generated by the elements of the form �P; ba;R�ÿ
�P; a;Q� ÿ �Q; b;R� � �Q; id;Q�. As above, one easily sees that IiK0�co�j�i0 �� is con-
tained in Ii�i0 and we obtain a multiplication map

K0�j�i � � K0�j�i0 � ! K0�j�i�i0 �
for all i; i0X 1 which however (in contrast to Kdet

1 ) seems not to be trivial in general.

LEMMA 1.3. The homomorphism s : ~K0�co�j�1 �� ! 1�QiX 1
~K0�co�j�i ��ti induces a

homomorphism s : K0�j�1 � ! 1�QiX 1 K0�j�i �ti.
Proof. Similarly to Lemma 1.2.

The association �P; a;Q� 7! �Q� ÿ �P� obviously de¢nes a homomorphism

ni : K0�j�i � ! K0�Mi�
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for all iX 1. (Side Remark: If we would have chosen the map �P; a;Q� 7! �Q� in the
de¢nition of the reduced Grothendieck group, then we would have to replace ni
by ÿni in the following lemma.)

LEMMA 1.4. The multiplication maps are compatible with the homomorphisms ni,
iX 1. The same holds for the symmetric power operations si, iX 1; i.e., the following
diagram commutes for all iX 1:

K0�j�1 � ÿ!
n1 K0�M1�??ysi ??ysi

K0�j�i � ÿ!
ni K0�Mi�:

Proof. We only prove the assertion for si. Let P;Q;R 2M1 and let
a : j��P� ~! j��Q� and b : j��Q� ~! j��R� be OUG-isomorphisms. We again write S

for Sym. Then we have in K0�Mi�:

nisi�P; a;Q� � nisi��P; a;Q� ÿ �P; id;P��

� ni

 X
aX 0;b1 ;...;bu X 1
a�b1�...�bu�i

�ÿ1�u
�

Sa�P� 
 Sb1 �P� 
 . . .
 Sbu �P�; Sa�a� 
 id
 . . .
 id;

Sa�Q� 
 Sb1 �P� 
 . . .
 Sbu �P�
�!

�
X

a;b1 ;...;bu X 1
a�b1�...�bu�i

�ÿ1�u �Sa�Q�� ÿ �Sa�P��� � � �Sb1�P� 
 . . .
 Sbu�P��

� si��Q� ÿ �P�� � sin1�P; a;Q�:

We now assume thatU � Spec�F � is af¢ne. Then, by Proposition (2.1) on p. 393 in
[B], the association ��m FG; a� 7! ��m OXG; a;�

m OXG� induces a connecting
homomorphism

@ : K1�FG� ! K0�j�1 �

with n1 � @ � 0.

LEMMA 1.5. Let gcd�i; ord�G�� be invertible on X. Then we have:

si � @ � @ � si in Hom�K1�FG�;K0�j�1 ��:

The multiplication maps are compatible with @ (in the obvious sense), too. In par-
ticular, the multiplication on Image�@� is trivial and the operation si is a
homomorphism on Image�@�.

Proof. Easy.
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PROPOSITION 1.6. The following sequence is exact:

K1�FG� !@ K0�j�1 � !
n1 K0�OXG� !

j�
K0�FG�:

Proof. Apply Theorem (2.2)(b) on p. 396 in [B].

Now, let H denote the category of all coherent OXG-modules V which allow a
resolution of length W 1 by locally projective coherent OXG-modules and for which
j��V� � 0 holds. Furthermore, let K0T �OXG� denote the Grothendieck group of
H. By mapping the class �V� of a coherent OXG-module V with the resolution
0! P !a Q! V ! 0 and with j��V� � 0 to the element �P; j��a�;Q� in K0�j�1 �,
we obviously obtain a homomorphism

c : K0T �OXG� ! K0�j�1 �:

PROPOSITION 1.7. The homomorphism c is bijective in the following cases:

(a) X � Spec�A� is a¤ne, F is the localization AS of A by a multiplicative set S of
non-zero-divisors in A, and j : U � Spec�F � ! X � Spec�A� is the canonical
morphism.

(b) The morphism j : U � Spec�F � ! X is an open immersion and the ideal I of the
complement Y :� XnU is locally generated by a non-zero-divisor.

(c) X is a Dedekind scheme (i.e., Noetherian, regular, irreducible, and dim�X � � 1), F
is the function ¢eld of X and j : U � Spec�F � ! X is the canonical morphism.

Proof. The assertion (a) follows from (the proof of) Theorem (5.8) on p. 429 in [B].
In the case (b), we construct an inverse map as follows: Let �P; a;Q� be a generator of
K0�j�1 �. Then, the image of the composition

~a : P ÿ!can
j�j��P� ÿ!

j��a�
j�j��Q� � [nX 0IÿnQ

(see Lemma 2 on p. 231 in [G 1] for the last equality) is contained in IÿnQ for some
nX 0. We put

f�P; a;Q� :� �coker�P ,!~a IÿnQ�� ÿ �coker�Q ,!can IÿnQ�� 2 K0T �OXG�:
As in loc. cit., one easily checks that the association �P; a;Q� 7!f�P; a;Q� induces a
well-de¢ned map f : K0�j�1 � ! K0T �OXG�which is an inverse of c. In the case (c), we
construct an inverse map as follows. Let �P; a;Q� be a generator of K0�j�1 �. The
isomorphism a : j��P� ~! j��Q� can be extended to an isomorphism PjU ~! QjU
where U is an open subset of X . The ideal I of the complement Y :� XnU is then
locally generated by a non-zero-divisor. We now de¢ne f�P; a;Q� as in the case
(b). As in loc. cit., one again easily checks that the association �P; a;Q� 7!
f�P; a;Q� induces a well-de¢ned map f : K0�j�1 � ! K0T �OXG� which is an inverse
of c.
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Remark 1.8. We assume that one of the conditions (a), (b), (c) of Proposition 1.7
holds.

