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1. Introduction. A we LI-known theorem, due to 
R. H. Bruck ([4], p. 398), is the following: 

If a finite projective plane of order n has a projective 
2 2 

subplane of order m < n, then either n = m or n > m 4- m. 

In this paper we prove an analagous theorem concerning 
affine subplanes of finite projective planes (Theorem 1). We 
then construct a number of examples; in part icular we find all 
the finite Desarguesian projective planes containing affine sub
planes of order 3 (Theorem 2). 

We express our thanks to R. H. Bruck for suggesting the 
(2) 

problem , and to J. F. Rigby for valuable suggestions relative 
to an inequality of Theorem 1. 

2. Basic Definitions. A projective plane is a system of 
undefined elements called points and l ines, together with a 
relation of incidence, subject to the following axioms: 

(1) 

(2) 
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1. Any two distinct points are incident with one and only-
one line. 

2. Any two distinct lines a re incident with one and only 
one point. 

3. There exist four points, no three of which a re incident 
with a line. 

The usual terminology of incidence, - !Tiies on11, "passes 
through", "coi l inear", "concurrent" , etc - is employed. 

If a projective plane TT is finite (i. e. contains a finite 
number of points and lines), it is easily shown that every line 
contains the same number of points. If this number is n + 1, 
we say that TT is of order n. A projective plane of order n 

2 2 
contains n + n + i points and n ± n + 1 l ines, and n + 1 
lines pass through each point. Also, it is easily seen that 
n > 2 ([4], pp. 346-8). 

A projective plane is Desarguesian if the Theorem of 
Desargues holds universally ([4], p. 351). A charac te r i s t ic 
property of a finite Desarguesian plane is that it can be 
coordinatized by a field. Such a plane has order p a 

(p is pr ime, or = 1 , 2 , . . . ) , is coordinatized by GF(p a) , and 
is denoted by the symbol PG(2,p a ) . Conversely any Galois 
field GF(pa) gives r i se to a finite projective plane PG{2, pa) 
([2], pp. 324-327). 

An affine plane TT of order n can be derived from a 
projective plane IT of order n by the well-known process of 
removing a line of TT and the n + 1 points lying on it. More 
formally, TT satisfies the following two axioms, as well as 
Axiom 1 for TT: 

2. Given a line £ and a point P not on £ , there is 
exactly one line through P which fails to meet £ . 

3. There exist three non-coll inear points. 

Z 
Clearly ir contains n points, n on each line, and 

2 
n + n l ines , n + 1 through each point. Moreover , the lines 
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of TT can be divided into n + 1 mutually exclusive parallel 
c lasses of n lines each, two lines belonging to the same 
parallel c lass if and only if they are parallel (i. e. have no 
common point). The Desarguesian affine geometry of order p 
is denoted by the symbol EG(2,p a) ([2], p. 329). 

A (projective or affine) subplane ir of a given projective 
o 

plane n is a set of points and lines of rr which themselves 
form a (projective or affine) plane under the same incidence 
relation. Thus a line of TT which contains two points of TT 

o 
must be a line of ir . 

o 

3. The Orders of Affine Subplanes. Let TT be a pro
jective plane of order n containing an affine subpiane TT of 
order m < n. 

THEOREM 1. For each point P in TT let k = k(P) 
denote the number of lines of TT which pass through P. Then 

o 
2 

(i) If k = 0 for some point, n > m - 1 
2 

(ii) If k > 1 for each point, n < m - 1 

2 
(iii) If k = 1 for some point, n > m - m + i 

(iv) If k > 2 for each point, n = 4 and m = 3. 

Proof: For any point Pjé IT , the k lines through P which o 
belong to TT account for a total of km points of TT (m on 

o o 
each line). The remaining n + 1 - k lines through P each 
contain no more than one point of TT . Hence 

o 

2 
(3. 1) km + n + 1 - k > m . 

Setting k = 0 in (3. 1) we have resul t (i). 

