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FRECHET ALGEBRAS WITH A LAURENT SERIES GENERATOR
AND THE ANNULUS ALGEBRAS

S.J. BHATT, H.V. DEDANIA AND S.R. PATEL

Banach and Frechet algebras with a Laurent series generator are investigated lead-
ing, via the discrete Beurling algebras, to functional analytic characterisations of
the holomorphic function algebras on the annulus as well as the C°° -algebra on
the unit circle.

1. INTRODUCTION

A linear associative unital algebra A is a Frechet algebra if A is a complete metris-
able topological algebra whose topology is defined by a sequence (Pfc)fc>1 of submul-
tiplicative seminorms. Further, a Frechet algebra A has a Laurent series generator x
if

(a) A is topologically generated by {x, re"1} for an invertible element x; and
(b) for each y 6 A, y = £ \nx

n, where £ \Xn\pk{xn) < oo for all k € N.

A Frechet algebra A topologically generated by {x,x~x} has the unique expression
property if each y & A has a unique expansion y = ^2 Xnx

n •
n€Z

A weight on Z is a strictly positive function w : Z —> (0, oo) such that w(m + n) ^
Lj(m)u){n) for all m, n in Z. For r > 0, let Fr = {z € C : \z\ = r). Let u) = (wfe)fc>1

be an increasing sequence of weights on Z. For an appropriate r > 0, the associated
Wiener Frechet algebra W(Tr,w) consists of continuous functions / on Fr satisfying
II/IU : = £ \fr(n)\wk(n) < oo for all * 6 N, where fr(e

ie) = f(reie)(0 < 9 < 2TT)

and /r(n) is the nth Fourier coefficient of / r . Then W(Tr,u) is a Frechet algebra with
a Laurent series generator and with the topology defined by norms {|HL : k € N}.
For 0 < r2 < ri ^ oo, let H(F(r2)ri)) be the uniform Frechet algebra consisting of
functions holomorphic in the open annulus F(r2,ri) := {z € C : r2 < \z\ < r i} and
having the compact open topology. For 0 < r2 < rx ^ oo, let r [ r 2 l r i ) = {z 6 C : r2 ^
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A < ri}; the annuli F( r2 , r i ] and r [ r 2 , r i ] are analogously denned with appropriate
r ! and r 2 . We shall write F[r,r] = F r and Fi = F for simplicity. Let H(T[r2,ri))

:= if e C(r[r2,ri)) : f e H(r(r2,n)), f(z) = £ Anz" satisfying qr(f) < oo for

all 0 < r < rA, where qr(f) = "£ |An|r£+ £ \K\rn. Then H(T[r2,n)) is a
} n<0 n>0

Frechet algebra with the topology denned by the norms {qr : 0 < r < ri}. The Frechet

algebra H(T(r2,ri]) is analogously defined. Let . / / (r^.rx]) = {/ € C(r[r2!r!]) :
/ e # ( r ( r 2 , r 0 ) , f(z) = E Anzn satisfying ||/|| := £ |An | r£+ E |An|rf

n€Z n<0 n>0

< o o l . Then H(T[r2,ri]) is a Banach algebra with a Laurent series generator and

with norm | | | | r 2 r i . Let C°°(T) be the Frechet algebra of all C°°-functions on T with

the topology of uniform convergence on F of functions and all their derivatives.

We shall prove that a Laurent series generated Frechet algebra having the unique
oo

expression property is isomorphic to the Beurling Frechet algebra f] £1(Z,wfc) for an
fc=i

increasing sequence (wfe)fc>1 of weights on Z . This, in turn, will be used to prove the
following main Theorem. We say that a Laurent series generator a; of a Frechet algebra

(^4, {pk}) satisfies the condition (*) if

(i) there exists Mi > 0, M2 > 0 and for each k € N, there exists m^ € N
such that

M i ( l + \n\)mk ^ pk(x
n) < M 2 ( l + \n\)mk (n € Z)

and

(ii) there exists no S Z such that {pfc(xn°) : k € N} is unbounded.

