ALMOST CONTINUOUS FUNCTIONS WITH CLOSED GRAPHS

BY
ANDREW J. BERNER

Abstract

A function $f: X \rightarrow Y$ is almost continuous if for every $x \in X$ and for each open set $V \subset Y$ containing $f(x), C l\left(f^{-1}(V)\right)$ is a neighborhood of x. Various conditions are given that guarantee that an almost continuous function is continuous. The main theorem states that if $f: X \rightarrow Y$ is almost continuous with a closed graph (closed in $X \times Y$) and X and Y are complete metric spaces, then f is continuous.

1. Introduction. In [1], Husain gave the following definition of an almost continuous function between topological spaces.

Definition. The function $f: X \rightarrow Y$ is almost continuous at $x_{0} \in X$ if and only if for each open $V \subset Y$ containing $f\left(x_{0}\right), C l\left(f^{-1}(V)\right)$ is a neighborhood of x_{0}. If f is almost continuous at each point of X, then f is called almost continuous.

In a paper studying this concept [2], Lin and Lin asked the following question [2, pg. 185]:
"Let $f: X \rightarrow Y$ be a mapping from a Baire space X to a second countable space Y. If f is almost continuous and has a closed graph; that is, the set $\{(x, f(x)) \mid x \in X\}$ is closed in the product space $X \times Y$. Is f necessarily continuous?"

Rose [4] has answered this question negatively, but a more general question is suggested:

What hypotheses on the domain and range of a function guarantee that if it is almost continuous with a closed graph then it is continuous?

Long and McGehee gave one answer to this: if enough separation axioms hold, local compactness of the range is enough [3, Theorem 9].

In this paper this question is explored further. In Section 3 we prove that if the domain and range are both complete metric spaces, almost continuity with a closed graph implies continuity. However, it is not enough for the range to be a Baire space. In Section 4, an example is given of an almost continuous

[^0]function with a closed graph from \mathbb{R} to a Baire subspace of \mathbb{R} which is nowhere continuous (this also answers Lin and Lin's question negatively). Along the way, various other facts about the relationship between almost continuous functions with closed graphs and continuous functions are proved.

The author wishes to thank the members of the North Texas State Topology Seminar (W. Mahavier, M. Hagen, T. Jacob and J. Mohat) for their encouragement and patience in listening to these theorems.

2. Points of continuity.

Definition 2.1. If $f: X \rightarrow Y$ is a function between topological spaces, let $C(f)=\{x \in X: f$ is continuous at $x\}$.

Theorem 2.1. Suppose Y is a regular space and $f: X \rightarrow Y$ is almost continuous. If $C(f)$ is dense in X, then f is continuous (i.e. $C(f)=X$).

Proof. Suppose there were a point $p \in X-C(f)$. Let O be an open subset of Y such that $f(p) \in O$ but $f^{-1}(O)$ is not a neighborhood of p. Let O_{1} and O_{2} be open subsets of Y such that $f(p) \in O_{2}$ and $\mathrm{Cl}\left(\mathrm{O}_{2}\right) \subset O_{1}$ and $\mathrm{Cl}\left(O_{1}\right) \subset O$. Since f is almost continuous, there is an open set $U \subset X$ containing p such that $U \subset C l\left(f^{-1}\left(O_{2}\right)\right)$. There is a point $q \in U$ such that $f(q) \notin O$, since $U \notin f^{-1}(O)$. Then, again by the almost continuity of f, there is an open set $V \subset X$ containing q such that $V \subset C l\left(f^{-1}\left(Y-C l\left(O_{1}\right)\right)\right.$. Since $U \cap V$ contains q, there is a point $d \in U \cap V \cap C(f)$. Since f is continuous at d and $U \cap V \subset U \subset C l\left(f^{-1}\left(O_{2}\right)\right)$, $f(d) \in C l\left(O_{2}\right)$. But since $d \in U \cap V \subset V \subset C l\left(f^{-1}\left(Y-C l\left(O_{1}\right)\right)\right)$, it follows that $f(d) \in C l\left(Y-C l\left(O_{1}\right)\right) \subset Y-O_{1}$. This cannot be since $C l\left(O_{2}\right) \subset O_{1}$. Therefore, there cannot be a point in $X-C(f)$, i.e. f is continuous.

Remark. The assumption that Y is regular cannot be dropped. For example, let X be the reals, with the usual topology augmented to make each rational singleton open (this space is metrizable) and Y the reals with the topology generated by the sets:
$(a, b) \cap(\mathbb{Q} \cup\{r\})$ where (a, b) is a usual open interval and $r \in \mathbb{R}$. The identity map from X to Y is almost continuous, and the set of points of continuity is \mathbb{Q}, which is dense in X.