(a) The K -theory space of the exact category H is homotopy equivalent to the
homotopy ¢bre of the canonical continuous map from the K -theory space of
M1 to the K -theory space of the exact category consisting of all ¢nitely generated
projective FG-modules (see [G 1] and [AB]). Hence, we have a long exact
(localization) sequence

. . .! K1�FG� ! K0T �OXG� ! K0�OXG� ! K0�FG�:

The end of this sequence can be identi¢ed with the exact sequence in Proposition
1.6 by virtue of Proposition 1.7.

(b) If gcd�i; ord�G�� is invertible on X , we obtain a symmetric power operation
si : K0T �OXG� ! K0T �OXG� by virtue of the isomorphism c. It maps the class
�V� of a coherent OXG-module V in H with the resolution
0! P !a Q! V ! 0 to the elementX

a;b1 ;...;bu X 1
a�b1�...�bu�i

�ÿ1�u
h
coker

�
Syma�P� 
 Symb1 �P� 
 . . .
 Symbu �P�

Syma�a�
id
...
id
ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ!Syma�Q� 
 Symb1 �P� 
 . . .
 Symbu�P�

�i
:

(Note that the contribution of a � 0 would be 0 to this sum.)
Alternatively, the operation si on K0T �OXG� can also be constructed as follows.
Let E denote the exact category of all short exact sequences 0! P !
Q! V ! 0 with P;Q 2M1 and V 2 H. Then, we have a canonical
isomorphism

K0T �OXG� � K0�H� � ker�K0�E� ! K0�OXG�;
�0! P ! Q! V ! 0� 7! �P��:

The association

�0! P !a Q! V ! 0� 7! �0! Symi�P� ÿ!Symi�a�
Symi�Q�

! coker�Symi�a�� ! 0�

induces an operation si on K0�E� as usual. It is then easy to check that its
restriction to K0T �OXG� coincides with the operation si constructed above.
Moreover, the latter construction can be extended to all higher K-groups
Kq�H�, qX 0, by using the methods of [G 2]. On the other hand, we have a sym-
metric power operation si on the K -theory space of M1 and on the K-theory
space of the category consisting of all ¢nitely generated projective modules (see
Section 1 in [K 3]), hence also on the homotopy ¢bre mentioned in (a) and ¢nally
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on Kq�H�, qX 0. It seems to be plausible that these two constructions of si on
Kq�H�, qX 0, coincide. I hope to say more on this in a future paper.

2. Symmetric Power Operations on Locally Free Classgroups of
Dedekind Schemes

Let X be a Dedekind scheme (i.e. Noetherian, regular, irreducible and dim�X �W 1)
with function ¢eld F , and let G be a ¢nite group.

First, we recall the de¢nition of the locally free classgroup Cl�OXG� (see [AB] or
[BC]). Using the tools developed in Section 1 and a theorem of Swan, we then show
that the locally free classgroup coincides with the analogously de¢ned locally pro-
jective classgroup and that the operations si, iX 1, constructed in Section 1 are
homomorphisms on Cl�OXG�. Furthermore, we prove the following concrete
interpretations of the operations si, iX 1, on Cl�OXG�. Firstly, if G is Abelian
and gcd�i; ord�G�� � 1, then pulling back the action of G on locally free
OXG-modules along the automorphism G! G; g 7! gi, induces the operation si

on Cl�OXG�. Secondly, if X is a smooth curve over an (algebraically closed or) ¢nite
¢eld L such that the characteristic of L does not divide the order of G, then the
identi¢cation of the locally free with the locally projective classgroup allows us
a simple module theoretic description of the isomorphism between Cl�OXG� and
HomGalois�K0� �LG�;Cl� �X �� (developed in [AB]), and the operation si on Cl�OXG�
is dual to the adjoint Adams operation ĉi on K0� �LG� with respect to this
isomorphism. The proof of the latter result presented here can also be applied in
the number ¢eld case and then simpli¢es the proof of Theorem 3.7 in [K 3].

A coherent OXG-module P is called locally free over OXG iff the stalk Px is a free
OX ;xG-module for all x 2 X . By Proposition (30.17) on p. 627 in [CR], this is equiv-
alent to the condition that Px 
OX ;x ÔX ;x is a free ÔX ;xG-module for all closed points
x 2 X . (Here, ÔX ;x denotes themx-adic completion ofOX ;x andmx the maximal ideal
inOX ;x.) Let K lf

0 �OXG� denote the Grothendieck group of all coherentOXG-modules
which are locally free over OXG.

Remark 2.1. Let X � Spec�A� be af¢ne. Then we also write K lf
0 �AG� for K lf

0 �OXG�.
This is the Grothendieck group considered for instance in [F 1]. If A is a local
Dedekind domain, then the rank (over AG) induces an isomorphism
K lf

0 �AG� ~! Z. If char�A� � 0 and and no prime divisor of ord�G� is a unit in A,
then any ¢nitely generated projective AG-module is already locally free by Swan's
theorem (see Theorem (32.11) on p. 676 in [CR]). The same holds if p �
char�A� > 0 and G is a p-group since then the group rings OX ;xG, x 2 X , are local
rings. We will prove in Proposition 2.4 that the locally free classgroup de¢ned below
always coincides with the analogously de¢ned locally projective classgroup.

DEFINITION 2.2. The group

Cl�OXG� :� ker�K lf
0 �OXG� ÿ!can

K lf
0 �FG� � Z�
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is called the locally free classgroup associated with X and G.

Let K0T �OXG� (resp., K lf
0 T �OXG�) denote the Grothendieck group of all coherent

OXG-modules which areOX -torsion modules and which allow a resolution of length
W 1 by locally projective (resp., locally free)OXG-modules. The notationK0T �OXG�
obviously agrees with the notation introduced in Section 1 (if j : U � Spec�F � ! X is
the canonical morphism).