A uniform Frechet algebra is a Frechet algebra (A, {pk}) such that Pk(a2)

= pk(af for all a € A and k £ N.

MAIN THEOREM. Let A be a Frechet algebra with a Laurent series generator x

and having unique expression property. Then the following holds.

(a) If the spectrum sp^ (x) of the generator x is open, then A is home-

omorphically isomorphic to H(T(r2,ri)) for some 0 ^ r2 < r% ^ oo.

Further,

(i) 0 < r2 if and only if zero belongs to the interior of CXsp^ (x):

and

(ii) ri < oo if and only if spA (a;) is bounded.

(b) If the interior of sp^ (x) is empty, then there exists r > 0 and a sequence
u = (wfc)fc>1 of weights on Z such that A is homeomorphically isomorphic

to W(rr,u>). Further, if the generator x satisfies the condition (*), then
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A is homeomorphically isomorphic to C°°(T).

(c) If for each k € N, pfc(x
n) = pk(x)n(n>0) and pk(x

n) = p ^ x " 1 ) " "
(n < 0), then A is homeomorphically isomorphic to one of the Frechet

algebras Hiri^n)),^^,^)), i?(r(r2,n]) or Hpfo,^]). Further,
spA (x) is compact implies that A is the Banach algebra H(T[r2,Ti\).

(d) • If A is a uniform Frechet algebra, then A is homeomorphically isomorphic

In Section 2, we discuss several relevant examples of Banach and Frechet algebras

having a Laurent series generator.

The proof of the main Theorem, presented in Section 3, is broken up into sev-
eral lemmas of some independent interest. The paper is in the contemporary theme of
exploiting power series ideas in Banach and Frechet algebras. Though there are sev-
eral functional analytic characterisations of holomorphic function algebras on simply
connected planar domains (for example, [5, Theorems 12.3.2 and 13.1.7]), the case of
annulus algebra appears to be treated for the first time in this paper.

2. EXAMPLES

EXAMPLE 1. BEURLING FRECHET ALGEBRAS. Let w be a weight on Z. Let ^(Z,w)

consist of all formal Laurent series / = 5Z ^nXn such that | |/ | |w = Yl l-̂ nl < (̂") < °°-
ngZ n€Z

Then (^1(Z,w), ||-||w) is a (Beurling) Banach algebra with the multiplication

and having Laurent series generator X and Laurent series norm IHI^.

Let u> = (w/fc)fc>i b e a sequence (assumed increasing) of weights on Z. Let
consist of all formal Laurent series / := Yl ^nXn such that | |/ | |w < oo for all k G N.

nez
Then ^x(Z,o;) is a Beurling Frechet algebra having Laurent series generator X in the

topology defined by the family of norms ||-||w (feeN). Define p2,fc = sup{wfc(n)l'n :

n ^ -1} and p\tk = inf{wfc(n)1 : n ^ 1} for each k. Since (wfc) is an increasing

sequence, we have

• • • ^ P2,3 ^ P2,2 ^ 02,1 ^ Pl,l ^ Pl,2 ^ Pl,3 ^ • • • •

The Frechet algebra analogue of the classical Wiener Banach algebra is W(T,UJ) con-

sisting of continuous functions / on F having Fourier series / ~ J2 f(n)ein6 which is

w-absolutely convergent in the sense that \\f\\Uk := ]T) |/(n)|wjt(n) < oo for all k € N.
£Z
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(Here we assume that ui ^ 1.) With pointwise multiplication of functions, it is a
Frechet algebra having Laurent series generator f(9) = e%e in the topology defined by
{ I I I U f c

: ^ € N } . The following is an important particular case of this.

