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Abstract

For a locally compact group G, the von Neumann kernel, n(G), is the intersection of the kernels of the
finite dimensional (continuous) unitary representations of G. In this paper we calculate «(G) explicitly
for a general connected locally compact group and for certain classes of non-connected groups.
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Introduction

For a locally compact group G, the von Neumann kernel, n(G), is the intersection
of the kernels of the finite dimensional continuous complex unitary representa-
tions of G. Rothman [5] has calculated n(G) when G is a connected Lie group.
Every such group has a Levi decomposition G — RL, where R is the radical and
L = KS is the decomposition of the Levi factor into compact and noncompact
parts. Rothman first considers the group G' = G/[R, R]~, which again has such
a decomposition G' = R'K'S', but now R' is abelian. He shows that R' can be
written as Vj- X Vf X T, where T is compact and fixed by the action of K'S', P îs
a vector group fixed by the action of K'S', and Vf is a vector group stabilized by
the action of K'S'. Furthermore, every element of Vj~ except the identity has
infinite /f'S'-orbit. Then the von Neumann kernel of G' is Vj- S', and the von
Neumann kernel of G itself is the preimage of Vj- S' in G. That is, if w: G -* G' is
the projection, «(G) = •n~\V^ • w(5)). Unless otherwise mentioned, results in the
Lie case are to be found in [5].
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280 Sheldon Rothman and Helen Strassberg 121

If G is a connected locally compact group it has a similar decomposition
G = RKS, R the radical, K a compact semisimple connected group, and 5 a
connected semisimple Lie group with no compact factors [3]. In general, both K
and R may be infinite dimensional. We show that there is a subgroup Vf of
7r(G) = G/[R, R]~ with the same properties as discussed above, and that in
general

THEOREM. Let G be a locally compact connected group. Then n(G) —

As a consequence it is shown that if L is a connected semisimple locally
compact group and m a representation of L in a separable vector space V where V
has an L-fixed subspace of finite co-dimension then m is completely reducible. In
the concluding section there are some extensions to non-connected groups.

1

Every connected locally compact group G is the projective limit of Lie groups.
More specifically, there exists a set of compact normal subgroups Na of G such
that each Ga — G/Na is a Lie group, and if Na C Nb there exists a surjective
homomorphism fba: Ga -» Gb. Furthermore the intersection of the groups Na is
trivial. Then G can be identified to the closed subgroup of the direct product II Ga

consisting of the points (xa) for which fba(xa) = xb for every a and b with
Na C Nh, and we write G = limGo. The projection from G to Ga is denoted iTa. If
Na C Nb we say that a < b.

LEMMA 1.1. Let G = limGa be a locally compact group. Then x belongs to n(G) if
and only if ira{x) belongs to n{Ga) for every a.

PROOF. Let x belong to n(G). Any representation ra of Ga can be pulled back to
one of G by composing with ira. Then (ra • ira)(x) = e, so ira(x) belongs to n(Ga).

Let "na(x) belong to n(Ga) for every a and let r be a finite dimensional unitary
representation of G. There is an Na in the kernel of r since the image of G has no
small subgroups. If G is connected Na is compact, but in general Na- is some
normal subgroup which may be taken to be contained in any neighborhood of the
identity of G. Now ra must factor through some Ga ([4], Lemma 2.2):

*V(n,C)

Since ira(x) belongs to n(Ga), r(x) = e, so x belongs to n{G).
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Assume for the t ime being tha t G is connected . If G = RKS is a Levi
decomposi t ion for G then Ga = ira{R)-rra(K)iTa(S) — RaKaSa is a Levi decom-
posit ion for Ga. N o t e that ita is a closed m a p .

P R O P O S I T I O N 1.2. S is closed in G and S = l im Sa.

P R O O F . T h e noncompac t pa r t of a Levi factor of a connec ted Lie g roup is
closed ([5], Theorem 1.4), so we have na(S~) = ira(S)~= ira(S), which is semisim-
ple with n o compac t factors. T h e radical of S~ is con ta ined in the intersect ion of
the kernels of the maps <na and so is trivial, so 5 " is semisimple with n o c o m p a c t
factors. Since S~ is closed and ira: S~-> Sa surjective, S'= l im 5 a . N o w G = RKS
and G = RK(S') are both Levi decompositions, so S and S~ are conjugate ([3],
Theorem 3), so S = S~.