It is pointed out in [3] that the restriction of an almost continuous function to a subset of the domain need not be almost continuous, but that the restriction to an open subset is almost continuous [3, Theorem 4]. Also if $f: X \rightarrow Y$ has a closed graph and $Z \subset X$ then $f \mid Z: Z \rightarrow Y$ has a closed graph. These observations and Theorem 2.1 prove the following

Corollary 2.1. If Y is a regular space and if for every space X and for every almost continuous (though not necessarily surjective) function $f: X \rightarrow Y$ with a closed graph, $C(f) \neq \varnothing$, then every almost continuous function $f: X \rightarrow Y$ with a closed graph is continuous.

Theorem 2.2. Suppose $f: X \rightarrow Y$ is almost continuous with a closed graph and y is an isolated point of Y. Then $f^{-1}(y) \subset C(f)$.

Proof. We actually prove that $f^{-1}(y)$ is both open and closed. It is closed since if x is a limit point of $f^{-1}(y)$ then (x, y) is a limit point of the graph of f, which we are assuming to be closed. Now, since $\{y\}$ is open in Y, and $C l\left(f^{-1}(y)\right)=f^{-1}(y), f^{-1}(y)$ is a neighborhood of each of its points, by the almost continuity of f, and thus is open.

Corollary. If Y is regular, $f: X \rightarrow Y$ is almost continuous with a closed graph and the inverse image of the set of isolated points of Y is dense in X, then f is continuous.

Despite the corollary, it is not sufficient that Y have a dense set of isolated points (see example 3, section 4). However, the following theorem does hold.

Theorem 2.3. If Y has only one non-isolated point and $f: X \rightarrow Y$ is almost continuous with a closed graph then f is continuous.

Proof. Let p be the non-isolated point of Y. Because of Theorem 2.2 we only need show that if $f(x)=p$ and O is an open set containing p then p is in the interior of $f^{-1}(O)$. Since $Y-O$ consists only of isolated points, the proof of Theorem 2.2 shows $f^{-1}(Y-O)$ is open, thus $f^{-1}(O)$ is closed, so by almost continuity x is in the interior of $f^{-1}(O)$ (in fact, $f^{-1}(O)$ is open).
3. Conditions that imply continuity. Long and McGehee [3] give several conditions which guarantee that an almost continuous function is continuous, including the following theorem.

Theorem 3.1. [3, Theorem 9]. Let $f: X \rightarrow Y$ be almost continuous where Y is locally compact. If Y is either regular or Hausdorff and the graph of f is closed, then f is continuous.

The hypotheses of this theorem can be modified.
Theorem 3.2. Let $f: X \rightarrow Y$ be almost continuous where Y is locally countably compact and regular, and X is a Fréchet space (i.e. if $p \in X$ is a limit point of a set $C \in X$, then there is a sequence of points from C converging to p). If the graph of f is closed then f is continuous.

Proof. (This proof is due to W. Mahavier).
Suppose f were not continuous at $p \in X$. Let $O \subset Y$ be an open set contaning $f(p)$ such that $f^{-1}(O)$ is not a neighborhood of p. Let U be an open set containing $f(p)$ such that $C l(U) \subset O$ and $C l(U)$ is countably compact. By the almost continuity of f, there is an open set V containing p such that $V \subset$ $C l\left(f^{-1}(U)\right)$. There is a point $q \in V$ s.t. $f(q) \notin O$. There must then be a sequence
$\left(q_{i}\right)(i \in N)$ of points of $f^{-1}(U)$ converging to q. Since $C l(U)$ is countably compact, there is a point $y \in C l(U)$ such that (q, y) is a limit point of $\left\{\left(q_{i}, f\left(q_{i}\right)\right): i \in N\right\}$. But, since $f(q) \notin C l(U), y \neq f(q)$ violating the hypothesis that the graph of f is closed.

Theorem 3.3. Suppose X and Y are complete metric spaces and $f: X \rightarrow Y$ is almost continuous with a closed graph. Then f is continuous.