E X A M P L E 2. T H E ALGEBRA C°°(Y). Let C°°(r) consist of all C°°-functions on

F. With the pointwise product, it is a Frechet algebra with the Frechet topology r

of uniform convergence on V of all derivatives. It is defined by the norms \\f\\Ck
k , v

= E ( | | / ( n ) | | )/n!, 0 ^ A; < oo, the Banach algebra norms on Ck(T). For each
n=0

fceN.let 11/11* = om««fc||/
(n)IL, (/€C~(r)). Then ||-||fc ~ |Hlc»- Let

Ck+(T) = {/ € Cfe(r) : ||/||fc+ := £| /(n) | \nk\ < oo}.

Then Ck+(T) is a Laurent series generated Banach algebra with norm || | | fc+ and having

generator e*e. Further,

cfc+1(r)ccfc+(r)ccfc(r);

and there is a constant M > 0 such that ||/||cjt < ||/||fc+ ^ M ||/||cjt+i for all /
belonging to Cfc+1(r). Hence

oo oo

c°°(r) = p| ck(T) = f) ck+(r).
fc=O fc=O

In view of the semisimplicity of C°°(T) ([1]), the unique Frechet algebra topology T

is also defined by the Laurent series seminorms {||-||fc+ : k € Nu {0}}. This exhibits
C°°{T) as a Laurent series generated Frechet algebra.

EXAMPLE 3. THE ANNULUS FRECHET ALGEBRA. The following Frechet algebras are

defined in the introduction of this paper;

H(T(r2,ri)), 0 ̂  r2 < r, < oo;

#(r[r2>ri)), 0<r2<ri<oo;

H(r(r3,ri\), 0^r2<r1<oo;

H(T[r2,ri]), 0 < r2 < rx < oo.

Each of these is a Frechet algebra with a Laurent series generator f(z) = z, the last

being a Banach algebra. For 0 < r2 < n < oo, let j4(r[r2,ri]) be the uniform

Banach algebra of all continuous functions / on r[f2,ri] which are holomorphic on
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r( r2 , r i ) with the norm H/H^ = sup< | / ( z ) | : z € r [r2,r i ]>. Now the inverse limit

decompositions

# (r(r2,n)) = l im^r [r2 + i, rx - i] \ = h + I, rx - ^

(for sufficiently large n) shows that H{T{T2,T{)) is a uniform Frechet algebra with
a Laurent series generator. This compares with Lemma 3.9 stating that an infinite
dimensional Banach algebra with a Laurent series generator and having the unique
expression property can never be a uniform Banach algebra.

For a weight u o n Z , let p2 := sup{w(n)1'n : n < 0} and p\ := inf{w(n)1^" :

n > 0 } . Let A(p2, Pi,u>) consist of all continuous functions / on rj/)2,Pi] such that

/ € H(T{p2,Pi)) and satisfying | |/ | |w := £ | /(n)|w(n) < oo. Then A(p2,pi,w) is a
n€Z

Banach algebra with a Laurent series generator and with norm || •!!„,. For a sequence
u = (wfc), let p2 = inf{p2,it : k e N}, pi = sup{pi,fe : k G N}, where p2,k and phk

are as in Example 1. The Frechet algebra A(p2,pi,io) is an inverse limit of Banach
algebras A(p2yk>Pi,k,Vk), and has a Laurent series generator.

3. P R O O F OF THE MAIN THEOREM

LEMMA 3 . 1 . Let ( J 4 , | H | ) be a normed algebra with a Laurent series generator

x. Assume that \\-\\ is a Laurent series norm. Then the completion (A,\\-\\)~ is a

Banach algebra with a Laurent series generator x.

PROOF: Let x be a Laurent series generator for A. Let y € A~. Choose a

sequence

in A such that ||t/fc — j / | | —> 0. Now

sup |Afc,n - A,,n| ||a:n|| < ^ |Afc,n - A,,n| | |xn| | = \\yk - Vl\\ -> 0
z

shows that there exists a scalar sequence (An)n 6 Z such that Afc,nx" —> Ana;n uniformly

over n. Then,

|An| ||x»|| = Yl
n6Z

showing that Yl ^nXn € A~ and j/jt - J2 ^ n x " "^ 0- Hence y =
" n6Z
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This completes the proof. D

LEMMA 3 . 2 . Let (A, \\-\\) be a Banach algebra which is Laurent series generated
by x. Then A has the unique expression property if and only if there exists a Laurent
series norm \ • \ on A equivalent to | | | | .