Let [/?,/?]" be the closure of the commutator subgroup of R in G. Then
G' = G/[R, R]~ has abelian radical, and n(G) = w~\n(G')), where -n: G -»
G/[R, R]~ (see [5] for details). Consequently, we may assume that G has abelian
radical. Using Rothman's characterization for the von Neumann kernel of a
connected Lie group ([5], Theorem 1.2), we have n(Ga) = V^fSa. We know that
S = limSa. The following section shows that Vj~— limF^ exists and n(G) =
F / S .

Since Ga is Lie it has the decomposition Ga = (V^X VafX Ta)KaSa. Since
n(Ga) = V^fSa, the group V^f belongs to Rann(Ga). The latter group is
V^f X Da, where Da = Sa n Ra is a discrete group in the center of G.

LEMMA l.3.fba(V^) belongs to Vfr.

PROOF. The map fba takes Ra onto Rb and n(Ga) into n{Gb), so fba(V^f)
belongs to V^X Db. Since V^ is connected, its image belongs to Vbf, the
connected component of Vbf X Db.

Because R is abelian it has a decomposition R = V X P, where P is a maximal
compact subgroup and V is a (finite dimensional) vector group of dimension n.
The dimension does not depend on the choice of V. Since the kernel of ira is
compact, the restriction of ira to V is injective, so Ra may be decomposed as
ira(V) X ira(P) with dim77a(F) = n. The maps/6o also have compact kernel and
so are injective when restricted to a vector subgroup of Ga.

LEMMA \A.fba(V^f)= Vfr.
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PROOF. Consider the groups Vaf X Ta. Each of them is actually Ra n Z(Ga),
Z(Ga) being the center of Ga, sofba(Vaf X Ta) belongs to Vbf X Tb, and dim Vaf <
dimK6y. From Lemma 1.3, d i m F ^ < d i m F ^ . Together with the above discus-
sion, this implies that dim V^f = dimF^, so V^f maps onto Vbf.

PROPOSITION 1.5. The projective limit of the V^ exists.

PROOF. Take the elements (xa) in the direct product of the groups Ga which
have xa in V^f for every a. Then, given an a, fba{xa) — xb for every a < b, by
Lemma 1.4. The projective limit consists of the (xa).

Denote the projective limit by Vf. It is a subgroup of G and the projections ma

are just the restrictions of those of G.

LEMMA 1.6. Vf is a vector group of dimension m which is L-stable, and every
element except the identity has infinite L-orbit.

PROOF. Vf is L-stable since ira(gxg-}) = -rra(g)ira(x)TTa(g-1) belongs to V^f for
every a, and fba(va(gxg~x)) = vb(gxg~*). Operations in the direct product I lF^
are componentwise, so Vf is a vector group, and a basis is easily found by fixing
an a, choosing a basis for V£j, {j>,}, and then taking the elements (xa) of Vf
which have _y, in the crth place. The dimensions of all the groups V^ and Vf are
the same, say m, because of the injectivity of the ira when restricted to Vf. Now
suppose that x in Vf is L-fixed. Then ira(gxg~x) = na(x), so that ira(x) is L-fixed,
and in V^f for every a. Consequently ira(x) = ea, the identity of V^f for every a.
Suppose that x is not L-fixed. Let Lx be the stabilizer of x in L. Then the orbit of
x is homeomorphic to L/Lx. Since L is connected and L =£ Lx, the quotient L/Lx

has an infinite number of points.

LEMMA 1.7. Let H, M, and HM be closed subgroups of G. Then lim Ha • km Ma

= lim HaMa if the limits exists.

PROOF. na(HM) = ira(H)ira(M) = HaMa, showing surjectivity. Since HM is
closed the lemma follows. (See [2], Theorem 2.3.)

LEMMA 1.8. Let H be the subgroup of R consisting of L-fixed elements. Then
R= VfX H.