Suppose now that k > i for each point. Let 1 be a line, 
not in IT , which contains exactly one point Q of TT (such a 

o o 
line must exist, since there a re n + i lines of TT through Q, 
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only m + i of which belong to tr ). Now for each of the other 
0 2 

n points on I * k :> L But there a re only m + m - (m+1) 
s m - 1 lines of TT which do not pass through Q. Hence 

2 ° 
n < m - 1. Thus we have proved resul t (ii). 

We now consider case (iii). If k = 1 for some point, 
then substitution in (3. i) yields 

2 
n > m ~ m . 

2 
Let us suppose that n =m - m. Then, using resul t (i), we 
have that k > 1 for each point of ir . Any two paral le l lines 
of TT meet in a point P of TT for which k(P) > 1, These 

o 
two lines each contain m points of TT . There a r e therefore 

2 
at most m - 2m other lines through P which contain points 

2 
of IT . But since m > 1 and n =m - m, there must be at 

o 
least one line through P which contains no points of IT . 
Let I be such a line, and let X be any point on £ . If 
k(X) = 1, then the lines through X fall into at least three 
mutually exclusive c l a s ses , 

(a) the line £ 

(b) the line of ir through X 

2 
(c) the m - m distinct lines through X which contain 

exactly one point of TT . Counting these l ines, we have the 
inequality 

2 
n + i > l + i + m - m , 

2 
n >̂ m - m + 1 . 

2 
But n =m - m. Therefore k(X) > 2 for each point X on I . 

2 2 
There a r e m - m + 1 points on £ and m + m lines of TT , 

o 
and so 
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2 2 
2(m - m + 1) < m + m , 

m < 3m - 2 , 

m < 3 - 2 / m < 3 . 

2 
Therefore m = 2 and n = m - m = 2. But this i s a contra-

2 
dict ion, s ince n > m. Therefore n > m - m, and we have 
resu l t ( i i i ) . 

Final ly , suppose that k > 2 for each point of ir, and let 
r . There are m l ines in ir 
o o. 

£ be a l ine of ir . There are m l ines in ir which in tersec t 
2 

£ in points of ir . Excluding £ and these m l i n e s , we have 

left a set v of ( m 6 + m) - (m + 1) = m - 1 l ines of ir to 
o 

intersect £ in the remaining n + 1 - m points of £ which do 
not belong to 

we must have 

not belong to ir • Since £ i t se l f belongs to ir , and k > 2 , 
o o — 

m - l > n + 1 - m , 

2m - 2 > n . 

Substituting in (3. 1), we have 

2 
km + (2m - 2) + 1 » k > m , 

2 2 
k(m - 1) > m - 2m + 1 = (m - i ) , 

k > m - i • 

Let P and Q be any two dist inct points of £ which are not 
points of ir (there are at l eas t two s ince n > m) . Then, a s 

o 
we have just seen , k(P) > m - 1, and therefore at l eas t m - 2 
l ines of the set v pass through P. Thus at most one line of y 
fai ls to mee t P; since k(Q) > 2 there must be one such l ine, 
and it must meet Q. Moreover , s ince v i s now exhausted, 
P and Q are the only points of £ , apart from the points of 
TT , i . e . 

o 

n = m + 1 . 
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It also follows that k(P) = m - i and k(Q) = 2. Reversing the 
roles of P and Q, we have k(Q) =m - 1 = 2 and 
k(P) = 2 =m - 1. i . e . 

m = 3 . 

Result (iv) is therefore proved. 

That the case n = 4, m = 3 actually exists will be shown 
in the next section. We shall also show there that equality in 
case (ii) of Theorem 1 is attained by the example n = 3, m = 2. 
The example n = 7, m = 3 of the next section shows that 
equality is possible in case (iii). However, in case (i) we have 

2 a 
only examples in which n = m ; EG(2,p ) is a subplane of 
PG(2,p a) ([2], pp. 334-5). Whether s tr ict equality can be 
attained in case (i) is therefore an open question. 