LEMMA 2.3. The canonical homomorphisms

K0T �OXG� ! �
x2X closed

K0T �OX ;xG�

and

K lf
0 T �OXG� ! �

x2X closed
K lf

0 T �OX ;xG�

are bijective.
Proof. Let x be a closed point ofX andV a ¢nitely generatedOX ;xG-module which

is OX ;x-torsion and which allows an OX ;xG-projective (resp., OX ;xG-free) resolution
0! P! Q !E V ! 0. Let i : Spec�OX ;x�,!X denote the inclusion. It suf¢ces to
show that i��V � has a (global) locally projective (resp., locally free) resolution of
length W 1. If P and Q are OX ;xG-free, i.e. if they are isomorphic to �m OX ;xG
for some mX 0, then the composition ~E : �m OXG ÿ!can

i���
m �OX ;xG�� ÿ!

i��E�
i��V � is

surjective and ker�~E� is a locally free OXG-module, i.e., i��V � has a locally free res-
olution of length 1. If P and Q are only projective over OX ;xG, we choose a
(non-equivariant) surjective homomorphism E ! i��V � with a locally free
OX -module E. Then, the induced homomorphism ~E : OXG
OX E ! i��V � is an
equivariant surjection and the coherent OXG-module ker�E� is locally projective
by Schanuel's Lemma, i.e., i��V � has a locally projective resolution of length 1.

PROPOSITION 2.4. The canonical homomorphism K lf
0 �OXG� ! K0�OXG� induces

an isomorphism

Cl�OXG� ~! ker�K0�OXG� ÿ!can
K0�FG��:

Proof. We have a natural commutative diagram of groups

K1�FG� ÿ! K lf
0 T �OXG� ÿ! K lf

0 �OXG� ÿ! K lf
0 �FG��������� ???y ???y ???y

K1�FG� ÿ! K0T �OXG� ÿ! K0�OXG� ÿ! K0�FG�;
here, the lower row is the exact localization sequence constructed in Proposition 1.6
and Proposition 1.7; the maps in the upper row are de¢ned as in the lower row;
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one can prove as in Section 1 or as in Theorem 1(ii) on p. 3 in [F 2] that also the upper
sequence is exact. Thus, it suf¢ces to prove that the map K lf

0 T �OXG� ! K0T �OXG� is
bijective. By Lemma 2.3, it furthermore suf¢ces to prove that the map
K lf

0 T �OX ;xG� ! K0T �OX ;xG� is bijective for all closed points x 2 X . We have a natu-
ral commutative diagram of groups

K1�OX ;xG� ÿ! K1�FG� ÿ! K lf
0 T �OX ;xG� ÿÿÿÿ! 0�������� �������� ???y

K1�OX ;xG� ÿ! K1�FG� ÿ! K0T �OX ;xG� ÿ! K0�OX ;xG� ÿ! K0�FG�

with exact rows (e.g., see Theorem 1(ii) on p. 3 in [F 2]). Furthermore, the map
K0�OX ;xG� ! K0�FG� is injective by a theorem of Swan (see Theorem (32.1) on
p. 671 in [CR]). This proves Proposition 2.4.

Let K0�G;X � denote the Grothendieck group of all coherent OXG-modules which
are locally free as OX -modules.

COROLLARY 2.5. If ord�G� is invertible on X, the Cartan homomorphism
K lf

0 �OXG� ! K0�G;OX � induces an isomorphism

Cl�OXG� ~! ker K0�G;X � ÿ!can
K0�G;F � � K0�FG�

� �
:

Proof. This immediately follows from Proposition 2.4 and the fact that a ¢nitely
generated OX ;xG-module is projective over OX ;xG if and only if it is projective over
OX ;x.

Now, we ¢x i 2N such that gcd�i; ord�G�� is invertible onX . By Section 1, we have
a symmetric power operation si : K0�OXG� ! K0�OXG�. By restricting, we obtain an
operation si on ker�K0�OXG� ! K0�FG�� � Cl�OXG�. In the same way, we obtain a
multiplication map on Cl�OXG�.

PROPOSITION 2.6. The multiplication on Cl�OXG� is trivial and the operation si on
Cl�OXG� is a homomorphism.

Proof. Since the canonical homomorphism K0T �OXG� ! Cl�OXG� is surjective, it
suf¢ces to show the corresponding assertions for K0T �OXG� (by Lemma 1.4). By
Lemma 2.3, we may furthermore assume that X � Spec�A� where A is a local
Dedekind domain. Then, the connecting homomorphism @ : K1�FG� !
K0T �OXG� is surjective (see the proof of Proposition 2.4), and Proposition 2.6
follows from Lemma 1.5.

THEOREM 2.7. Let G be Abelian and gcd�i; ord�G�� � 1. We ¢x i0 2N such that
ii0 � 1 mod e�G� where e�G� denotes the exponent of G. Let fi0 denote both the
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OX-algebra automorphismOXG!OXG given by �g� 7! �gi0 � and the automorphism of
K0�OXG� or Cl�OXG� induced by the association �P� 7! �OXG
OXG P� (whereOXG is
considered as an OXG-algebra via fi0). Then we have si � fi0 on Cl�OXG�:

Proof. As in Proposition 2.6, it suf¢ces to show the corresponding assertion for
K1�FG� where fi0 on K1�FG� is de¢ned analogously. Since FG is semilocal and com-
mutative, the canonical homomorphism �FG�� ! K1�FG� is bijective (see Corollary
(9.2) on p. 267 in [B]). Under this isomorphism, the automorphism fi0 corresponds
to the restriction of the (analogously de¢ned) automorphism fi0 of FG. Thus it
suf¢ces to show that the following diagram commutes:

�FG�� ÿ!� K1�FG�???yfi0

???ysi
�FG�� ÿ!� K1�FG�:

Now, let W be a local domain of characteristic 0 whose residue class ¢eld is
isomorphic to F . (If char�F � � 0, we may choose F itself for W . If
p � char�F � > 0, the ring of in¢nite Witt vectors over F associated with the prime
p is such a ring.) Since the group ringWG is semilocal and commutative, the canoni-
cal map �WG�� ! K1�FG� is bijective (see loc. cit.) and the canonical
homomorphism �WG�� ! �FG�� is surjective. Thus it suf¢ces to show that the
following diagram commutes:

�WG�� ÿ!� K1�WG�???yfi0

???ysi
�WG�� ÿ!� K1�WG�:

In a similar way, we conclude that it suf¢ces to show that the corresponding diagram
commutes if W is replaced by the quotient ¢eld Q of W and ¢nally by the algebraic
closure �Q of Q. In the latter case, the commutativity follows from Theorem 1.6(d)
in [K 3], Theorem 3.3 in [K 1], and Lemma 3.6(b) in [K 3]. This ends the proof
of Theorem 2.7.

Remark 2.8. Let gcd�i; ord�G�� � 1. Theorem 2.7 implies in particular that
si�e�G� � si on Cl�OXG� if G is Abelian. This also holds if X � Spec�OF � where
OF is the ring of integers in a number ¢eld F (see Corollary 3.8 in [K 3]) or if X
is a smooth curve over a ¢nite ¢eld (this follows from Theorem 2.10). It is not clear
to me whether this is true in general.

Now, let L be an algebraically closed ¢eld such that char�L� does not divide
ord�G�, and let p : X ! Spec�L� be an irreducible smooth curve over L. Then,
for any ¢nitely generated LG-module V , the pull-back p��V � is a locally projective
coherent OXG-module. Furthermore, for any locally projective coherent
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OXG-module P, P0, the OX -module HomOX �P;P0� � P_ 
OX P is again a locally
projective OXG-module. Finally, for any locally projective OXG-module P, the
OX -module PG of G-¢xed elements is locally free since ord�G� is invertible on
X . Thus, we obtain a well-de¢ned homomorphism

K0�OXG� ÿÿÿÿÿÿÿÿ! Hom�K0�LG�;K0�X ��
�P� jÿÿÿÿÿÿÿÿ! ��V � 7! �HomOXG�p��V �;P���:

This homomorphism is bijective (see the proof of Proposition (2.2) on p. 133 in [S])
and induces an isomorphism

Cl�OXG� ~ÿ! Hom�K0�LG�;Cl�X �� �2�
by Proposition 2.4.

Let ci denote the ith Adams operation on K0�LG�. In the sequel, we will identify
K0�LG� with the ring of virtual characters of G. Then ci maps a character w to
the character G! L, g 7! w�gi�. Let ĉi denote the adjoint operation (with respect
to the usual character pairing). Note that the assumption char�L� 6 j ord�G� implies
that gcd�i; ord�G�� is invertible on X for all i 2N. To avoid further de¢nitions
we will use the somewhat complicated notation Hom�f ;B� (and similar notations)
in the usual functorial way (for any Abelian group B and any homomorphism
f : A! A0).

THEOREM 2.9. Under the isomorphism (2), the operation si on Cl�OXG� corre-
sponds to the endomorphism Hom�ĉi;Cl�X �� of Hom�K0�LG�;Cl�X ��.

Proof. By Theorem 3.3 on p. 145 in [K 1] and Theorem 1.6(d)(ii) in [K 3], the
operation si on K1�FG� (constructed, e.g. in Section 1) corresponds to the
endomorphism Hom�ĉi;K1�F �� of Hom�K0�LG�;K1�F �� under the isomorphism

K1�FG� ÿÿÿÿÿÿÿÿÿÿÿ!�
Hom�K0�LG�;K1�F ��

�P; a� jÿÿÿÿÿÿ!
�
�V � 7! �HomFG�F 
L V ;P�;HomFG�F 
L V ; a��

�
:

For any closed point x 2 X , the association

�M� 7! ��V � 7! �HomOX ;xG �OX ;x 
L V ;M���

induces an isomorphism K0T �OX ;xG� ~! Hom�K0�LG�; K0T �OX ;x�� (both sides are
isomorphic to K0�LG�!) such that the following diagram commutes:

K1�FG� ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ!!@
K0T �OX ;xG�??yo ??yo

Hom�K0�LG�;K1�F �� ÿÿÿÿÿÿÿÿÿ!!
Hom�K0�LG�;@�

Hom�K0�LG�;K0T �OX ;x��:

Hence, by Lemma 1.5, the operation si on K0T �OX ;xG� corresponds to the
endomorphism Hom�ĉi;K0T �OX ;x�� of Hom�K0�LG�;K0T �OX ;x��. Under the
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isomorphism of Lemma 2.3, the operation si onK0T �OXG� obviously corresponds to
the endomorphism �

x2X closed
si of �

x2X closed
K0T �OX ;xG�. Thus, under the isomorphism

K0T �OXG� � Hom�K0�LG�;K0T �OX ��; �M� 7! ��V � 7! �HomOXG �p��V �;M���;

the operation si on K0T �OXG� corresponds to the endomorphism
Hom�ĉi;K0T �OX �� of Hom�K0�LG�;K0T �OX ��. Furthermore, the following dia-
gram obviously commutes:

K0T �OXG� ÿÿÿÿÿÿÿÿÿÿÿÿÿ!can
K0�OXG�??yo ??yo

Hom�K0�LG�;K0T �OX �� ÿÿÿ!can
Hom�K0�LG�;K0�X ��:

Now, Theorem 2.9 follows from Lemma 1.4 and Proposition 1.6.