PROOF. Since H is abelian and locally compact, H = VfX P, where P is a
compact group and Vf a vector group. The group Vf X Vf is closed in R, and
therefore so is Vf X H. Since Vf and H are closed too, R = lim Ra - lim V^f X
Va/X Ta = \imV^fXHa = limF^X lim Ha = Vf X H.
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PROPOSITION 1.9. Vj- S is closed in G.

PROOF. Choose a decomposition H = Vf X P for H. The group P is unique, and
once chosen, P^will remain fixed throughout the proof. Let V= Vj- X Vf.

Case 1: Assume that Z(L) is finite. Then V D PL is a discrete central subgroup
of PL which must actually be trivial, since V has no nontrivial finite subgroups.
Since G = V • PL, and V is normal, G is the semidirect product of V and PL. In
particular, as a space 6 = F X PL. Since Jy1 is closed in V and L is closed in G
and therefore in PL, Vj~ • L is closed in (7. Since S is closed in L [3], J ^ S is also
closed in G.

Case 2: Now consider the case Z(L) arbitrary. The semisimple group L acts
linearly on PyX. Since a semisimple linear group has a finite center, there exists a
subgroup F of finite index in Z(L) which acts trivially on Vj-. The groups Vf and
P belong to Z(G), and G is generated by Vj-, Vf, P, and L, so T belongs to Z(G).
Let IT: G -* G/T be the canonical projection. Since Z(L) is totally disconnected,
IT is a local isomorphism. Now F belongs to L, so ^"'(^(Py1 L)) = f̂ x L, and
therefore by the continuity of m it is enough to show that ir(Vj- )ir(L) is closed in
G/T. If we show that m(Vj-) is the "Vj- " of G/T, we are reduced to the first
case, and the theorem is proven.

LEMMA 1.10. In Proposition 1.9, ir{Vj-) is the "Vj- " of G/T.

PROOF. First, if ira(T) = Ta, we have G/T = l imGa /Ta. Indeed, since T is
closed, T = lim Ta. The Ta are discrete, and in Z(Ga), so G/T = l imG a /r a ([2],
Theorem 2.7).

Next, consider the diagram

>Ga/Ta

where %a is defined to make the diagram commute, and the other maps are the
obvious projections. We have ira(Vj-) = V^f by definition of Vj~. The group
w( V^-j) is the " V^f " of Ga/Ta since these groups are Lie and have the same Lie
algebras, from which the V^j are selected uniquely. Consequently, the "Vj- " of
G/T is l i m t f ( ^ ) = lim V^. Now ma{-n{VJ-)) = # K ( ^ )) = V^f, and -n{Vj-) is
closed in G/T, so w ( ^ ) = lim K^ = the "Vj- " of G/T.

Finally, Vj- S is closed by the same arguments as in Case 1.

THEOREM 1.11. If G is a connected locally compact group with abelian radical,
n(G) = Vj- S.
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PROOF. Since ira(Vj- S) is contained in n{Ga) for every a, Vj~ S belongs to
n{G). Furthermore, if x belongs to n(G) then ira(x) — v^fsa for every a, and
/6o(«•„(*)) = vb(x), so x belongs to \imV^Sa = Vj- S.

COROLLARY 1.12. / / G is as in the theorem, n(G) = lim n(Ga).

PROOF. Since Vj- = l imF^ , S = lim Sa, and Vj- S are all closed subgroups of
G, Lemma 1.7 and Theorem 1.11 imply that n(G) = Vj- S = lim V^f • lim Sa =
]imV^Sa. But each Ga is a connected Lie group and therefore n(Ga) = V^fSa

([5], Theorem 1.2). The result follows.

COROLLARY 1.13. If G is as in the theorem, n(G) is a Lie group.

THEOREM 1.14. If G is a connected locally compact group, and IT and Vj~ are
defined as above, then n{G) = ir~\Vj- • ir(S)).

PROOF. The proof is the same as in [5]. See the discussion following our
Proposition 1.2.

2. Extensions and consequences

LEMMA 2.1. If G = lim(ra, and G° (respectively G°) is the identity component of
G (respectively Ga), then G° = limGa°.

We omit the proof, which is well known.

