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Abstract

Based on the abstract version of the Smital property, we introduce an operator DS . We use it
to characterise the class of semitopological abelian groups, for which addition is a quasicontinuous
operation.
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1. Introduction

The starting point for our work is a well known property of the σ-field L of Lebesgue
measurable sets on the real line R.

Smital Lemma. For any set A ∈ L of positive measure and for any dense set P ⊂ R, the
set A + P is of full measure (that is, its complement is a null set).

In the above statement, three types of structure on R are used: a group operation, a
topology and a pair comprising a σ-field and a σ-ideal. Looking for a more general
approach, we observe that the σ-field L and the σ-ideal of sets of measure zero can
be replaced by any pair (A,I), where A is a field of subsets of X and I ⊂ A is an
ideal. In this context, the Smital property was studied in [2]. It is easily seen that no
topology is needed to formulate and study the Smital property. It is enough to define a
family of dense sets, as in [6] and [4].

In this paper, firstly we describe the properties of an operator D, which assigns to
an arbitrary family of sets the family of dense sets with respect to the family. Then
we define an operator DS related directly to the Smital property and generalising
the operator D in a certain sense. The most interesting result of this paper is a
characterisation of the class of semitopological abelian groups essentially bigger than
a class of all topological abelian groups, namely, the class of semitopological abelian
groups, for which addition is a quasicontinuous operation. This characterisation is
based on the operators DS and D.

c© 2017 Australian Mathematical Publishing Association Inc. 0004-9727/2017 $16.00

246

https://doi.org/10.1017/S0004972717000922 Published online by Cambridge University Press

http://orcid.org/0000-0002-2883-0941
https://doi.org/10.1017/S0004972717000922


[2] Density, Smital property and quasicontinuity 247

2. The operator D

Let X be a nonempty set, F ⊂ P(X)\{∅}, F , ∅. We say that the set P ⊂ X is dense
with respect to F if and only if F ∩ P , ∅ for every F ∈ F . Let D(F ) denote the family
of all sets dense with respect to F . Moreover, let F↑ denote the family of all supersets
of sets from F , that is,

F↑:= {G ⊂ X : (∃F ∈ F )(F ⊂ G)}.

We say that two families F and G are mutually coinitial if

∀F∈F∃G∈G G ⊂ F ∧ ∀G∈G∃F∈F F ⊂ G.

Proposition 2.1. Let F ,G be arbitrary nonempty families of nonempty subsets of X.
Then:

(1) G ⊂ D(F ) ⇐⇒ F ⊂ D(G);
(2) G ⊂ F ⇒ D(F ) ⊂ D(G);
(3) (D(F ))↑= D(F );
(4) G and F are mutually coinitial if and only if D(G) = D(F );
(5) D(F↑) = D(F );
(6) D(2)F = F↑; and

(7) D(n)(F ) =

{
D(F ) if n is odd,
F↑ if n is even.

Proof. Statements (1)–(4) can be easily obtained from the definition; (5) follows from
(4) and from the fact that F↑ and F are mutually coinitial. Statement (7) is an
immediate consequence of (6) and (5).

Let us prove (6). From (1) and the fact that D(F↑) ⊂ D(F↑), it follows
that F↑ ⊂ D(D(F↑)) = D(2)(F↑). Suppose that there exists a set A ∈ D(2)(F↑)\F↑.
Since A < F↑, the complement A′ of A satisfies A′ ∈ D(F ) = D(F↑), contrary to
A ∈ D(2)(F). �

The operator D was recently considered in connection with Marczewski–Burstin
representations in [8]. Using the property (6), we can improve [8, Theorem 1.1].
Following the ideas of Burstin and notation from [1], for an arbitrary family F we
define

S 0(F ) := {A ⊂ X : ∀F∈F∃G∈F G ⊂ F\A}.

Lemma 2.2. Let F be an arbitrary family of nonempty sets. Then

S 0(F↑) = S 0(F ).