P R O O F : Let |-| be a Laurent series norm on A equivalent to ||-||. Let y (E A have
expansions y = Y, Xnx

n = Y u.nx
n such that Y I'M llx"ll < °° and Y l/̂ nl ||^"|| <

n€Z n€Z neZ ngZ
co. In view of the absolute convergence of these series, 0 = Y (An — Mn)^n; hence

neZ
0 = 101 = Y |An — Mn| |^"|- Since x is invertible, \xn\ ^ 0 for all n. Thus An = /j,n

ngZ
for all n 6 Z. This shows that A has the unique expression property.

Conversely, assume that A has the unique expression property. Given any
y — Y Ana:n in A so that JZ I-M ||^n|| < oo, the unique expression property im-

n€Z n€Z
plies that \y\ := JZ l-̂ n| ||^"l| is well defined. We show that | • | defines the desired

ngZ
norm on A. Given y = J2 ^nXn, z = £ /xnx" in A, so that y + z — Yl (^nwe have

\y + z\ - J2 |An + Mn| ||x"|| < Yl |AB| ||x"|| + ̂  |^n| ||x»|| = \y\

and j/2 = Zl ( Z! ^n-mfe )a;n, with the result,
neZ \m6Z /

l^l < E E IA»—I IA^I llx"~mH llxmil ^ ( E IA"I II^H) ( E l^l H*

showing that | • | is an algebra norm on A satisfying || • || ^ | • |. We show that (A, \ • |)
is complete. Let (yk), Vk = 12 ^k,nXn be a Cauchy sequence in (A, | • | ) . Then there

nez
exists y E A such that \\yk — y\\ —> 0. Thus

sup |Afc,n - A,,n| ||x
n|| ^ V |Afc,n - A,,n| ||a;n|| - \yk - y,\ -y 0.

" « nez

Hence for each n € Z, there exists An 6 C such that An||x"|| = lim* AAin||xn|| uniformly
over n € Z. Then y = Yl ^nXn and

n6Z

\yk - y\ = E lAfc-n ~ A"l IIX"H = E l i m m lAfc-n ~ Am-"l IIX"H
neZ neZ

< MSn E lAfc>" ~ A m-nl ll1"!!
nez

= MlH \yk — ym\ -> 0 as k -> oo.
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Thus (A, | | ) is a Banach algebra. By the Open Mapping Theorem, | • | and || • || are

equivalent. This completes the proof. U

LEMMA 3 . 3 . Let A be a Frechet algebra with a Laurent series generator x. Let
p be a non-zero Laurent series seminorm on A. Then p is a norm.

PROOF: Given that for any y = £ \nx
n, p(y) = £ |An|p(zn). If p(xm) = 0 for

n£Z ngZ

some m, then p(l) ^ p(xm)p(x-m) = 0; hence for all n € Z, p(xn) ^ p{l)p(xn) = 0.
Thus p is identically zero, which is not possible. Thus p(xn) ^ 0 for all n € Z. Now
it follows that p(y) = 0 implies y — 0. D

The following is a Prechet algebra analogue of Lemma 3.2, which can be proved in
the same way.

LEMMA 3 . 4 . Let A be a Frechet algebra having a Laurent series generator x.
Then A has the unique expression property if and only if the topology of A is generated
by a sequence of Laurent series norms.

LEMMA 3 . 5 . Let (A, \\ • ||) be a Banach algebra having a Laurent series generator
x. Then there exists a continuous homomorphism from a Beurling algebra t1 (Z, w) onto
A. Further, if A has unique expression property, then A = ̂ X(Z,u>).

