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SIX CLASSES OF THEORIES*

H. JEROME KEISLER

(Received 14 April 1975)

A theory T is said to K- stable if, given a pair of models 21 Cty of T with 21
of power K, there are only K types of elements of ty over 21 (types are defined
below). This notion was introduced by Morley (1965) who gave a powerful
analysis of ai-stable theories. Shelah (1971) showed that there are only four
possibilities for the set of K in which a countable theory is stable. This partition
of all theories into four classes (to-stable, superstable, stable, and unstable
theories) has proved to be of great value. However, most familiar examples of
theories are unstable.

In this paper we use the cardinal numbers of the sets of types in ^ over 21
to partition the unstable theories into three more classes, so altogether there are
six classes of countable theories.

This is an expository paper which has statements of the theorems and
examples, but no proofs. It is based on a lecture to the Australian Logic
Summer School at Monash University in January 1974. The work was
supported in part by an NSF Grant.

1. Stability Function

We assume throughout that L is a countable first order language, and T is
a theory in L which has infinite models. By a basic formula we mean a finite
conjunction of atomic and negated atomic formulas. Given a model 21 for L
with universe A, LA is the expansion of L formed by adding a constant symbol
for each a G A. K and A denote infinite cardinals. Otherwise we follow the
notation of Chang and Keisler (1973).

DEFINITION Let 21 be a model of T. If 21 C^ , 5g|= T, and bGB, the type of b
over 21 is the set of all basic formulas <p(x) in LA such that iih <p [b], see Morley

* This is the first of a series of survey papers which will appear from time to time in the Journal.
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258 H. Jerome Keisler [2]

(1965). The Stone space of 21, 5(21, T), is the set of all types over 91. 5(21, T)
has the topology such that for each basic formula <p(x) of LA, the set of all
types containing <p(x) is a basic open set.

It follows from the compactness theorem that S(2l, T) is a compact totally
disconnected Hausdorff space.

DEFINITION. Given two models 21, ty of T with 21 C^S, the set of all types of
elements of $ over 21 is denoted by 5(21, $g).

In general, 5(21,^3) is a subset of S(2l, T). This note deals with the
cardinalities of the sets 5(21,5J3) of types, not with the topology of the Stone
space 5(21, T). There is a trivial lower and upper bound.

PROPOSITION 1. 1/ 91 and 8̂ are infinite models of T with

This is because the elements of A all have different types over 21, and each
type is a set of formulas of LA.

REMARK. It may happen that two types over 21 cannot both be realized in a
single extension P̂ D 21, so there may be no extension ĝ of 21 such that
5(21, ̂ ) = 5(21, T). However, we always have

5(21, T) = U {5(21,^): 21

DEFINITION. The stability function of T is the function fT on infinite
cardinals K defined by

fT(K ) = sup {15(2l,^)|: 21,̂ 5 are models of T,2lC$, \ A \ = K}.

T is K- stable if /T(K) = K.
By Proposition 1, K S / T ( K ) S 2 " .

Shelah raised the question: which cardinal functions are stability functions
of theories ?

In this paper we announce a solution to this problem.

2. The Classification Theorem

DEFINITION. The Dedekind function is defined by

ded(«) = sup {A : There is a linear ordering of

power K which has A dedekind cuts}.

It is easily seen that the theory LO of linear ordering has the stability
function
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[3) Six classes of theories 259

In fact, for every extension T of LO with an infinite model,

because every linear ordering can be imbedded in a model of T.

PROPOSITION 2. (Hausdorff). K < ded K, K" S ded K S 2".

THEOREM A. For every countable theory T with an infinite model, the
stability function of T is one of the following six functions.

K, K + 2", K", ded K, (ded *)", 2".

Notice that these functions are increasing in the order listed.
It is convenient to have names for each of these six types of theories.

Some related terminology of Shelah (1971) suggests the following.

/T(K) Name

K T is ay- stable
K + 2" T is strictly superstable

K" T is strictly stable
ded K T is ordered

(ded*)" T is multiply ordered
2" T is independent

Theorem A breaks up into five parts, one proved by Morley, three by
Shelah, and one by the author. These five theorems give syntactical character-
izations for the stability function of T. They all have a similar pattern and
together imply Theorem A.

The symbol X" denotes the set of all finite sequences of elements of X. x
and a denote finite sequences of variables from L and constants from a set A,
respectively. By a basic formula we shall mean a basic formula in some
expansion LA of L.

THEOREM 1. (Morley (1965)). (i)^(ii)->(iii).

(i) K < / T ( K ) for some K.

(ii) There are basic formulas <ps(x), s G 2°°, such that <ps,(x) = 1<pso(*) for
all s, and

T U {<p, r n(c,): t £ 2", n < a)} is consistent.
<Poo • • •
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(iii) K + 2" g fT(K) for all K.

THEOREM 2. (Shelah (1971)). (i)->(ii)->(iii).
(i) For some K, K + 2" < /T(K).