Proof. Let A ∈ S 0(F↑) and F ∈ F ⊂ F↑. Then there exists G ∈ F ↑ such that G ⊂ F\A.
But, from the definition of F↑, there exists G′ ∈ F with G′ ⊂ G. Hence A ∈ S 0(F ).

Now let A ∈ S 0(F ). Let F ∈ F↑ and F′ ∈ F such that F′ ⊂ F. Let G ∈ F with
G ⊂ F′\A. Of course, G ∈ F↑ and G ⊂ F\A. Hence A ∈ S 0(F↑). �
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Theorem 2.3 (Compare [8], Theorem 1.1). Let F be an arbitrary family of nonempty
sets. Then

S 0(D(F )) = S 0(F ).

Proof. First, we show that S 0(F ) ⊂ S 0(D(F )). Let A ∈ S 0(F ) and P ∈ D(F ). Observe
that P2 = P\A ∈ D(F ). Indeed, let F ∈ F . Since A ∈ S 0(F ), there exists F2 ∈ F with
F2 ⊂ F\A. Since P ∈ D(F ), F2 ∩ P , ∅. Hence F ∩ P2 , ∅.

From the first part of the proof and Lemma 2.2,

S 0(D(F )) ⊂ S 0(D(2)(F )) = S 0(F↑) = S 0(F ). �

The notion of density is strictly connected with the resolvability of a topological
space and also, in a more general setting, with the resolvability of a measurable space
(X,A,I) [4] and with structure resolvability [6]. If F is a family of nonempty subsets
of X, we say that the family (X,F ) is α-resolvable if there exists a family of cardinality
α of pairwise disjoint sets which are dense with respect to F .

Illanes [5] proved that if a topological space is n-resolvable for every n, then it is
also ℵ0-resolvable. The following example shows that an analogous theorem does not
hold for an arbitrary family of sets.

Example 2.4. Let X = N. For m, n, t ∈ N, let m ∼t n if and only if m ≡ n mod t. Let

F = {[m]∼p : m ∈ N, p is a prime number}.

Then, for every n ∈ N, there exists a disjoint subfamily of F with cardinality n, but
there is no infinite disjoint subfamily of F . The same is true for the family F↑ . Hence
the family D(F ) is n-resolvable for every finite n but it is not ℵ0-resolvable.

Question 2.5. Is the thesis of Illanes true for any familyA\I, whereA is an arbitrary
field of sets and I ⊂ A is an ideal?

3. The operator DS

Let (X,+) be an abelian group, let τ be a topology on X, letA ⊂ P(X) be an algebra
and let I ⊂ A be an ideal in P(X).

We say that a triple (A,I, τ) has the Smital property if, for any set A ∈ A\I and
any dense set P ⊂ X, the set (A + P)′ (the complement of A + P) belongs to I (see [2]).

Inspired by this idea, we consider a family of sets fulfilling a similar role to that
played by the dense sets in the Smital property, but in a slightly more general setting.
We assume that (X,+) is an abelian group and that F ⊂ P(X)\{∅} and let I ⊂ P(X) be
an arbitrary ideal of sets.

Define
DSI(F ) := {P ⊂ X : (∀F ∈ F )((F + P)′ ∈ I)}.

The operator DSI has the following properties.

Proposition 3.1. Let F ,G be arbitrary nonempty families of nonempty subsets of X.
Then:
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(1) G ⊂ DSI(F ) ⇐⇒ F ⊂ DSI(G);
(2) G ⊂ F ⇒ DSI(F ) ⊂ DSI(G); I ⊂ J ⇒ DSI(F ) ⊂ DSJ (F );
(3) (DSI(F ))↑= (DSI(F )) = (DSI(F↑));
(4) if at least one of F and I is invariant with respect to translations, then so is

DSI(F ); and
(5) DS (n+2)

I
(F ) = DS (n)

I
(F ) for n ≥ 1.