4. Examples. Let A, B, C, D be a complete quadrangle 
in PG{2,3) (cf. Fig. 1). Let E = A B . C D , F = A C . B D , 
G = A D . B C , H = A B . FG, I = AC. GE, J = A D . E F , K = B C . E F , 
L = BD. GE, M = CD. FG. Now it is easily checked that the 
7 points A, B, C, D, E, F , G a re all distinct; the coincidence 
of any two implies that three of the four points A, B, C, D are 
coll inear, which is not t rue . Moreover, the coincidence of any 
two of the 6 points H, I, J, K, L, M implies the coincidence 
of two of the 7 points A, . . . , G; for example, if J = M, then 
F = D. Therefore the 6 points H, . . . , M a re distinct. Like
wise these 6 points are distinct from A, B, C and D; finally 
they a re also distinct from E, F and G, since the diagonal 
points of a quadrangle a re not collinear in PG{2, 3) ([2], p. 341). 
The 13 distinct points A, . . . , M must therefore be the 13 
points of PG(2, 3). 

The 4 ver t ices and 6 sides of the complete quadrangle 
A, B, C, D may be interpreted as the 4 points and 6 lines of 
an affine subplane EG(2,2) in PG(2, 3). The above considera
tions show that k(P)> 1 for each point P in PG(2,3). Thus 
we have an example of equality in case (ii) of Theorem 1. 

With the aid of Fig. 1 we easily find 9 of the 13 lines in 
PG(2, 3). Denoted by the 4 points which they contain, they are 
ABEH, ACFI, ADGJ, BCGK, BDFL, CDEM, EFJK, FGHM, 
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Fig. i 

and GEIL. One soon picks out the other four Lines; they must 
be AKLM, BUM, CHJL, and DHIK. 

If we remove the line GEUL and the points on it, we have 
the 9 points and 12 lines of EG(2, 3) (cf. Fig. 2). The configur
ation formed by the points and lines of EG(2, 3) is the famous 
configuration of the 9 inflexion points of a cubic curve ([ i ] , p. 19). 
Thus EG(2, 3) is a subplane of the complex projective plane. 
We now prove a theorem which determines all the finite 
Desarguesian projective planes which contain EG{2,3). 
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C K B 

F ig . 2 

T H E O R E M 2. Le t p be a p r i m e and a a pos i t ive 
oc 

i n t e g e r . Then P G ( 2 , p ) con ta ins a subplane EGÇ2, 3) if and 

only if e i t h e r p = 3 o r p =.1 (mod 3). 

Proof: ( c f [ 3 ] , p . 237, ex. 3). Suppose tha t Tr = P G ( 2 , p a ) 

con ta ins tr = E G ( 2 , 3 ) . Us ing the nota t ion of F ig . 2, we i n t r o 

duce h o m o g e n e o u s c o o r d i n a t e s into TT in such a way tha t 

F = (0, 0, 1), H = ( l , 0, 1), K = (0, 1, 1), and B = ( l , 1, 1). 

Then D, be ing the i n t e r s e c t i o n of FB and HK, h a s c o o r d i n a t e s 

( 1 , 1, 2). 

We a s s i g n the c o o r d i n a t e s ( 1 , 0, - t ) to M, not ing tha t 
t =f= - 1. Taking c o l l i n e a r i t y r e l a t i o n s into accoun t , we can now 
give c o o r d i n a t e s to the t h r e e r e m a i n i n g poin ts of TT : 

o 

C, be ing the i n t e r s e c t i o n of BK and DM, m u s t have 
c o o r d i n a t e s ( i + t , t , t ) . (Note that if TT i s to e x i s t , C m u s t 
be d i s t i n c t f r o m M; thus t 4= 0), 
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A ^ F C . B H h a s c o o r d i n a t e s (1+t, t , 1+t). 