(ii) There exist basic formulas <pn(x, y), n < a>, such that T is consistent
with

<pn{cs, a s 1 (n+ ~l<pn(cs, ds1 n , m ) : n < a), s G o)

<po(x, d0) •

'<Pi(X,

•<Pi(X,

<po(x,d,)\

(po(x, d2) -:

[.
)

(iii) For all K,K" S / T ( /< ) .

THEOREM 3. (Shelah (1971)). (i)-»(ii)-»(iii).
(i) For some K, K " < / T ( K ) .

(ii) There is a basic formula <p(x,y) such that T is consistent with

!

cp(cm,dn) if n < m

-\<p(cm,dn) if m^n

(This suggests the name "ordered"),
(iii) For all K, ded K S / T ( K )

The theorem below is the one new step.

: m, n < &>

THEOREM 4. (i)—»(ii)

(i) For some K, ded K < / T ( K ) .

(ii) There are basic formulas <pn(x, y), n < co, such that Tis consistent with

(pk(cs,dkn) if n < s(k)
: n, k < ft», 5 6 o> f

[l <pk(cs, akn) if

(This suggests the name "multiply ordered").

<p,(x,dw)

<po(x, doo)

<Pi(x,an)

<po(x, d0l)

<Pi(x,al2)-

<Po(x, aOi) •
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[5] Six classes of theories 261

(iii) For all K, (ded«)" ^ / T ( K ) .

THEOREM 5. (Shelah (1971)). (i)-»(ii)-
(i) For some K, (ded*)"" < / T ( K ) .

(ii) There is a basic formula <p(x,y) such that T is consistent with

( <p(cs,dm) if m G s "I

l<p(cs, am) if m£s J
(This suggests the name "independent".)

(p(x,

(iii) For all K, /T(K) = 2".

In each of Theorems 1-5, the proof of (ii)—»(iii) is a fairly easy application
of the compactness and Lowenheim-Skolem theorems. The idea is to have the
a's be elements of a model 91 of power K and the c's be elements with different
types in an extension of 91. The proofs of (i)—»(ii) are harder combinational
arguments. Shelah used a result of Erdos and Makkai (1966) in the proof of
Theorem 3, and the same result is used a second time in the proof of Theorem
4.

3. Elementary Stability

In the preceding sections we considered the Stone space S(9l, T) built up
from basic formulas. In the literature one often finds instead the elementary
Stone space, which is built up from arbitrary formulas. In this section we
clarify the relation between the two approaches. It turns out that Theorem A
implies the analogous theorem for elementary Stone spaces.

Let ^ be an elementary extension of 2I,9I<^, and let dGB. The
elementary type of b over 21 is the set of all formulas (p(x) of LA such that
SiN <p[b], Morley (1965). The elementary Stone space of 9l,S(9l), is the set of all
elementary types over 91.

Note that the Stone space S(9t, T) depends on both 91 and T, while the
Stone space S(9l) depends only on 91. It follows from the compactness theorem
that for every model 91 there is an elementary extension ^ > 91 such that every
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type in the elementary Stone space S(9l) is realized by some element of $ .
The elementary stability function of T, gT, is defined by

g r ( K ) = sup{15(91) |: 91 is a model of T of power K}.

We now show that the elementary Stone space is a special case of the
Stone space. Let L* be the expansion of L formed by adding a new relation
symbol Rv(x, • • • xn) for each formula <p(x,, • • • xn), let T* be the theory with
axioms <p «-» Rr, and let 91* be the unique expansion of 91 to a model of T*. Thus
9 l < $ iff 91*

PROPOSITION 3. For any model 91 for L, S(9l) is homeomorphic to
S(9l*, T*). For every theory T of L, gT = fTUT-.

From Theorem A and Proposition 3 above, we immediately obtain the
analogue of Theorem A for the elementary stability function.

THEOREM A'. For every countable theory T with an infinite model, the
elementary stability function of T is one of the following:

K,K+ 2", K, ded K, (ded *)", 2".

For specific examples it is usually easier to compute the stability function
than the elementary stability function of a theory. The following proposition
gives a case where the two stability functions are the same.

We call T a submodel completion of To if every model of To can be
extended to a model of T and vice versa, and every formula is equivalent to a
quantifier-free formula with respect to T.

PROPOSITION 4. / / T is a submodel completion of To then the elementary
stability function of T is equal to the stability functions of both T and To,

4. Examples

4.1. Examples of (o-stable theories, / T (K) = K.
Integral domains
Fields
Differential fields of characteristic zero. (Blum (1968)).
Equivalence relations
Abelian groups
A function of one variable
Vector spaces over fields
Projective geometries
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[7] Six classes of theories 263

The following examples are submodel completions of theories from the
above list, and thus are elementarily w-stable, gT(K) = fT(K)= K.

Algebraically closed fields.
Differentially closed fields of characteristic zero.
Doubly infinite equivalence relations.