Proof. Suppose f is not continuous at a point $p \in X$. We will inductively define a sequence $\left(p_{i}\right)(i \in N)$ of points of X, a sequence $\left(V_{i}\right)(i \in N)$ of open subsets of X and a sequence $\left(U_{i}\right)(i \in N)$ of open subsets of Y satisfying the following conditions.
(i) $p_{i} \in V_{i}$
(ii) $f\left(p_{i}\right) \in U_{i}$
(iii) $C l\left(U_{1}\right) \cap C l\left(U_{2}\right)=\varnothing$
(iv) If i and j are either both even or both odd and $i<j$ then $\mathrm{Cl}\left(U_{i}\right) \subset U_{i}$
(v) If $i<j$ then $\mathrm{Cl}\left(V_{j}\right) \subset V_{i}$
(vi) $\operatorname{diam}\left(U_{i}\right)<1 / i$
(vii) $\operatorname{diam}\left(V_{i}\right)<1 / i$
(viii) $V_{i} \subset C l\left(f^{-1}\left(U_{i}\right)\right)$

First let $p_{1}=p$. There is an open set $U \subset Y$ containing $f(p)$ such that if V is a neighborhood of p then $f(V) \notin U$. Let U_{1} be an open set containing $f(p)$ such that $\operatorname{diam}\left(U_{1}\right)<1$ and $C l\left(U_{1}\right) \subset U$. By the almost continuity of f, there is an open set $V_{1} \subset X$ containing p such that $\operatorname{diam}\left(V_{1}\right)<1$ and $V_{1} \subset C l\left(f^{-1}\left(U_{1}\right)\right)$. There must be a point $p_{2} \in V_{1}$ such that $f\left(p_{2}\right) \notin U$ (thus $f\left(p_{2}\right) \notin C l\left(U_{1}\right)$). Let U_{2} be an open set containing $f\left(p_{2}\right)$ such that $\operatorname{diam}\left(U_{2}\right)<\frac{1}{2}$ and $C l\left(U_{2}\right) \cap C l\left(U_{1}\right)=$ \varnothing. Again using almost continuity, let V_{2} be an open set containing p_{2} with $\operatorname{diam}\left(V_{2}\right)<\frac{1}{2}, V_{2} \subset C l\left(f^{-1}\left(U_{2}\right)\right)$ and $C l\left(V_{2}\right) \subset V_{1}$. Suppose now we have defined V_{i}, U_{i} and p_{i} satisfying i-viii for all $i \leq j$. Since $\varnothing \neq V_{j} \subset V_{j-1} \subset C l\left(f^{-1}\left(U_{j-1}\right)\right)$, there is a point $p_{i+1} \in V_{j}$ such that $f\left(p_{i+1}\right) \in U_{i-1}$. Let U_{j+1} be an open set containing $f\left(p_{j+1}\right)$ such that $C l\left(U_{i+1}\right) \subset U_{j-1}$ and $\operatorname{diam}\left(U_{j+1}\right)<1 /(j+1)$. By the almost continuity of f, we can choose an open set V_{j+1} containing p_{j+1} such that $V_{j+1} \subset C l\left(f^{-1}\left(U_{j+1}\right)\right), \operatorname{diam}\left(V_{j+1}\right)<1 / j+1$ and $C l\left(V_{j+1}\right) \subset V_{j}$. This completes the inductive definitions.

Since X is a complete metric space, there is an x such that $\left(p_{i}\right)(i \in N)$ converges to x. Also since Y is a complete metric space, there are points y and z such that $\left(f\left(p_{2 i}\right)\right)(i \in N)$ converges to y and $\left(f\left(p_{2 i-1}\right)\right)(i \in N)$ converges to z. Since $y \in C l\left(U_{1}\right)$ and $z \in C l\left(U_{2}\right), y \neq z$. But the points (x, y) and (x, z) are both limit points of the graph of f, contradicting the fact that the graph of f is closed.

4. Some examples and a non-example.

Theorem 4.1. Suppose X is a Hausdorff space and D_{1} and D_{2} are disjoint dense subsets of X with $D_{1} \cup D_{2}=X$. Let Y be the topological sum of the
subspaces D_{1} and D_{2} and let $f: X \rightarrow Y$ be the identity map. Then f is almost continuous, the graph of f is closed but f is nowhere continuous (i.e. $C(f)=\varnothing$).
Proof. To see that f is almost continuous, let $x \in X$ and O be an open set in Y containing $f(x)$. Suppose $x \in D_{i}$. Then there is an open set $V \subset X$ containing x such that $V \cap D_{i} \subset O$. Thus $C l\left(f^{-1}(O)\right) \supset C l\left(f^{-1}\left(V \cap D_{i}\right)\right) \supset V$, since D_{i} is dense in X.
To see that the graph of f is closed, suppose (p, q) is a limit point of the graph of f where $q \in D_{i}$. If $p \neq q$, then there are disjoint open sets $U \subset X$ and $V \subset X$ with $p \in U$ and $q \in V$. But then $U \times\left(V \cap D_{i}\right)$ misses the graph of f. So $p=q$, i.e. (p, q) is in the graph of f.

