FINITE PROJECTIVE PLANES WITH AFFINE SUBPLANES
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{. Introduction. A well-known theorem, due to
R.H. Bruck ([4], p-398), is the following:

If a finite projective plane of order n has a projective

L 2 2
subplane of order m < n, then either n=m or n>m + m.

In this paper we prove an analagous theorem concerning
affine subplanes of finite projective planes (Theorem 1). We
then construct a number of examples; in particular we find all
the finite Desarguesian projective planes containing affine sub-
planes of order 3 (Theorem 2).

We express our thanks to R. H. Bruck for suggesting the

(2)

problem  °, and to J. F. Rigby for valuable suggestions relative
to an inequality of Theorem 1.

2. Basic Definitions. A projective plane is a system of
undefined elements called points and lines, together with a
relation of incidence, subject to the following axioms:

!
(1) The work of this author was supported (in part) by National

Science Foundation Grant GP 1623.
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The problem was raised by Bruck in his lectures at the
Canadian Mathematical Congress Seminar in Saskatoon
{(August 1963). This paper is a direct outgrowth of that
seminar.
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1. Any two distinct points are incident with one and only
one line.

2. Any two distinct lines are incident with one and only
one point.

3. There exist four points, no three of which are incident
with a line. ‘

The usual terminology of incidence, - "'lies on'", "passes
through', "collinear', 'concurrent', etc - is employed.

If a projective plane w is finite (i.e. contains a finite
number of points and lines), it is easily shown that every line
contains the sarme number of points. If this number is n + 1,
we say that v is of order n. A projective plane of order n

2 2
contains n +n+ 41 pointsand n +n+ 1 lines, and n + 1
lines pass through each point. Also, it is easily seen that
n > 2 ([4], pp. 346-8).

A projective plane is Desarguesian if the Theorem of
Desargues holds universally ([4], p.351). A characteristic
property of a finite Desarguesian plane is that it can be
coordinatized by a field. Such a plane has order p%

(p is prime, @ =1,2,...), is coordinatized by GF(p%), and
is denoted by the symbol PG(2,p%). Conversely any Galois
field GF(p%) gives rise to a finite projective plane PG(2, p%)
([2], pp-324-327).

An affine plane 7 of order n can be derived from a
projective plane 7w of order n by the well-known process of
removing a line of m and the n+ 1 points lying on it. More
formally, = satisfies the following two axioms, as well as
Axiom 1 for m:

2/ Given a line 1 anda point P noton {f, there is
exactly one line through P which fails to meet f.

3/ There exist three non-collinear points.

. 2
Clearly w contains n points, n on each line, and

2
n + o lines, n+ 1 through each point. Moreover, the lines
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of w can be divided into n + 1 mutually exclusive parallel
classes of n lines each, two lines belonging to the same
parallel class if and only if they are parallel (i. e. have no
common point). The Desarguesian affine geometry of order pa
is denoted by the symbol EG(2,p%) ([2], p-329).

A (projective or affine) subplane w. of a given projective
—_— 0

plane w is a set of points and lines of 7 which themselves
form a (projective or affine) plane under the same incidence

relation. Thus a line of w which contains two points of =
o

must be a line of w .
o

3. The Orders of Affine Subplanes. Let 7 be a pro-
jective plane of order n containing an affine subplane v, of
order m < n.

THEOREM 1. For each point P 1_1-_1_ T let k=k(P)
denote the number of lines of 7w which pass through P. Then
o =

(i) If k=0 for some point, n>m -1

(ii) If k>1 for each point, n<m -1

2
(iii) If k=1 for some point, n>m - m+ 1

(iv) _Lf k_>_ 2 for each point, n=4 and m =3.

Proof: For any point P£ v , the k lines through P which
_— o

belong to T, account for a total of km points of L {m on

each line). The remaining n+ 1 - k lines through P each
contain no more than one point of w . Hence
o

2
(3.1) km+n+1-k>m
Setting k=0 in (3.1) we have result (i).

Suppose now that k> 1 for each point. Let { be a line,
not in rro, which contains exactly one point Q of m (sucha
o

line must exist, since there are n + 1 lines of w through Q,
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only m + 1 of which belong to Tro). Now for :ach of the other
n pointson {, k>1. 'Butthereareonly m +m - (m+1)

= m2 - 1 lines of L which do not pass through Q. Hence
n< m2 - 4. Thus we have proved result (ii).