PROOF: Define w(n) = ||xn|| (n e Z). Then u(n + m) ^ uj{n)uj(m) for all n and
m in Z, and x is not nilpotent since it is invertible. Hence ui is strictly positive, and
thus w is a weight on Z. The map

gives the desired surjective homomorphism. The assertion follows. D

Now let A and w be as in Lemma 3.5 and let A have the unique expression
property. Then we have the spectral radius r{x) — limn llz"!!1/" = inf Hz"!!1/"

= infw(n)1/n = px say. Let p2 = r(x~iy1. Then p2 = sup w(n)1/n. So

pi = inf{|A| : A € sp(x)} ^ sup{|A| : A e sp(x)} = p\. Also, 0 ^ sp(x) and sp(x) is a
compact subset of C. Hence, p2 > 0. By [2, p. 118], the Gelfand space of A is identified
with r[p2,Pi]; and the isomorphism ^(Z,w) -> A(p2,pi,u>), ^ AnXn -» J2 ^nZn

n£L r»6Z
implies the following.

COROLLARY 3 . 6 . Let A be as in Lemma 3.5 and have the unique expression
property. Let pi,p2 and ui be as above. Then A is isomorphic to A(p2,pi,oj).

Next we discuss the Arens-Michael decomposition [3, pp. 88-90].
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LEMMA 3 . 7 . Let A be a Frechet algebra generated by x and x~l. The following
are equivalent.

(a) A is Laurent series generated having Laurent series generator x and hav-
ing the unique expression property.

(b) There exists an inverse limit sequence

of Laurent series generated Banach algebras Ak with the unique ex-
pression property and having Laurent series generators xk such that
A = \unkAk.

PROOF: Assume (a). By Lemma 3.4, A is also a Frechet algebra with a Laurent
series generator whose Frechet topology is given by an increasing sequence of Laurent
series norms (Pfc)fe>1- The quotient map <j)k : A —> A/kerpk is continuous algebra
homomorphism for each k, where kerpjt = {0}. Hence that A/kerpk = A and (A,pk)
is a normed algebra with a Laurent series generator for each k. By Lemma 3.1, the
completion (A,pk)~ = Ak is a Banach algebra with Laurent series generator xk for
each k. By Arens-Michael decomposition, A = limfc f̂c. This proves (b).

Conversely, assume (b). Let y € A, y = (yk), yk = J2 Xk%nx^. By Lemma

3.2, each Ak is a Laurent series generated Banach algebra with a Laurent series norm.
Thus A = lin\kAk is a Frechet algebra whose Frechet topology is given by Laurent

series norms (pk)k^i > where pk(y) - £ |Afc)n \\x^\\k [3, pp.86-87]. By Lemma 3.3,

nk(xk+i) = xk implies Afc+1>n = Xk<n — Xn (say) for all k, and n. Hence

y = (yk) =

= ^ Xnx" where x — (xk) € A,
r»6Z

and
£lAn|pfc(*

n) = £|Afc,n|Mfc<OO Vfc.
ngZ n6Z

This proves (a). D

LEMMA 3 . 8 . Let A be a Frechet algebra with a Laurent series generator and
having the unique expression property. Then there exists an increasing sequence of

weights 0) = (wfc)fc>1 on 1 such that A S £1(Z,u) = f]
fc=i
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P R O O F : Let a; be a Laurent series generator for A. By Lemma 3.4, there exists
an increasing sequence {pk)k>\ of submultiplicative seminorms on A such that {pk)k>i

defines the topology of A and each pk is a Laurent series seminorm. By Lemma 3.3,
each pk is a norm. By Lemma 3.1, the completion Ak := (A,pk)~ is Laurent series
generated having Laurent series generator x. Since pk < Pk+i, there exists continuous
homomorphism TT̂  : Ak+i -> Ak such that nk\A = id, the identity map on A. Thus

Z l A Z±

is an inverse limit sequence; and by the general theory of Frechet algebras, A = UnikAk •

By Lemma 3.5, there is a weight Wk defined as Wfe(n) = Pk(xn) for all n € Z such that

Ak = ^ ( Z , Wfc); the isomorphisms (pk '• Ak —>• ^1(Z, Wk) being <f>k — ^fc1 , (that is,

<t>k\Yj ^nz") = Yl ^nX"), where the $fc are as in Lemma 3.5. We claim that vr/t is

the identity map on Ak+i for each fc.