If $x \in D_{i}$ then $f^{-1}\left(D_{i}\right)=D_{i}$ is not a neighborhood of x since D_{2} is dense in X. So f is nowhere continuous. Theorem 4.1 provides some interesting examples, as well as suggesting some possible spaces that, as we will show later, cannot be constructed.

Example 1. Theorem 3.1 and Theorem 3.3 show that if $f: \mathbb{R} \rightarrow Y$ is almost continuous with a closed graph and if Y is either locally compact or complete metric, then f must be continuous. However, we can use Theorem 4.1 to get a Baire space Y and an almost continuous function with closed graph $f: \mathbb{R} \rightarrow$ that is nowhere continuous. We need the following fact about the reals.

Proposition. If S is a dense G_{δ} in the reals and O is an open set, then $S \cap O$ has cardinality c, where c is the cardinality of the reals.

Using this we can construct, by transfinite induction, two disjoint, dense subspaces D_{1} and D_{2} of \mathbb{R} each of which is a Baire space. We will identify c with an initial ordinal and consider it as the set of previous ordinals.

Let \mathscr{C} be the collection of all dense G_{δ} subsets of \mathbb{R}. The cardinality of \mathscr{C} is c, so we can well-order \mathscr{C} as $\left\{S_{\alpha}: \alpha<c\right\}$. For each $\alpha<c$, we will inductively define sets $D(\alpha, 1)$ and $D(\alpha, 2)$ to be countable dense subsets of S_{α} (and thus dense in \mathbb{R}) in such a way that $D(\alpha, 1) \cap D(\beta, 2)=\varnothing$ for every $\alpha, \beta<c$. Suppose we have defined $D(\beta, 1)$ and $D(\beta, 2)$ for every $\beta<\alpha$. Since the cardinality of $\cup D(\beta, 1) \cup D(\beta, 2)(\beta<\alpha)$ is less than c, the proposition guarantees we can pick $D(\alpha, 1)$ and $D(\alpha, 2)$ to be disjoint countable dense subsets of $S_{\alpha}-(\bigcup D(\beta, 1) \cup D(\beta, 2)(\beta<\alpha))$. This inductively defines the sets we want.

Now let $D_{1}=\bigcup D(\alpha, 1)(\alpha<c)$ and let $D_{2}=\mathbb{R}-D_{1}$ (thus $D(\alpha, 2) \subset D_{2}$ for every $\alpha<c$). Notice that D_{1} and D_{2} are dense in \mathbb{R}.

Suppose $\left(O_{1}\right)(i \in N)$ is a sequence of dense open subsets of D_{1}. Then, for each i, there is a dense open subset V_{i} of \mathbb{R} such that $O_{i}=V_{i} \cap D_{1}$. Thus $\bigcap O_{i}(i \in N)=\bigcap V_{i}(i \in N) \cap D_{1}$. For some $\alpha<c, \bigcap V_{i}(i \in N)=S_{\alpha}$. For that $\alpha, D(\alpha, 1) \subset \bigcap O_{i}(i \in N)$, so $\bigcap O_{i}(i \in N)$ is dense in D_{1}, showing that D_{1} is a Baire space. Likewise, D_{2} is a Baire space. The sets D_{1} and D_{2} fit the conditions of Theorem 4.1, where $X=\mathbb{R}$, and the space Y thus constructed is a Baire space.

Example 2. The idea behind Theorem 4.1 can be modified to get an almost continuous function with a closed graph that is not continuous, but where the range has a dense set of isolated points (see the corollary to Theorem 2.2). Let X be the plane, with the usual topology expanded to include the set $\{(x, y)\}$ whenever $y \neq 0$ and $\mathbb{R} \times\{0\}$. Let Y_{1} be $\mathbb{Q} \times \mathbb{R}$ with the usual topology expanded to include $\{(x, y)\}$ whenever $y \neq 0$ and let Y_{2} be $(\mathbb{R}-\mathbb{Q}) \times \mathbb{R}$, again with the usual topology expanded to include $\{(x, y)\}$ whenever $y \neq 0$. If Y is the topological sum of Y_{1} and Y_{2}, the identity map from X to Y has the desired properties.