4.2. Examples of strictly superstable theories, /T(K) = »c + 2".
Countably many unary relations.
One unary relation and one unary function.

The theory of countably many independent unary relations is a submodel
completion and is elementarily strictly superstable, gT(/c) = / T ( K ) = K +2".

4.3. Examples of strictly stable theories, fT(i<) = K".
Countably many equivalence relations.
One equivalence relation and one unary function.
Two unary functions.
Countable decreasing chains of abelian groups.
Theory of R- modules where R is a fixed countable ring (for most R).
Differential fields of characteristic p, with a symbol for V .
(Shelah (1973)).

The theory of countably many independent equivalence relations is a
submodel completion and is elementarily strictly stable, gr(i<) = fri*) = K".

4.4. Examples of ordered theories, /T(K) = ded K.
Linear order
Ordered fields
Ordered abelian groups
Fields with valuation

The following examples are submodel completions which are elementarily
ordered, gT(«) = /T(K) = ded K.

Dense linear order without endpoints.
Real closed ordered fields.
Divisible ordered abelian groups.

4.5. Examples of multiply ordered theories, / T (K) = (ded /c)".
Countably many linear orderings.
Ordered R-modules (for most fixed countable ordered rings R).
One linear ordering and one unary function.

The following theory is a submodel completion and is elementarily
multiply ordered,

ST(K) = /T(K) = (ded *)".

Countably many independent dense linear orderings without endpoints.
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I.e. countably many dense linear orderings without endpoints such that if Xm is
an interval in the mth ordering, m = 0,1, • • •, n, then Xa D • • • fl Xn / 0.

4.6. Examples of independent theories, /T(«) = 2".
Boolean algebras
Groups
Inner product spaces
Integral domains with a symbol for a \ b
Division rings
Algebraically closed fields with a unary relation which is a subfield.

The theory of atomless boolean algebras is a submodel completion which
is elementarily independent, gT(«) = / T (K) = 2".

5. Open problems

PROBLEM 1. Are there any extensions of group theory (in the same lan-
guage) which are strictly superstable, strictly stable, ordered, or multiply
ordered?

One can ask a similar question for division rings, etc.
The next problem is whether the six functions in Theorem A can all be

different. The functions

K, K + 2™, K™, d e d K

are, of course, all different. However, if the GCH holds then

ded K, (ded K)", 2"

are all the same. Thus under the GCH there are only four stability functions.
This already followed from the results of Shelah (1971)

It was shown by Mitchell (1972) that if ZFC is consistent, so is

ZFC + ded <o, = (*„, + 2"' = N«,,+l.

In this model of ZFC we have

ded w, =

and there are at least five stability functions.
The open problem is,

PROBLEM 2. Is ZFC + 3K (ded K < (ded «)") consistent?

Kunen remarked that if K = K™ then ded K = (ded K)". (The proof uses a
countable ultrapower of (ded K, K)). Thus ded K can differ from (ded K)" only
when K < K" < ded K < 2".
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[9] Six classes of theories 265

Theorems 1-5 always give syntactical characterizations of the stability
function of T, but the characterization will depend on which of the six
functions are different in a given model of set theory.

Theorem A does not completely solve the problem as stated by Shelah
(1971). For one thing, he asked for stability functions for uncountable as well as
countable theories.

PROBLEM 3. (Shelah). Which stability functions are possible for theories T
of power A?

Partial results are known but the general problem seems hard.
We say that the stability function /T(K) is attained if there is a pair of

models 91 C 8̂ of T with \A \ = K and |S(2l,^)| = / T (K) , i.e., the supremum is a
maximum. Shelah actually considered the slightly different stability function

i, t i _ J /T(K)+ if fAx) is attained
{ JT(K) otherwise

PROBLEM 4. (Shelah). Is /r(«) always attained? If not, which stability
functions /CT(K) are possible?

The functions K,K+ 2", «", and 2" are always attained. If the GCH holds,
the answer to problem 4 is trivially yes. Using the compactness theorem we see
that if c/(ded) «)") ̂  K then (ded K)" is attained. Because we may put together
K orders of power K. SO problem 4 is interesting only for ded K and (ded K)",
and only when their cofinalities are greater than K.

We conclude with two general problems.

PROBLEM 5. What classification of theories do we get by considering the set
of values FT(K) = {\ S(9I, T)\: 91 is a model of T of power K} instead of the
supremum /T(K)?

PROBLEM 6. Develop a sharper stability theory by making use of topological
properties of Stone spaces instead of only their cardinalities.

Added in proof: J. Baldwin and J. Saxl (1976) have recently announced a
partial solution of Problem 1. Namely, every extension of group theory closed
under direct products is either w-stable or independent. G. Sabbagh has given
an example of a group whose theory T has the elementary stability function
gr(«) = ded K: the group of invertible n by n matices (n > 1) over an ordered
field.
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