
J.Aust. Math. Soc. 74(2003), 61-67

MANIFOLDS THAT FAIL TO BE CO-DIMENSION 2 FIBRATORS
NECESSARILY COVER THEMSELVES

YOUNG HO IM and YONGKUK KIM

(Received 17 July 2001; revised 18 January 2002)

Communicated by S. Gadde

Abstract

Let N be a closed s-Hopfian n-manifold with residually finite, torsion free n^N) and finite H\(N).
Suppose that either jr* (N) is finitely generated for all k > 2, or nk (N) = 0 for 1 < k < n — 1, or n < 4.
We show that if N fails to be a co-dimension 2 fibrator, then N cyclically covers itself, up to homotopy
type.
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1. Introduction

The advantage of approximate fibration is that on one hand there exists an exact
homotopy sequence but on the other hand there are more such approximate fibrations
available. (See [3-5] for the definition and usefulness of approximate fibrations.)

To detect approximate fibrations, Daverman introduced the concept of co-dimen-
sion 2 fibrator as follows [7].

A closed n-manifold N" is a co-dimension 2fibrator (respectively, a co-dimension 2
orientable fibrator) if, whenever p : M —> B is a proper map from an arbitrary
(respectively, orientable) (n + 2)-manifold M to a 2-manifold B such that each p ~l (b)
is shape equivalent to N, then p : M -»• B is an approximate fibration.

All closed s-Hopfian manifolds with either trivial fundamental group or Hopfian
fundamental group and nonzero Euler characteristic or hyper-Hopfian fundamental
group are known to be co-dimension 2 fibrators [6,7,16,18,19].
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For the sake of simplicity, we say that a closed manifold N satisfies (CP) if
N cyclically covers itself nontrivially, up to homotopy type, and say that a closed
manifold N is (F) if N fails to be a co-dimension 2 fibrator. Not only the torus and
the Klein bottle but also S1-bundles satisfy (CP).

It is well known [7, Theorem 4.2] that if a closed manifold N satisfies (CP), then
N is (F). What can we say about the converse? Recently, Daverman [9] proves
that the converse is not true in general, by showing that S3 x L(p,q) fails to be a
co-dimension 2 fibrator but it cannot cover itself cyclically, where Lip, q) is a Lens
space.

It is natural to ask when the converse is true. A continuation of earlier investigations
launched on [17], this paper adds evidence for a claim that the converse is true for
many interesting manifolds. More precisely, we have the following

THEOREM. Suppose that a closed s-Hopfian n-manifold N with residually finite,
torsion free n\ (N) and finite Hi (N) is (F). Then, N satisfies (CP), provided either

(1) 7Tk(N) is finitely generated for all k > 2, or
(2) nk(N) ~ Ofor 1 < k < n — I, in particular, aspherical manifold, or
(3) n < 4.

2. Definitions and preliminaries

Throughout this paper, the symbols ~ and = denote a homotopy equivalence and
an isomorphism, respectively. All manifolds are understood to be finite dimensional,
connected and metric.

For a closed manifold N, a proper map p : M -*• B is N-like if each fiber p~l (b)
is shape equivalent to N. For simplicity, we shall assume that each fiber p~x (b) in an
A7-like map to be an A NR having the homotopy type of A7.

Let N and N' be (not necessarily closed) n-manifolds and / : N -*• N' be a map.
Denote the kth cohomology group of TV with G-coefficients and compact supports by
Hc(N; G). If both Af and N' are orientable, then the degree of f is the nonnegative
integer d such that the induced endomorphism/* : H£(N;1) = 1^> H£(N';Z) = 1
amounts to multiplication by d, up to sign. In general, the degree mod 2 of f is the
integer d e {0, 1} such that the induced endomorphism/* : H^.(N;I.i) = J.t ->
H£(N'\ 12) = Z2 amounts to multiplication by d.

Suppose that N is a closed n-manifold and a proper map p : M —*• B is AMike. Let
G be the set of all fibers, that is, G = \p ~\b) : b e B). Put C = {p (g) 6 B : g e G
and there exist a neighbourhood Ug of g in M and a retraction Rg : Ug -*• g such that
R

g I g' '• 8' -*• 8is a degree one map for all g' 6 G in Ug], and C = {p(g) e B : g €
G and there exist a neighbourhood Ug of g in M and a retraction Rg : Ug -> g such
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that Rg | g' : g' ->• g is a degree one mod2 map for all g' e G in Ug). Call C the
continuity set of p and C the mod 2 continuity set of p. Coram and Duvall showed
[5] that C and C are dense, open subsets of B.

Call a closed manifold N Hopfian if it is orientable and every degree one map
N -*• N which induces a n\-isomorphism is a homotopy equivalence. A closed
manifold N is s-Hopfian if N is Hopfian when N is orientable and NH is Hopfian
when N is non-orientable, where NH is the covering space of N corresponding to
H = f]iel{Hi : [7T,(AO : //,] = 2}. By Hall's Theorem (for any finitely generated
group G, the number of subgroups of G having any fixed finite index is finite), the
index set / is finite, and so H has a finite index in Jti(N). All closed manifolds with
virtually nilpotent or finite fundamental group, all closed aspherical manifolds, and all
closed n-manifolds (n < 4) are examples of s-Hopfian manifolds. Whether all closed
manifolds are s-Hopfian is related to the famous old problem of Hopf [14].