Now, let L be a ¢nite ¢eld with char�L� 6 j ord�G� and p : X ! Spec�L� an
irreducible smooth curve over L. Let �L denote an algebraic closure of L and
�p : �X :� X �L �L! Spec� �L� the corresponding curve over �L. Then, the composition
of the canonical map K0�OXG� ! K0�O �XG� with the isomorphism K0�O �XG� �
Hom�K0� �LG�;K0� �X �� constructed above obviously induces a homomorphism

K0�OXG� ! HomGal� �L=L��K0� �LG�;K0� �X ��:

THEOREM 2.10. This homomorphism is bijective. In particular, we obtain an
isomorphism

Cl�OXG� ~! HomGal� �L=L��K0� �LG�;Cl� �X ��:

Under this isomorphism, the operation si on Cl�OXG� corresponds to the endomor-
phism HomGal� �L=L��ĉi;Cl� �X �� of HomGal� �L=L��K0� �LG�;Cl� �X ��.

Proof. The bijectivity can be shown as in Section 6 of [AB] using Morita equiv-
alence and the Galois descent property K0�X �L L0� � K0� �X �Gal� �L=L0� (for any ¢nite
extension L � L0 � �L of L). Proposition 2.4 then yields the Hom-description of
the classgroup. The last assertion immediately follows from Theorem 2.9.

3. Equivariant Riemann^Roch Type Formulas for Tame Extensions
of Dedekind Schemes

The aim of this section is to prove Theorem A and Theorem B presented in the
introduction.

Let Y be a Dedekind scheme and G a ¢nite group of order n. Let
IndG

1 : Cl�OY � ! Cl�OYG� and IndG
1 : K0T �OY � ! K lf

0 T �OYG� denote the induction
maps. The following lemma generalizes Lemma 2.6 on p. 933 in [BC].
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LEMMA 3.1. The image of the natural multiplication maps

K0T �OY � � K lf
0 �OYG� ! K lf

0 T �OYG� and Cl�OY � � K lf
0 �OYG� ! Cl�OYG�

is contained in IndG
1K0T �OY � resp. IndG

1 Cl�OY �.
Proof. The assertion for the ¢rst map is clear. The assertion for the second map

follows from this since the natural map K0T �OY � ! Cl�OY � is surjective.

Now, let F=E be a ¢nite Galois extension of the function ¢eld E of Y with Galois
group G. Let X denote the normalization of Y in F . Then X is a Dedekind scheme
endowed with a natural G-action and the corresponding G-morphism f : X ! Y
is ¢nite (see the proof of Theorem (8.1) on p. 47 in [N]). We assume that f is tamely
rami¢ed. As in Lemma 5.5 in [K 3], one easily shows that then, for any locally free
coherent OX -module E with (semilinear) G-action, the direct image f��E� is a locally
free coherent OYG-module in the sense of Section 2. Let K0�G;X � denote the
Grothendieck group of all such modules E. Thus, we have a homomorphism

f� : K0�G;X � ! K lf
0 �OYG�; �E� 7! �f��E��:

The differentD :� DX=Y :� AnnOX �O1
X=Y � is aG-stable ideal inOX , hence a module

E as above. The following proposition generalizes formula (2.8) on p. 933 in [BC].

PROPOSITION 3.2. For all x 2 K0�G;X � we have:

f� x �
Xnÿ1
i�0
�Dÿi�

 !
� 0 in K lf

0 �OYG�=�IndG
1 Cl�OY � � nZ�OYG��:

Proof. We may assume that x � �E� where E is a module as above. Let
r :� rankOX �E�. Then we have:

Xnÿ1
i�0

�
�f��E 
 Dÿi�� ÿ r�OYG�

�
� n

�
�f��E�� ÿ r�OYG�

�
�
Xnÿ1
i�1

�
�f��E 
 Dÿi�� ÿ �f��E��

�
in Cl�OYG�:

In the sequel, let M7!Mt denote the forgetful functor from the category of
OYG-modules to the category of OY -modules. (We will consider Mt also as an
OYG-module with trivial G-action.) Then, the elements �f��OX �t� ÿ n�OY � and
�f��E�t� ÿ nr�OY � are contained in Cl�OY �. Hence, we have by Lemma 3.1:

n�� f��E�� ÿ r�OYG��
� �f��OX �t 
 f��E�� ÿ �f��E�t 
OYG� in Cl�OYG�=IndG

1 Cl�OY �:
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The homomorphism

f��OX �t 
 f��E� ! f��E�t 
OYG; a
 b 7!
X
g2G

ag�b� 
 �gÿ1�;

of OYG-modules is generically bijective since F=E is a Galois extension and any
¢nitely generated module over the twisted group ring F#G is isomorphic to �m F
for some mX 0. In particular, this map is a monomorphism and the cokernel
RX=Y �E� is an OYG-torsion module. Hence, it suf¢ces to show that we have:

�RX=Y �E�� �
Xnÿ1
i�1
�f��E 
 Dÿi=OX �� in K lf

0 T �OYG�=IndG
1K0T �OY �:

(The notation E 
 Dÿi=OX means E 
 �Dÿi=OX �, of course. Similar simplifying
notations will be used also below.) By Lemma 2.3, it furthermore suf¢ces to show
that we have

�RX=Y �E�y� �
Xnÿ1
i�1
�f��E 
 Dÿi=OX �y� in K lf

0 T �OY ;yG�=IndG
1K0T �OY ;y�

for all closed points y 2 Y .
We now ¢x y 2 Y and x 2 X with f �x� � y. Let Gx :� fg 2 G : xg � xg denote

the decomposition group of x. Furthermore, let f 0 : X 0 :� Spec�ÔX ;x� !
Spec�ÔY ;y� �: Y 0 denote the induced Gx-morphism where ^ denotes completion.
We identify the category of coherent torsion modules on Y 0 with the category of
coherent torsion modules on Y supported in y. An easy generalization of Corollary
3.11(b) on p. 239 in [C] shows that RX=Y �E�y is isomorphic to the direct
sum of �G : Gx� copies of IndG