LEMMA 2.2. / / G is an arbitrary locally compact group and G/G° is compact, then
n(G) C G° and n(G°) C n(G).

PROOF. The finite dimensional unitary representations of G/G° separate the
points, so for every element of G which does not lie in G° there is a representation
of G which does not send the element to the identity, so n(G) C G°. The second
statement follows easily also since the restrictions of representations of G are
representations of G°.

LEMMA 2.3. If G has a finite number of components, n(G) = n(G°).

PROOF. Let x belong to n(G). Then x belongs to n(G°). Let r be a finite
dimensional unitary representation of G°, and consider Ur, the representation
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induced from r. Ur is also unitary and finite dimensional, so Ur(x) is trivial.
Calculating,

Ur(x)f(g) =f(gx) =f(gxg-'g) = r(gxg->)f(g)

so that r(gxg~]) is trivial for every g, and in particular, when g — e. Therefore,
r(x) = e for every finite dimensional unitary representation r, so x belongs to
n(G°). Together with Lemma 2.2, this implies that n(G) = n(G°).

PROPOSITION 2.4. Let G be a locally compact group with abelian radical and
G/G° compact. Then n(G) = n(G°).

PROOF. Since G/G° is compact, G = limGa, where each Ga has a finite number
of components and has abelian radical as well. From Lemma 2.3, n(Ga) = n(G°),
so lim n(Ga) — lim n(G°) — n(G°), with the last equality following from Lemma
2.1 and Corollary 1.12. Now ira(n(G)) C n(Ga), so n(G) C limn(Ga) = n(G°).
Since n(G°) C n(G), the proposition follows.

LEMMA 2.5. Let G be a connected locally compact group. Then n(G) = lim n(Ga).

P R O O F . n(G) = tr'\V^ ir(S)) = Vj- S[R, / * ] " , so

ma(n(G)) = «a(VJ-)*J[R, R]~)Sa = Vff [Ra, RaV-Sa = n{Ga).

Consequently n(G) = lim n(Ga).

THEOREM 2.6. If G is locally compact and G/G° is compact then lim n(Ga) exists
andn(G) = n(G°).

PROOF, lim n(G°) exists since G° is connected. Since G/G° is compact, G can
be expressed as the projective limit of groups Ga with Ga/G° finite. Consequently,
n(Ga) = n(G°) by Lemma 2.3, so lim«(Ga) exists. Now n(G°) C n(G) C
lim n(Ga) = lim n(G°) = lim n(G°) = n(G°), so n(G) = n(G°).

COROLLARY 2.7. / / G/G° is compact, n(G) = lim n(Ga).

Maximally almost periodic groups are those with n(G) — (e).

COROLLARY 2.8 (see [1], Corollary 2.10). / / G/G° is compact, then G is
maximally almost periodic if and only if G° is maximally almost periodic.

We conclude with a theorem about representations of semisimple groups.
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THEOREM 2.9. Let IT be a representation of a connected semisimple group L on a
separable vector space V. Suppose that V has a subspace W which is L-fixed and of
finite co-dimension. Then m is completely reducible.

PROOF. Consider the collection % of all subspaces of W of finite co-dimension.
If W belongs to %, V = V/W is finite dimensional and the intersection of all
such W is trivial. Thus V = lim V. With the trivial bracket operation, V and all
the V become Lie algebras, and, since each W is L-fixed, L acts on each V.
There is a locally compact group R with Lie algebra V. Indeed, for each V the
image W" of W has a discrete subgroup D' such that W"/D' is compact. Take
V'/D' for the choice of Lie group with Lie algebra V. Then R = lim V'/D' exists
and is a locally compact group with Lie algebra V. Furthermore, L acts on each
V'/D', and so it acts on R. Form the group G = R X L. G is a connected locally
compact group with abelian radical. As above, R decomposes into Vj~ X H, where
H is L-fixed and V/- is L-stable. Let V* be the Lie algebra of Vf. Then V* is
L-stable, and V = V* © W. The representation n restricted to V* is completely
reducible, since TT(L) is a semisimple Lie group and Weyl's Theorem applies, and
PF decomposes into 1-dimensional L-fixed subspaces.
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