A group F is said to be Hopfian if every epimorphism / : F -> F is necessarily
an isomorphism. A finitely presented group F is said to be hyper-Hopfian if every
homomorphism/ : F -*• F wi th / (F) normal and F / / (F) cyclic is an isomorphism
(onto). A group F is said to be residually finite if for any non-trivial element x of F
there is a homomorphism/ from F onto a finite group K such t ha t / (x) ^ 1 -̂. It is
well known that every finitely generated residually finite group is Hopfian.

Given a group F, we use F' to denote its commutator subgroup.

PROPOSITION 2.1 ([15] or [10]). Let ty : F - • F bean endomorphism of a finitely
generated, residually finite group F with F ' C ^(T). Then there exists an integer
k > Ofor which \fr restricts to a monomorphism on x/rk(T). Moreover, ifF/ F' is finite,
then ker ijf is finite.

The next proposition is an easy consequence of the work of Epstein [13].

PROPOSITION 2.2 ([2, Lemma 3.2]). Let M and N be manifolds andf : M -> N a
proper map such that ftt '• 7Ti(A/) -> Jti(N) is an isomorphism. Let q' : N' —>• N and
q" : M" -> M be coverings such that q'J(7ti(M")) = f -l(q§(ni(N'))). Suppose that
f :M" -> N' is a lifting off o q" with f o q" = / ' o q'. Then degf =degf e 12.
Moreover, ifM and N are orientable, then deg f = deg f'eZ.

The following is basic for investigating co-dimension 2 fibrators.

LEMMA 2.3. Let N be a closed s-Hopfian n-manifold with Hopfian fundamental
group. ifN is (F), then at least one of the following two cases occurs:

Case 1: There is an N-like proper map p : Mn+1 -*• R2 defined on an (n + 2)-
manifold M which is an approximate fibration over K2 \ 0, but not an an approximate
fibration over OS2, such that p~'(0) is a strong deformation retract o /p" ' (K 2 ) =
(say) L under a retraction R: L —>• p~l (0).

https://doi.org/10.1017/S1446788700003128 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003128


64 Young Ho Im and Yongkuk Kim [4]

Case 2: There is an N-like proper map p : Mn+2-> H defined on an (n+2)-manifold
M which is an approximate fibration over H, but not an an approximate fibration over
H, such that /?"'(0) is a strong deformation retract of p~l(U) = (say) L under a
retraction R: L -* p~l(Q) and for all a e dU, R\p~\a) : />~'(a) -+ p~l(0) is a
homotopy equivalence, where U = {(*, y) 6 R2 | y > 0}, H = {(*, y) e K2 | y > 0}
anddU = [(x,y) 6 K2 | y = 0}.

In either case, (R\p-x{x))»{nx(p-\x))) ^ nx{p~W) for some x(£ 0) 6 R.

PROOF. If a closed s-Hopfian «-manifold Â  with Hopfian fundamental group is
(F), there is an AMike proper map p : Mn+1 —>• B defined on an (n + 2)-manifold M
which is not an approximate fibration. Hence p : Mn+1 -> B is not an approximate
fibration at x for some x 6 B. Here* e C OTX e dB.

For the case of x e C, applying [16, Theorem 3.1] and [7, Proposition 2.8], we
can localize the situation into Case 1. Applying [7, Proposition 2.8] for the case
of x 6 dB, we can localize the situation into Case 2. In either case, the Hopfian
hypotheses on N and 7tx(N) gives (R\p~*(x))#(7Ti(p~1 (x))) ^ TTiCp"1^)) for some
;c(^0)eR. D

3. Proof of Main Theorem

Suppose that a closed s-Hopfian n-manifold N with residually finite, torsion free
7Ti(A0 and finite HX(N) is (F). By Lemma 2.3, at least one of the two cases occurs.
Since the method of the proof of Case 2 is basically same as Case 1, we only prove
Case 1.

Put g = p~x(x) and g0 = p~'(0). Take the covering a: L, -»• L = p"'(K2)
corresponding to incl#(7T1(^)). Take the covering fl : LrH -> Lt corresponding to
H = n,{H, < nx(L,) : [nx(L,) : H,] = 2} and then take the universal covering
y : L —>• L,H. Consider the following commutative diagram.
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Here, incl/ and /?/ are liftings of the inclusion map incl and R o q, respectively, g and
go are the universal covering of N.