Gx
RX 0=Y 0 �Êx�. Furthermore, it is clear that

f��E 
 DÿiX=Y=OX �y is isomorphic to IndG
Gx
f 0��Êx 
DÿiX 0=Y 0=OX 0 � for all iX 0. For

i � j mod ord�Gx�, we ¢nally have

�f 0��Êx 
DÿiX 0=Y 0=OX 0 ��
� �f 0��Êx 
DÿjX 0=Y 0=OX 0 �� in K lf

0 T �OY 0Gx�=IndGx
1 K0T �OY 0 �

since the ideal Dord�Gx�
X 0=Y 0 of OX 0 can be written as �f 0���a� with some ideal a in OY 0 and

since, for any locally free coherent OY 0G-module P, we have

�P=aP� � �O=a
 P� � 0 in K lf
0 �OY 0Gx�=IndGx

1 K0T �OY 0 �

by Lemma 3.1. Thus it suf¢ces to prove that

�RX 0=Y 0 �Êx�� �
Xord�Gx�ÿ1

i�1
�f 0��Êx 
DÿiX 0=Y 0=OX 0 �� in K0T �OY 0Gx�=IndGx

1 K0T �OY 0 �:

We now write G for Gx, X for X 0, E for Êx, and so on. Let D � G denote the inertia
group, e the order of D,P the ideal inOX which corresponds to the closed point inX ,
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and w the D-module P=P2. We decompose f : X ! Y into X !g Z !h Y where
Z :� Spec�G�X ;OX �D�; i.e. the function ¢eld of Z is the inertia ¢eld of F=E. Since
K0�G;X � is generated by the classes of fractional G-stable ideals in OX (see Lemma
5.5(c) in [K 3]), we may assume that E � P j for some j 2 Z. An easy generalization
of Corollary 3.8 on p. 236 and Theorem 2.8 on p. 222 in [C] shows that we have
the following isomorphisms:

RX=Y �P j� � IndG
Dh��RX=Z�P j��

� IndG
Dh� �

eÿ1

i�1
g�
�
�P j=P j�i�t 
 w j�i

�� �
� IndG

D f� �
eÿ1

i�1
�P j=P j�i�t 
 w j�i

� �
:

Thus we have

�RX=Y �P j�� �
Xeÿ1
i�1

i�IndG
D f��w j�i�� in K0T �OYG�:

Since D � Peÿ1 and Pe � f ��p� (where p is the ideal in OY which corresponds to the
closed point in Y ), we can conclude as above using Lemma 3.1:

Xnÿ1
i�1
� f��P j 
Dÿi=OX ��

� n
e

Xeÿ1
i�1
�f��P j 
Dÿi=OX �� � n

e

Xeÿ1
i�1
�f��P j�i=P j�e��

� n
e

Xeÿ1
i�1

i�f��P j�i=P j�i�1�� in K0T �OYG�=IndG
1K0T �OY �:

(For the second equality note that Dÿi=OX � Pi�1ÿe�=OX is isomorphic to Pi=Pie

which has a ¢ltration with quotients Pi=Pe and Pe=Pie.) Thus it suf¢ces to prove

that the OYG-modules IndG
Df��wi� and �

n=e
f��Pi=Pi�1� are isomorphic for all i 2 Z.

For this, we consider the OYG-homomorphism

h��OZ�t 
 f��Pi=Pi�1� ÿÿÿ!MapsD�G; f��Pi=P i�1��
a
 b jÿÿÿÿ! �g 7! ag�b��:

This homomorphism is bijective since h is unrami¢ed (e.g. see pp. 214-215 in [C]).

Furthermore, the left hand side is obviously isomorphic to �n=e f��Pi=Pi�1� and
the right hand side is isomorphic to IndG

D f��wi�. So, Proposition 3.2 is proved.

Now, let k 2N with gcd�k; n� � 1 and k0 2N with kk0 � 1 mod n. Let sk denote
the kth symmetric power operation on K0�G;Y � and ck the kth Adams operation
on K0�G;Y � or K0�G;X � (e.g., see Section 1 in [K 3]). The composition of the
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map f� : K0�G;X � ! K lf
0 �OYG� with the Cartan homomorphism K lf

0 �OYG� !
K0�G;Y � is denoted by f� again. Finally, let K̂0�G;Y ��kÿ1� denote the J-adic
completion of K0�G;Y ��kÿ1� where J :� ker�K0�G;Y � ÿ!rank

Z��kÿ1� is the augmen-
tation ideal in K0�G;Y ��kÿ1�.

THEOREM 3.3. For all x 2 K0�G;X � we have

sk�f��x� ÿ rank�x� � �OYG�� � f�
Xk0ÿ1
i�0
�Dÿik� � ck�x�

 !

in K̂0�G;Y ��kÿ1�=�IndG
1K0�Y ��K̂0�G;Y ��kÿ1�.