Indeed, for each k and each n , u>k{n) = Pk(xn) < pk+i(xn) = Wfe+i(n). Thus
(wfe)fc>1 is an increasing sequence and we have the following diagram,

(*)

with 4>k o idfc o i?i)fc+i|A = id. We show that this diagram is commutative, that is,
(p^1 oidfco0fc+1 = 7rfc on Ak+\. Let y e Ak+i, say y = Iimn2/n in pk+x for some

sequence yn = Yl M ar7' (convergence in the topology of A). By the continuity of the
iez

homomorphism TT ,̂ we have nk(y) = limn7rfc(2/n) = l imnyn in pk- Now by (*),

7Tfc(y) = l imnj/n inpfc

= lim,, (cp^1 o id/t o<t>k+i)(yn)

in pk+l

showing nk = (p^1 °idk°<Pk+i on Afc+i. It follows that nk is one-one on Ak+i- Since
TTfe = id on A, we obtain irk = id on Afc+i. Thus Ak+\ C Afe for all k, and

A = limfc,4fc = f | Ak 2 f |
* fe=i fc=i
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This completes the proof of the lemma. D

The following lemma exhibits an important difference between uniform Banach
algebras and uniform Frechet algebras at the level of algebras having a Laurent series
generator. Recall that for 0 < r2 < r\ < oo, the annulus uniform Banach algebra
A(r[r2,ri}) consists of functions / € C(r[r2,ri}) analytic in r ( r 2 ) r i ) , with the sup-
norm on r [ r 2 ) r i ] ; in the case r2 — ri=r (say), A(T[r2,ri]) = C(Fr).

LEMMA 3 . 9 . Let (A, || • ||) be an infinite dimensional Banach algebra having a
Laurent series generator and having the unique expression property. Then A is not a
uniform algebra.

PROOF: By Lemma 3.5, there exists a weight w on Z such that A = £X(Z, w); and
for any / = £ \nx

n in A having £ |An| ||z"|| < oo, ||*~:t(/)|L = £ IA"!WH-
neZ n€Z n£Z

Without loss of generality, we can assume that w(n) ^ 1 for all n G Z. Indeed, let
z 6 C, p2 <: \z\ ^ pi; and let ZJ(n) - u){n)/\z\n(n G Z). Then SJ is a weight on
Z, ZJ(n) ^ 1 for all n G Z, and the map / G ^(Z,w) -¥ zf G ^ ( Z i ^ ) . (*/)(«) =
znf(n) (« € Z), establishes an isometric algebra isomorphism between ^J(Z,w) and
^1(Z,ZU). Thus we assume that uj(n) ^ 1 for all n G Z. Hence, P2 ^ 1 ^ Pi • Notice
that the Gelfand space A(A) = T[p2,Pi] and A = A(p2,pi,ui). We identify isomorphic
Banach algebras.