We now consider case (iii). If k=1 for some point,
then substitution in (3. 1) yields

a>m -m.

Let us suppose that n=m - m. Then, using result (i), we
have that k> 1 for each point of . Any two parallel lines
of L meet in a point P of = for which k(P) > 1. These

two lines each contain m points of T There are therefore
2
at most m - 2m other lines through P which contain points
2

of no. But since m>1 and n=m - m, there must be at
least one line through P which contains no points of 'ﬂoa

Let f be such a line, and let X be any pointon . If
k(X) =1, then the lines through X fall into at least three
mutually exclusive classes.

{(2) the line g

(b) the line of LR through X

2
(c) the m - m distinct lines through X which contain
exactly one point of w . Counting these lines, we have the
inequality °

2
n+121+1+m - m,
2
n>m -m+ 1.

2
But n=m - m. Therefore k(X)z 2 for each point X on ¢{.

2 2
There are m -m+ 1 pointson f and m + m lines of 7 ,
o)

and so
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2
Z(mzom+1)_<_m +m,

m <3m-2,

m53-2/m<3.

2
Therefore m=2 and n=m - m =2. But this is a contra-
2
diction, since n> m. Therefore n>m - m, and we have
result (iii).
Finally, suppose that kz 2 for each point of w, and let
{ be a line of wo. There are m® lines in Tro which intersect
2
{ in points of LI Excluding § and these m lines, we have
2
left a set y of (m2+ m)-(m + 14)=m -1 lines of "o to

intersect { 1in the remaining n+ 1 - m points of { which do
not belong to no. Since ] itself belongs to tro, and kZ 2,

we must have
m-12n+1-m,
2m - 2>n.

Substituting in (3. 1), we have

km+(2m-2)+i»k_>_m2,
k(m-i)_>_m2-2m+1 = (m-i)z,
kZm-i,

Let P and Q be any two distinct points of f which are not
points of n'o (there are at least two since n > m). Then, as

we have just seen, k(P)>m - 1, and therefore at least m - 2
lines of the set y pass tzrough P. Thus at most one line of y
fails to meet P; since k(Q) > 2 there must be one such line,
and it must meet Q. Moreover, since y is now exhausted,

P and Q are the only points of {, apart from the points of
wo, i.e.

n=m+1.
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It also follows that k(P) =m - { and k(Q) =2. Reversing the
roles of P and Q, we have k(Q)=m -1 =2 and
KP)=2=m-1, ie.

Result (iv) is therefore proved.

That the case n=4, m =3 actually exists will be shown
in the next section. We shall also show there that equality in
case (ii) of Theorem 1 is attained by the example n =3, m =2.
The example n =7, m =3 of the next section shows that
equality is possible in case (iii). However, in case (i) we have

2
only examples in which n=m ; EG(2, pa) is a subplane of

2
PG(2,p ) ([2], pp- 334-5). Whether strict equality can be
attained in case (i) is therefore an open question.

4. Examples. Let A, B, C, D be a complete quadrangle
in PG(2,3) (cf. Fig. 1). Let E =AB.CD, F =AC.BD,
G=AD.BC, H=AB.FG, I1=AC.GE, J=AD.EF, K=BC.EF,
L =BD.GE, M =CD.FG. Now itis easily checked that the
7 points A, B, C, D, E, F, G are all distinct; the coincidence
of any two implies that three of the four points A, B, C, D are
collinear, which is not true. Moreover, the coincidence of any
two of the 6 points H, I, J, K, L, M implies the coincidence
of two of the 7 points A, ..., G; for example, if J =M, then
F=D. Therefore the 6 points H, ..., M are distinct. Like-
wise these 6 points are distinct from A, B, C and D; finally
they are also distinct from E, F and G, since the diagonal
points of 2 quadrangle are not collinear in PG(2, 3) ([2], p. 341).
The 13 distinct points A, ..., M must therefore be the 13
points of PG(2, 3).

The 4 vertices and 6 sides of the complete quadrangle
A, B, C, D may be interpreted as the 4 points and 6 lines of
an affine subplane EG(2,2) in PG(2,3). The above considera-
tions show that k(P)> 1 for each point P in PG(2,3). Thus
we have an example of equality in case (ii) of Theorem 1.