Proof. Let

f̂� : K̂0�G;X ��kÿ1� :� K0�G;X � 
K0�G;Y � K̂0�G;Y ��kÿ1� ! K̂0�G;Y ��kÿ1�
denote the homomorphism which is induced by f� : K0�G;X � ! K0�G;Y �, and let
yk�Dÿ1� :� 1� �Dÿ1� � � � � � �Dÿ�kÿ1�� 2 K0�G;X � denote the Bott element. As in
Theorem 5.4 in [K 3], one easily deduces the following assertion from the equivariant
Adams^Riemann^Roch theorem (see Theorem (4.5) in [K 2]): The element yk�Dÿ1�
is invertible in K̂0�G;X ��kÿ1� and we have

ck�f��x�� � f̂��k � yk�Dÿ1�ÿ1 � ck�x�� in K̂0�G;Y ��kÿ1�
for all x 2 K0�G;X �. Furthermore, we have

yk�Dÿ1� �
Xk0ÿ1
i�0
�Dÿik�

 !
�
Xkÿ1
j�0

Xk0ÿ1
i�0
�Dÿ�j�ik�� �

Xkk0ÿ1
i�0
�Dÿi� � �OX � �

Xkk0ÿ1
i�1
�Dÿi�

in K0�G;X �. Thus, we have

yk�Dÿ1�ÿ1 �
Xk0ÿ1
i�0
�Dÿik� ÿ yk�Dÿ1�ÿ1

Xkk0ÿ1
i�1
�Dÿi� in K̂0�G;X ��kÿ1�:

Hence, we obtain the equality

ck�f��x�� � k � f̂�
Xk0ÿ1
i�0
�Dÿik� ÿ yk�Dÿ1�ÿ1 �

Xkk0ÿ1
i�1
�Dÿi�

 !
� ck�x�

 !

� k � f�
Xk0ÿ1
i�0
�Dÿik� � ck�x�

 !
in K̂0�G;Y ��kÿ1�=�IndG

1K0�Y ��K̂0�G;Y ��kÿ1�

by Proposition 3.2. Since we have ck � k � sk on Cl�OYG� (by Proposition 2.6) and
ck��OYG�� � �OYG� (by Theorem 1.6(e) in [K 3]), this implies Theorem 3.3.

Note that the formula of Theorem 3.3 lives within the somewhat complicated
group K̂0�G;Y ��kÿ1�=�IndG

1K0�Y ��K̂0�G;Y ��kÿ1�. The next proposition computes this
group in a special case.
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PROPOSITION 3.4. Let L be an algebraically closed ¢eld, Y a projective smooth
irreducible curve over L, and n � ord�G� a power of a prime l 6� char�L�. Let I denote
the augmentation ideal in K0�LG�. Then we have:

K̂0�G;Y ��kÿ1� � K0�Y ��kÿ1� � I 
Zl � I 
Zl;

under this isomorphism, the extended ideal �IndG
1K0�Y ��K̂0�G;Y ��kÿ1� corresponds to

the subgroup f�ny; ��ZG� ÿ n� 
 rank�y�; ��ZG� ÿ n� 
 deg det�y�� : y 2 K0�Y ��kÿ1�g
of K0�Y ��kÿ1� � I 
Zl � I 
Zl .

Proof. The canonical map K0�LG� 
 K0�Y � ! K0�G;Y � is an isomorphism by
Proposition (2.2) on p. 133 in [S]. Since the augmentation ideal of K0�Y � is nilpotent
(e.g., by Proposition 2.6) and the I-adic topology on I coincides with the l-adic
topology (see Proposition 1.1 on p. 277 in [AT]), the completion K̂0�G;Y ��kÿ1� is
isomorphic to the direct sum of K0�Y ��kÿ1� and the l-adic completion of
I 
 K0�Y ��kÿ1�. Furthermore, we have K0�Y � � Z�Z� Pic0�Y � where Pic0�Y �
denotes the group of line bundles on Y of degree 0. Since Pic0�Y � is an l-divisible
group (see item (iv) on p. 42 in [M]), the l-adic completion of I 
 K0�Y ��kÿ1� is
isomorphic to I 
Zl � I 
Zl . Thus, we have

K̂0�G;Y ��kÿ1� � K0�Y ��kÿ1� � I 
Zl � I 
Zl :

Under the isomorphism K0�G;Y � � K0�LG� 
 K0�Y �, the ideal IndG
1K0�Y � of the

ring K0�G;Y � corresponds to the ideal IndG
1K0�L� 
 K0�Y � (� K0�Y �) of

K0�LG� 
 K0�Y � which is generated by the element �ZG� 
 1 � n
 1�
��ZG� ÿ n� 
 1. One easily deduces the second assertion of Proposition 3.4 from this.
(Note that �ZG� � x � 0 for all x 2 I .)

Now, let f� : K0�G;X � ! Cl�OYG� denote the composition of f� : K0�G;X � !
K lf

0 �OYG� with the canonical projection K lf
0 �OYG� � Cl�OYG� �Z�OYG� !

Cl�OYG�.

THEOREM 3.5. Suppose that one of the following conditions holds:

(a) Y � Spec�OE� where OE is the ring of integers in a number ¢eld E.
(b) Y is an irreducible projective smooth curve over a ¢nite ¢eld L and

gcd�char�L�; n� � 1.
(c) The group G is Abelian and f : X ! Y is unrami¢ed.
(d) k � 1.

Then for all x 2 K0�G;X � we have,

sk�f��x�� � f�
Xk0ÿ1
i�0
�Dÿik� � ck�x�

 !
in Cl�OYG�=IndG

1 Cl�OY �:

Proof. In the case (a), Theorem 3.5 can be deduced from Corollary 2.7 on p. 933 in
[BC] using Theorem 3.7 and Lemma 5.5 in [K 3] (see also the proof of Theorem 5.6 in
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[K 3]). The same can be done in the case (b) by using Lemma 3.6(a) in [K 3] and
Theorem 2.9 (in place of Theorem 3.7 in [K 3]) and an obvious generalization of
Lemma 5.5(c) in [K 3]. (For completeness sake, we mention that it is easy to check
that the additional assumptions in Theorem 2.1 on p. 932 in [BC] about the absolute
discriminant or the characteristic of E are not necessary for Corollary 2.7 on p. 933
in [BC].)We now prove Theorem 3.5 in the case (c), i.e., we want to show the formula

sk�f��x�� � k0 � f��ck�x�� in Cl�OYG�=IndG
1 Cl�OY � �3�

for all x 2 K0�G;X �. First, we show that it suf¢ces to prove the formula (3) for
x � 1 � �OX �. Indeed, for an arbitrary x 2 K0�G;X �, there is a
y 2 K0�Y � � K0�G;Y � such that x � f ��y� (e.g. see Theorem 1(B) on p. 112 in [M]).
Furthermore, we have sk�IndG