Now suppose that A is a uniform Banach algebra. Then A is complete in the

spectral radius norm TA{I) := sup | | / (z) | : z G r [p 2 ,Pi ] | = | / | say for f £ A. Since

• | is a uniform norm satisfying | / n | = | / | n ( / G A, n G Z) and is equivalent to || • ||, it
0 oo

follows that for any / = £ Ana;n in yl, £ lA, ,^ + £ |An|p? < oo.
n€Z n = — oo n=0

CASE I. Let pi < p\. Then by the above, A = H(T[p2,pi}). On the other hand, by
the completeness of (A, | • | ) , A = J4(r[p2, Pi]) • This yields a contradiction. Indeed, by
a classical result [4, p. 264], there exists a function / continuous on the closed unit disc
D = {z G C : \z\ ^ 1} which is analytic in the interior of D and the mth partial sum
of whose Taylor series satisfies llsmf/)!^, > |»m(/)(l)| = O(logm), IHI ,̂ being the
supremum norm on D. Thus the Taylor series of / fails to be absolutely convergent on
F. Then the function g(z) = f(z/pi) is in j4(r[p2, pi]) but fails to be in H(T[p2, pi]).

CASE II. Let p% = 1 = p\. In this case A = W(T,w), the weighted Wiener algebra.
Since A(A) = F, \f\ = sup | | / ( z ) | : z G T\. Then the completeness of (̂ 4, | • |)
contradicts the classical fact that there exists a continuous function on F whose Fourier
series fails to be absolutely convergent. This completes the proof of the lemma. D

3.10 PROOF OF THE MAIN THEOREM. Let A be a Frechet algebra with a Laurent
series generator x and having the unique expression property. Then by Lemma 3.4, the
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topology on A is generated by a sequence (pk) of Laurent series seminorms. By Lemma

3.3, each pk is in fact a Laurent series norm. We may assume that Pi < P2 =% P3 ^ • • • •

By Lemma 3.8, A S ^(Z,w) = f\ e1(Z,uk), where wfc(n) = pk(x
n) (n G Z) for each

fc=i
k G N. Then

(1) A(A) = Q A(Ak) a Q A^JZ.Wfc)) = U r[P2.*,Pi.*]
fc=i fc=i fc=i

and

OO OO OO

(2) Sp,4 (x) = I J SpAfc (x) = ( J Sp^l^^) (x) = ( J r[p2>fc, Pl.fc]-
fc=l fc=l fe=l

Now define p2 = inf{p2)fe • k G N} and p\ = sup{pi,fc : A; € N}. Then 0 ^ /)2 ^ P\ ^ oo.

Sine the generator x is invertible, it is not true that p2 = Pi = 0 . Similarly it is not

true that p2 — Pi = oo. Hence we have either 0 < p2 < Pi ^ oo or 0 < p2 = pi < oo.

(a) Suppose that sp^ (x) is open. Then by definitions of p2 and pi and equations

(1) and (2) above, we haveA(yl) = T(p2,pi) = spj4(x). Now define the Gelfand

transform F : A -> i / (r(p2 ,Pi)) as F(y) — y, where for y = J ] Anxn G A, we

have ^(2) = YL ^nZn {z € r(P2,Pi))- It is clear that the map F is one to one
ngZ

and continuous. To prove that it is onto, let / € H(T(p2,pi)) with f(z) = J2 Anz
n

ngZ

(z G r(/92, Pi)) • Then the series is uniformly and absolutely convergent on each compact

subset of r(p2,Pi)- Fix k G N. Then p2 < p2<k < pi,k < Pi- So choose p2 < r2

< P2,k ^ Pi,k < Ti < Pi- Then ^2 |An|r2 + Yl l^nlr" < °°- Choose n0 G N such that
n<0 n>0

r2 < wfc(n)1//n when n < - n 0 and wfc(n)1/n < rj when n ^ n0. This implies

|An|a;fc(n)< £ |An|rJ + £ lA^r? < 00,

hence J2 \^n\uk(n) < °°> aQd s o £ AnX" G ^1(Z,Wfe) = j4fe. This is true for each

k £ N. Thus J/ = X) ^n x " € -A and F(y) = y = f. So F is onto. This proves that

A = H(F(p2, pi)). In this case, it is now clear that 0 < p2 if and only if the zero is in

the interior of C\sp,4 (x); and that pi < oo if and only if spA (x) is bounded.