With the aid of Fig. 1 we easily find 9 of the 13 lines in
PG(2,3). Denoted by the 4 points which they contain, they are
ABEH, ACFI, ADGJ, BCGK, BDFL, CDEM, EFJK, FGHM,
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Fig. 1

and GEIL. One soon picks out the other four lines; they must
be AKLM, BLUM, CHJL, and DHIK.

If we remove the line GEIL and the points on it, we have
the 9 points and 12 lines of EG(2,3) (cf. Fig. 2). The configur-
ation formed by the points and lines of EG(Z,3) is the famous
configuration of the 9 inflexion points of a cubic curve ([1], p.19).
Thus EG(2,3) is a subplane of the complex projective plane.

We now prove a theorem which determines all the finite
Desarguesian projective planes which contain EG(2, 3).
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M H

Fig. 2

THEOREM 2. Let p be a prime and « a positive

integer. Then PG(Z,pa) contains a subplane EG(2, 3) if and

only if either p=3 or pa =1 (mod 3).

Proof: (cf[3], p.237, ex. 3). Suppose that w = PG(2,p")
contains L EG(2,3). Using the notation of Fig. 2, we intro-

duce homogeneous coordinates into w in such a way that
F=(0,0,1), H=(4, 0, 1), K=(0, 1, 1), and B =(1, 1, 1).
Then D, being the intersection of FB and HK, has coordinates
(1, 1, 2).

We assign the coordinates (1, 0, -t) to M, noting that
t +- 1. Taking collinearity relations into account, we can now
give coordinates to the three remaining points of T

C, being the intersection of BK and DM, must have
coordinates (1 +t, t, t). (Note that if LA is to exdst, C must
be distinct from M; thus t % 0).
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A = FC.BH has coordinates (1+t, t, 1+t).
J = FK.DA has coordinates (0, 1, 1+t).

In assigning coordinates to the 9 points of 7 we have
o

taken into account the collinearity of 9 of the 12 different triples
of collinear points. The collinearity of a tenth triple, B(1, 1, 1),
M(1, 0, -t), and J(0, 1, 1+t) follows automatically, since the
value of the determinant

1 i 1
1 0 -t
0 1 1+t

is zero. We have yet to consider the collinearity of A, K,
and M, and of C, J, and H. The first yields the equation

1+t t 1+t
0 1 1 =0
1 0 -t
which reduces to
2
(4. 1) t +t+414 =0.

The second collinearity relation also yields (4.1). Thus a
necessary condition that m contains L5 is that the field GF(p9%)

must contain the roots of equation (4.1). A reversal of the above
argument shows that this condition is also sufficient.

We observe first that (4. 1) is satisfied by t =1 if and only
if p=3. If p%$3, then the roots of (4.1) are the primitive
cube roots of unity in GF(p%). Now GF(p%) contains an
element of multiplicative order 3 if and only if the order of its
multiplicative group, which is cyclic ([2], p. 248), is divisible
by 3. But this order is p? - 4. This completes the proof of
Theorem 2.

The first two cases of planes PG(2, pa) having subplanes

EG(2,3) are PG(2,4) and PG(2,7); they illustrate cases (iv)
and (iii) respectively of Theorem 1. It is also interesting to note

2
that PG(2,p ) (r=1,2,...) contains EG(2,3) regardless of
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the prime p involved. For if p :}: 3, then p st 1(mod 3),

‘ 2 2r+1
and therefore p =1 (mod 3). On the other hand, PG(2,p f )

{p % 3) can contain EG(2,3) when and only when p =1 (mod 3).

5. Irregular Subplanes. We shall say that a subplane of
a given finite projective plane is irregular if its order does not
divide the order of the whole plane.

The only known irregular projective subplanes are sub-
planes of order two embedded in non-Desarguesian planes of
odd order (cf, for example, [5], p. 39). Every plane contains
an affine subplane of order two, namely the vertices and sides
of any quadrangle.

We have exhibited irregular affine subplanes of order 3
embedded in Desarguesian planes. It is well known that a
Desarguesian plane cannot contain an irregular projective sub-
plane. Now consider a non-Desarguesian plane w which con-
tains a Desarguesian subplane Ty where 1~r1 in turn contains

EG(2,3) as an irregular subplane. We then have EG(2, 3)
embedded in w. This leads naturally to the following questions:

Are there (non-Desarguesian) planes which contain
irregular projective subplanes of order 3?

Are there irregular (affine or projective) subplanes
whose order is greater than 3°?
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