Proof. Statements (1)–(4) are straightforward consequences of the definition of DSI.
For (5), observe that from DSI(F ) = DSI(F ) and (1) we obtain F ⊂ DS (2)

I
(F ).Hence,

by (2), DS (1)
I

(F ) ⊃ DS (3)
I

(F ). But, again from DS (2)
I

(F ) = DS (2)
I

(F ) and (1), it follows
that DS (1)

I
(F ) ⊂ DS (3)

I
(F ). �

The following proposition shows that the operator DS is, in some sense, a
generalisation of the operator D.

Proposition 3.2. Let (X,+) be an abelian group and let F be a family of sets invariant
with respect to (X,+) and E = {∅}. Then

DSE(F ) = D(F ).

Proof. Let P ⊂ X. Suppose that P + F , X for some F ∈ F . Since F is invariant, we
can assume that 0 < P + F. Then P ∩ (−F) = ∅. But (−F) ∈ F . As a result, P < D(F ).

Let P < D(F ). Then P ∩ F = ∅ for some F ∈ F . Hence 0 < P + (−F), and so
P < DSE(F ). �

In [2], it is shown that the Smital property implies the Steinhaus property,
understood in the following way. Let (X,+) be an abelian group, let τ be a topology
on X, let A ⊂ P(X) be an algebra and let I ⊂ A be an ideal in P(X). We say that the
structure (A,I, τ) has the Steinhaus property if, for any sets A, B ∈ A\I, the set A − B
has an interior point.

The next proposition shows the connection between the Steinhaus and Smital
properties in our setting. We need the following notation: F̃ = {F1 − F2 : F1,F2 ∈ F }.

Proposition 3.3. Let X be an abelian group, let A be a σ-field of subsets of X and let
I ⊂ A be a σ-ideal. Let P ⊂ X-countable. Then

P ∈ DSI(A\I) if and only if P ∈ D(Ã\I).

Proof. ‘⇒’ Suppose P < D(Ã\I), so that there exist sets A, B ∈ A\I such that
(A − B) ∩ P = ∅. Then the set B + P is disjoint from A, and hence P < DS I(A\I).

‘⇐’ Observe that, for every A ∈ A\I, the set B := (A + P)′ is measurable. Suppose
that B < I. Then (B − A) ∩ P = ∅ and P < D(Ã\I). �
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4. The case of semitopological groups

Let (X,+) be an abelian group equipped with a topology τ. The structure (X,+, τ)
is called a semitopological group if τ is invariant with respect to the group operations,
and it is called a topological group if the group operations are continuous with respect
to τ. It is easy to observe that a sufficient condition for a semitopological group to be
topological is the continuity of the operation ‘+’.

We recall that a function f : X → Y between topological spaces is quasicontinuous
at a point x ∈ X if, for any neighbourhood Ox ⊂ X of x and any neighbourhood
O f (x) ⊂ Y of f (x), there exists a nonempty open set U ⊂ Ox such that f (U) ⊂ O f (x).
A function f : X → Y is quasicontinuous if it is quasicontinuous at each point x ∈ X.
Formally, quasicontinuous functions were introduced by Kempisty [7] and then they
were studied in many settings.

Let τ∗ = τ\{∅}. Then D(τ∗) is the family of all dense sets with respect to τ.

Theorem 4.1. Let (X,+, τ) be a semitopological group. Let ND denote the ideal of
nowhere dense sets. Then the following statements are equivalent.

(1) The operation ‘ + ’ : X × X → X is quasicontinuous.
(2) The families τ̃∗ and τ∗ are mutually coinitial.
(3) DSND(τ∗) = D(τ∗).

Proof. (1)⇒ (2). Let G ∈ τ∗ and x0 ∈ G. Let V1,V2 be open neighbourhoods of x0 and
zero, respectively. By the quasicontinuity of ‘+’, there exist open sets U1,U2 such that
U1 × U2 ⊂ V1 × V2 and U1 + U2 ⊂ G.