1 Cl�OY �� � IndG
1 Cl�OY �. This follows from Prop-

osition 1.1 in [K 3] as there is a polynomial Qk 2 Z�X1; . . . ;Xk;Y1; . . . ;Yk� which
is homogeneous of weight k in both sets of variables such that

sk�z � �OYG�� � Qk s1�z�; . . . ; sk�z�; �Sym1�OYG��; . . . ; �Symk�OYG��
ÿ �

for all z 2 Cl�OY � (by Theorem 2.2 in [K 3]). Thus we have in Cl�OYG�=IndG
1 Cl�OY �:

sk�f��x�� � sk�f��f ��y��� � sk�y � f��1�� (Projection formula)

� sk�rank�y� � f��1�� (Lemma 3.1)

� rank�y� � sk�f��1�� (Proposition 2.6)

� rank�y� � k0 � f��1� (by assumption)

� k0 � ck�y� � f��1� (Lemma 3.1)

� k0 � f��ck�f ��y��� � k0 � f��ck�x�� (Projection formula).

We now prove formula (3) for x � 1. Since f is unrami¢ed, the scheme X is a
principal G-bundle over Y (see Proposition 2.6 on p. 115 in [SGA 1]). There is
a well-known natural bijection between the set of all principal G-bundles over Y
and the cohomology group H1�Y ;G�. We write �X � for the corresponding element
in H1�Y ;G�. We de¢ne a new principal G-bundle Xk0 over Y as follows: Xk0 � X
as Y -schemes and the new action � of G on Xk0 is given by x � g :� xgk for ``x 2 X ''
and g 2 G. Then, it is easy to check that the association X 7!Xk0 corresponds to
the multiplication with k0 on H1�Y ;G�. Let cl : H1�Y ;G� ! Cl�OYG� denote the
map which maps a principal G-bundle f : X ! Y to the class �f��OX �� ÿ �OYG�. This
map is a homomorphism by Theorem 5 and the subsequent remarks on p. 189 in [W]
and by Proposition 3.9 in [AB]. Thus we have:

sk�f���OX ��� � fk0 �cl��X ��� (Theorem 2.7)

� cl��Xk0 �� � cl�k0 � �X �� � k0 � cl��X �� � k0 � f���OX ��:

in Cl�OYG�, as was to be shown. In the case (d), Theorem 3.5 immediately follows
from Proposition 3.2.

SYMMETRIC POWERS OF GALOIS MODULES ON DEDEKIND SCHEMES 215

https://doi.org/10.1023/A:1026579331113 Published online by Cambridge University Press

https://doi.org/10.1023/A:1026579331113


Remark 3.6. If one of the conditions (a), (b), (c), (d) of Theorem 3.5 is satis¢ed,
then Theorem 3.3 follows from Theorem 3.5 by passing from Cl�OYG� �
K0�OYG� to K0�G;Y � via Cartan homomorphism and ¢nally by passing from
K0�G;Y � to the completion K̂0�G;Y ��kÿ1� of K0�G;Y ��kÿ1�. In particular, in the case
(a), the formula of Theorem 3.3 is substantially weaker than the formula in Theorem
3.5, as already the passage from K0�OYG� to K0�G;Y � loses much information. On
the other hand, in the case (b), the formula of Theorem 3.5 modulo torsion follows
from the formula in Theorem 3.3 if n is a power of a prime. This can be proved
as follows. The Cartan homomorphism K0�OYG� ! K0�G;Y � is bijective since n
is invertible on Y . Furthermore, the canonical map Cl�OYG�=IndG

1 Cl�OY � �
K0�OYG�=IndG

1K0�Y � ! K0�O �YG�=IndG
1K0� �Y � is injective by Theorem 2.10. (Here,

�Y denotes the curve Y �L �L over the algebraic closure �L of L.) Hence, it suf¢ces
to prove the formula

sk��f��x�� � �f�
Xk0ÿ1
i�0
�Dÿik�X= �Y � � ck�x�

 !
in K0�G; �Y �Q=IndG

1K0� �Y �Q �4�

for all x 2 K0�G; �X �. Furthermore, we have K0�G; �Y �Q � K0� �LG�Q 
 K0� �Y �Q and
K0�G; �Y �Q=IndG

1K0� �Y �Q � I 
 K0� �Y �Q � IQ � IQ (see the proof of Proposition 3.4).
On the other hand, K̂0�G; �Y ��kÿ1�=�IndG

1K0� �Y ��K̂0�G; �Y ��kÿ1�
� �

Q
is isomorphic to

I 
Ql � I 
Ql by Proposition 3.4. Hence, the canonical map

K0�G; �Y �Q=IndG
1K0� �Y �Q! K̂0�G; �Y ��kÿ1�=�IndG

1K0� �Y ��K̂0�G; �Y ��kÿ1�
� �

Q

is injective, and formula (4) follows from Theorem 3.3.

Remark 3.7.
(a) If one of the conditions (a), (b), or (c) holds, Theorem 3.5 can be slightly

strengthened: It su¤ces to assume that k0 is an inverse modulo the exponent
of G (see [BC] and Theorem 2.7, respectively). It is not clear to me whether this
is true also in the case (d).

(b) Let Y be an irreducible smooth projective curve over a ¢nite ¢eld L. Then, the
case (c) is particularly interesting as complementary case of the semisimple case
which is assumed in the case (b). Indeed, if G is an (Abelian) char�L�-group,
then the tameness condition already implies that f is unrami¢ed.
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