J = FK. DA has c o o r d i n a t e s (0 , 1, 1+t). 

In a s s i g n i n g c o o r d i n a t e s to the 9 poin ts of IT we have 

t aken into accoun t the co l i i nea r i t y of 9 of the 12 dif ferent t r i p l e s 
of c o l l i n e a r po in t s . The c o l i i n e a r i t y of a t en th t r i p l e , B ( l , 1, 1), 
M ( l , 0, - t ) , and J (0 , 1, 1+t) follows a u t o m a t i c a l l y , s ince the 
va lue of the d e t e r m i n a n t 

1 1 
1 0 
0 1 

1 
- t 

1+t 

i s z e r o . We have ye t to c o n s i d e r the c o l i i n e a r i t y of A, K, 
and M, and of C, J , and H. The f i r s t y i e ld s the equat ion 

= 0 

which r e d u c e s to 

(4 .1) 

1+t 
0 
1 

2 
t + t + 

t 
1 
0 

1 : 

1+t 
1 

- t 

= 0 . 

The second c o l i i n e a r i t y r e l a t i o n a l s o y i e ld s (4. 1) 
n e c e s s a r y condi t ion tha t IT con ta ins 

Thus a 
ir i s tha t the field GFCp*) 

o 
m u s t conta in the r o o t s of equat ion (4. 1). A r e v e r s a l of the above 
a r g u m e n t shows tha t t h i s condi t ion i s a l s o sufficient . 

We o b s e r v e f i r s t tha t (4. 1) i s sa t i s f i ed by t = 1 if and only 
if p = 3. If p =}= 3, then the r o o t s of (4. 1) a r e the p r i m i t i v e 
cube r o o t s of unity in GF(pûr). Now GF(p a ) con ta ins an 
e l e m e n t of m u l t i p l i c a t i v e o r d e r 3 if and only if the o r d e r of i t s 
m u l t i p l i c a t i v e g roup , which is cyc l i c ([2], p. 248), i s d iv i s ib le 
by 3. But t h i s o r d e r i s p a - 1. T h i s c o m p l e t e s the proof of 
T h e o r e m 2. 

a 
The f i r s t two c a s e s of p l anes P G ( 2 , p ) hav ing subp lanes 

EG(2 ,3 ) a r e PG(2 ,4 ) and P G ( 2 , 7 ) ; they i l l u s t r a t e c a s e s (iv) 
and (iii) r e s p e c t i v e l y of T h e o r e m 1. It i s a l s o i n t e r e s t i n g to note 

2 r 
tha t P G ( 2 , p ) ( r = l , 2 , . . . ) con ta ins EG(2 ,3 ) r e g a r d l e s s of 
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the prime p involved. For if p =}= 3, then p = . l(mod 3), 

and therefore p = 1 (mod 3). On the other hand, PG(2,p ) 
(p =j= 3) can contain EG(2, 3) when and only when p = 1 (mod 3). 

5. I r regular Subplanes. We shall say that a subplane of 
a given finite projective plane is i r regular if its order does not 
divide the order of the whole plane. 

The only known i r regular projective subplanes a re sub-
planes of order two embedded in non-Desarguesian planes of 
odd order (cf, for example, [5], p. 39). Every plane contains 
an affine subplane of order two, namely the ver t ices and sides 
of any quadrangle. 

We have exhibited i r regular affine subplane s of order 3 
embedded in Desarguesian planes. It is well known that a 
Desarguesian plane cannot contain an i r regular projective sub-
plane. Now consider a non-Desarguesian plane IT which con
tains a Desarguesian subplane ir . where TT in turn contains 

1 1 
EG(2, 3) as an i r regu la r subplane. We then have EG(2, 3) 
embedded in TT. This leads naturally to the following questions: 

Are there (non-Desarguesian) planes which contain 
irregular projective subplanes of order 3? 

Are there irregular (affine or projective) subplanes 
whose order is greater than 3? 
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