(2)⇒ (1). Let a1, a2 ∈ X, let G be an open neighbourhood of a1 + a2 and let
V1, V2 be open neighbourhoods of a1 and a2, respectively. Let H = G ∩ (V1 + V2).
Let U1,U2 be open sets such that U1 + U2 ⊂ H. Let b ∈ U1 + U2. Then there exist
b1 ∈ U1, b2 ∈ U2, c1 ∈ V1, c2 ∈ V2 such that b1 + b2 = c1 + c2 = b and

(V1 ∩ (U1 − b1 + c1)) + (V2 ∩ (U2 + b2 − c2)) ⊂ H ⊂ G.

(2)⇒ (3). The inclusion DSND(τ∗) ⊃ D(τ∗) is obvious. Assume that P < D(τ∗).
Then there exists G ∈ τ∗ such that G ∩ P = ∅. From (2), there exist H1, H2 ∈ τ

∗

such that H1 + H2 ⊂ G. Hence (P + (−H2)) ∩ H1 = ∅. Since (−H2) ∈ τ∗, we obtain
P < DSND(τ∗).

(3)⇒ (2). Let V ∈ τ∗. Then P = X\V is not dense, and hence P < DSND(τ∗). There
exists G ∈ τ∗ such that (G + P)′ < ND. But the set (G + P)′ is closed, so there exists
H ∈ τ∗ with H ⊂ (G + P)′. Hence H + (−G) ⊂ V. �

Corollary 4.2. For every topological abelian group (X,+, τ),

DSND(τ∗) = D(τ∗).

The next example shows that there exists a semitopological abelian group with a
quasicontinuous operation ‘+’ which is not a topological group.
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Example 4.3. Let X = R2. Let

MC(r) = {(x, y) ∈ R2 : (|y| < |x/2| < r) ∨ (|x| < |y/2| < r) ∨ (x = y = 0)}.

The topology τMC generated by the family {MC(r) + (x, y) : x, y, r ∈ R, r > 0} is called
the Maltese cross topology. Since τ̃MC consists of sets open in the natural topology,
R2 equipped with τMC is not a topological group, but, of course, it is semitopological.
However, since τMC and τnat are mutually coinitial, the space satisfies condition (2) of
Theorem 4.1, so ‘+’ is quasicontinuous. The authors express thanks to T. Banakh for
suggesting this example.

5. Classical examples

Example 5.1. Let X = R, let L be the family of Lebesgue measurable sets and let N
be the σ-ideal of Lebesgue null sets. Moreover, let D denote the family of dense sets
with respect to the Euclidean topology on R. Then

DSN (L\N) = D.

Indeed, the inclusion ‘⊃’ is simply the Smital lemma. Now let P < D and let (a, b) be
an interval such that (a, b) ∩ P = ∅. Then L = (0, 1

2 (b − a)) ∈ L\N and ( 1
2 (b + a), b) ⊂

(L + P)′. Hence P < DSN (L\N).

An analogous argument works in the next example.

Example 5.2. Let X = R, let B be the family of sets with the Baire property and let K
be the σ-ideal of meagre sets. Then

DSK (B\K) = D.

From Proposition 3.1, it follows that

(L\N)↑⊂ DS (2)
N

(L\N) = DSN (D).

The question arises whether it is true that (L\N)↑ = DS (2)
N

(L\N). Similarly, is it
true that DS (2)

K
(B\K) = (B\K)↑? The negative answer for both questions was supplied

recently by Filipczak et al. in [3].

Example 5.3. Let H be the Hamel basis on R such that 1 ∈ H. Let A be the linear
span (over Q) of the set H\{1}. Let C = A4(−∞, 0] (where 4 denotes the symmetric
difference). Then C is not Lebesgue measurable and does not have the Baire property,
but, for every dense set D ⊂ R, the set C + D covers the whole real line apart from at
most one point.

Question 5.4. How can we characterise the family DS (2)
N

(L\N)?
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