First, we claim that Rr o incl/ induces a nt-isomorphism.
Since p is an approximate fibration over R2 \ 0, there is a homotopy exact sequence

nx(g) -> ^i(^-'(K2 \ 0)) - • 7r,(K2 \ 0) = 1 -* 1

showing 7ii(p~l(R2 \ 0))/incl#(7Ti(g)) = 2. Because g has the homotopy type of
a co-dimension 2 compactum from L, the inclusion p~l(R2 \ 0) -> L induces an
epimorphism q> of fundamental groups. It follows directly that R#<pinc\{n\(g)) is a
normal subgroup of n\(go) having cyclic cokernel. Hence, incl#(7Ti(g)) contains the
commutator subgroup n\(L)' of n\(L). Since n\(L) = n\(g0) = n\(g) = Jti(N) is
residually finite and 7ti(N)/n\(Ny = Hi(N) is finite, by Proposition 2.1, ker(incl#)
is finite. But since nx (g) is torsion free, ker(incl#) should be trivial, that is, incl# :
Xi(g) ->• n\(L) is a monomorphism. Consequently, (incl/)# : nx(g) -*• n\(Li) is an
isomorphism, for g# o (incl/)# = incl# and q# is a monomorphism.

Since there is no upper semicontinuous decomposition of an orientable (n + 2)-
manifold consisting entirely of nonorientable n-manifolds [7, Proposition 2.9], the
orientability of Lm implies the orientability of fi~x{g). So by [11, Lemma 5.5], the
index [ni(g,H) : (Rt omcl^TCx (P'^ig)))] equals to the degree of the map Rt oincl/.
Applying the fact [18, Lemma 3.2] that R/ o incl/ induces a 7Ti-isomorphism if and
only if R[ oincl/ induces a it\ -isomorphism, we see that the degree of the map Rj oincl/
must be one.

(1) First assume that nk(N) is finitely generated for all k > 2.
By Proposition 2.2, we have that the degree of the map R o incl is one. Hence R o incl
induces //£-monomorphisms for all k. By the fact of H^{X\ G) = Hn_k(X; G) [21,
page 388], R o incl induces //t-epimorphisms for all k. But since nk(N) is finitely
generated for all k > 2, Hk(g) = Hk(g0) is a finitely generated Abelian group
[22, page 509] (and so it is Hopfian) so that (R o incl)* : Hk(g) - • Hk(g0) is an
isomorphism. Appealing to the Hurewicz Theorem, we see that nk(g) ->• nk(L) is
an isomorphism for all k > 2. Whitehead's Theorem ensures that the composition
g -*• Li -*• a'1 (go) is a homotopy equivalence. But since a| : a"1 (go) - • ô is a
covering map, go — N satisfies (CP).
(2) Next, assume that nk(N) = 0 for 1 < k < n — 1.

Recall the work of Swarup [23]: For a map f : A -> B between closed oriented
n-manifolds with Tt\-isomorphism andnk(A) = nk(B) — Ofor I < k < n — I, f is a
homotopy equivalence if and only ifdegf — 1.
Since the degree of the map /?/ o incl/ is one, by the work of Swarup, /?/ o incl/ is a
homotopy equivalence.
(3) Finally, assume that n < 4.

The case of n = 3 is a special case of (2).
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For the case of n = 4, apply the following consequence of the work of Hausmann
[14]: For any degree one map f : A4 —> B* between closed 4-manifolds with
n\ -isomorphism, f is a homotopy equivalence.
Although Hausmann only proves the case A — B, just mimicking his proof and using
the exact sequence of surgery with Poincare duality, one may deduce the statement
above.

4. Example and remarks

EXAMPLE ([12]). A closed /i-manifoldAf,n > 4, which fails to be a co-dimension 2
fibrator but Hi(N) = 12 © 12 and every y e ni(N),y ^ 1, has infinite order.

Apply Maunder's construction [20] to obtain a finite aspherical 2-complex K such
that HX{K) = I2. Specify a PL embedding of K in an (n + l)-manifold Mn+\ and
let S be the boundary of a regular neighbourhood of the image. Let Q be the mapping
cylinder of a 2-1 covering map ® : 5 -> 5; here Q is a (non-orientable) twisted
/-bundle over 5. Form N by doubling Q along 5, its boundary.

A routine computation involving a Mayer-Vietoris sequence confirms Hi(N) =
12 © 12. Note that 7r,(f2) = 7Ti(S) = n^K), from which it follows that 7r,(A0 =
7Ti(£2)*!tl(s)ni(S2) isthe fundamental group of an aspherical finite complex and, hence,
no nontrivial element has finite order [1, Corollary VIH.2.5].

Such manifolds JV fail to be co-dimension 2 fibrators, due to the existence of a 2-1
covering map N -+ N (see [7, Theorem 4.2]). For the most obvious 2-1 covering
N -* N, N will consist of two copies £2i, Q2 of £2, arising as the preimage of one
£2 in the target space, N, together with a 2-1 covering £2 of the other copy of Q used
to form N. But here Q is simply 5" x [0, 1], and N = £2, U (5" x [0, 1]) U Q2 with
attachments that reveal N & N.

Note that for all / > 2, n^N x 5*) (it > 2) is finitely generated.

REMARK. The condition of torsion free ix\ (N) cannot be omitted, since SixL(p, q)
fails to be a co-dimension 2 fibrator ([9]) but it cannot cover itself cyclically, where
L(p, q) is a Lens space.

On the other hand, the condition of finite H\{N) is also imperative, since N fails
to be a co-dimension 2 fibrator but it cannot cover itself cyclically, where N is some

3-manifold(See
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