Non-example 1. We cannot use Theorem 4.1 and have both D_{1} and D_{2} be complete metric spaces.

Proof. Suppose X is Hausforff and we thought we had disjoint dense subspaces D_{1} and D_{2}, each of which was a complete metric space (note: there is no assumption about X being metric). Let d_{1} be a complete metric on D_{1} and d_{2} be a complete metric on D_{2}. At the risk of ambiguity, we will use this notation: for $x \in D_{i}, B(x, \varepsilon)=\left\{y \in D_{i}: d_{i}(x, y)<\varepsilon\right\}$. Also, if $S \subset D_{i}$, the closure of S in D_{i} will be denoted $C l_{i}(S)$.

Pick $p_{1} \in D_{1}$ and let O_{1} be an open subset of X such that $O_{1} \cap D_{1}=B\left(p_{1}, 1\right)$. Since D_{2} is dense in X we can choose $p_{2} \in O_{1} \cap D_{2}$, and let O_{2} be an open subset of X such that $O_{2} \subset O_{1}$, and $O_{2} \cap D_{2} \subset B\left(p_{2}, \frac{1}{2}\right)$. Suppose now that for each $i \leq 2 n$ we have defined an open set O_{i} and a point $p_{i} \in O_{i}$ such that
(i) if $i<j \leq 2 n$ then $O_{i} \subset O_{i}$
(ii) if i is odd then $O_{i} \cap D_{1} \subset B\left(p_{i}, 1 / i\right)$
(iii) if i is even then $O_{i} \cap D_{2} \subset B\left(p_{i}, 1 / i\right)$
(iv) if i and j are both odd and $i<j \leq 2 n$ then $C l_{1}\left(O_{j} \cap D_{1}\right) \subset O_{i} \cap D_{1}$
(v) if i and j are both even and $i<j \leq 2 n$ then $C l_{2}\left(O_{j} \cap D_{2}\right) \subset O_{i} \cap D_{2}$

Pick $p_{2 n+1} \in O_{2 n} \cap D_{1}$. Let $O_{2 n+1}$ be an open set such that $O_{2 n+1} \subset$ $O_{i}, O_{2 n+1} \cap D_{1} \subset B\left(p_{2 n+1}, 1 /(2 n+1)\right)$ and $C l_{1}\left(O_{2 n+1} \cap D_{1}\right) \subset O_{2 n-1} \cap D_{1}$. Similarly pick $p_{2 n+2}$ and $O_{2 n+2}$.

Since D_{1} and D_{2} are complete metric spaces, there is a point $p \in D_{1}$ such that $\{p\}=\bigcap\left(O_{i} \cap D_{1}\right)(i$ odd $)$ and a point $q \in D_{2}$ such that $\{q\}=\bigcap\left(O_{i} \cap D_{2}\right)(i$ even $)$. Let U and V be disjoint open subsets of X containing p and q respectively. It is evident from the construction that $q \in O_{i}$ for every $i \in N$, thus, for each $i, O_{i} \cap V \cap D_{1} \neq \varnothing$. Also since $O_{i} \cap V \cap D_{1} \subset O_{i} \cap D_{1} \subset B\left(p_{i}, 1 / i\right)$ be i odd, $\cap C l_{1}\left(O_{i} \cap V \cap D_{i}\right)(i$ odd $)$ cannot be empty. But (taking all intersections over odd values of i, $\cap C l_{1}\left(O_{i} \cap V \cap D_{1}\right) \subset C l_{1}\left(O_{i} \cap D_{1}\right)-U=\cap O_{i} \cap D_{1}-U=$ $\{p\}-U=\varnothing$. So D_{1} and D_{2} cannot both be complete metric spaces.

References

1. T. Husain, Almost continuous mappings, Prace Mathematyczne 10 (1966), 1-7.
2. S.-Y. T. Lin and Y.-F. Lin, On almost continuous mappings and Baire spaces, Canad. Math. Bull. 21 (1978), 183-186.
3. P. E. Long and E. E. McGehee, Jr., Properties of almost continuous functions, Proc. Amer. Math. Soc. 24 (1970) 175-180.
4. Rose, David Alon, On Levine's decomposition of continuity, Canad. Math. Bull. 21 (1978), 477-481.

Department of Mathematics
University of Dallas
Irving, Texas 75061
U.S.A.

[^0]: Received by the editors August 11, 1980, and, in revised form, June 27, 1981.
 Subject classification. (1980 Scheme): 54C08,54E50.
 Key words and phrases. almost continuous function, complete metric space.