(b) Assume that the interior of spA (x) is empty. Then it follows from equation
oo

(2) that U r[p2ifc,pi,fc] is a circle (say Tp). Then we have p2M = puk = p2 = Pi = P-
k=i

So for each Jfc, we have A(Ak) = A(e1{Z,u)k)) = {z G C : \z\ = p) = Tp. Also it
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is clear that we have lx{1,uk) = {/ € C(TP) : f G W(Tp,wk)} = {/ G C{TP) :

£ | / P ( « ) M » ) < oo} = W{Tp,uk). Hence A = f\ ll{Z,wk) * f) W(Tp,u;k)
n 6 Z } fc=l fc=l

= W(Vp,ui), where CJ = (wfe).

Further, assume that the condition (*) is satisfied. Then condition (i) of (*) implies

that p = 1. For for each k, pi^ = p2,k — 1- Thus y = ^2 Xnx
n e A if and only if

n€Z
y = f for some / G C(T) satisfying £ \f(n)\uk(n) < oo (for all k G N). Condition

n6Z

(ii) of (*) implies that for some m G Z, (Pfc(a;m))fe>1 is unbounded. By passing to a

subsequence, if necessary, we assume that Pk{xm) —> oo as k —> oo. Thus, the (mk) of

condition (i) of (*) satisfies mk —> oo as fc —» oo. Without loss of generality, assume

that mk = k. Thus, by using condition (i) of (*), y € A if and only if y = f for some

/ € C ( r ) and XI \f(n)\(a + \n\)k < oo (for all k S N). In view of Example 2, this
ngZ

happens if and only if/ € C°° ( r ) .

(c) Suppose that for each k € N, Pfc(a;n) = Pfc(x)" (n > 0) and Pk(xn)

= Pk{x~l)~n (n < 0) . Then for each fc € N, we have wfc(n) = wfc(l)" (n > 0) and

ujk(n) = Wfc(-l)"" ( n < 0 ) , where p2,ife = pf c(a;-1)"1 = tJk(-l)'1. p1>fc = pfc(x)

= Wfc(l). So the Gelfand space A ( J 4 ) is topologically homeomorphic to any one of

the following annuli: r ( p 2 , P i ) , r ( p 2 , P i ] , r [p2 >pi) or T[p2,pi]. Suppose that A(^4)

= F (p2, Pi] • Then it is clear that p\ < oo. In order to prove that A = H(T (p2, p\}),

it is enough to prove that for each / e H(T(p2,pi]), there exists y € A such that

y = f. So fix / G H(T(P2,Pl)). Then we have f(z) = £ Anz" (z G T{p2,Pl})
n£Z

such that qr(f) = Y, \Xn\rn + £ |An|p? < oo (for all p2 < r). Fix k G N. Then
n<0

P2 < P2,fc ^ Pi.fc ^ Pi- This implies that £ |An|pJfc + ^ I-Up?fc < oo> that is,
n<0 ' n^O

E l^n|wfc(n) < oo. Thus X) A n ^ " e ^ ( Z . w * ) . t h a t is- ?/ = £ Ana;n € Afc. This is
ngZ n£Z neZ

true for each k e N. Hence t/ G A and y—f. The other cases are similar.

Further, suppose that sp^ (x) is compact. Then we have p2 > 0, pi < oo and

sp,i (Z) = F[p2 ,pi] . This implies that there exists m G N such that p2 = p2<m and

pj = p l m . Define w(n) = w m ( l ) n (n > 0) and w(n) = w m ( - l ) ~ n ( n < 0 ) , where

p2 = ^ ( - l ) " 1 , pi = w m ( l ) . Then it is clear that A ^H(r[p2,Pi]) = ^ H 2 . ^ ) which

is a Banach algebra.

(d) Assume that A is a uniform Frechet algebra. Since A has a Laurent series

generator, it can not be a uniform Banach algebra by Lemma 3.9. So the sequence

(Pt)fe>i i s m n n i t e - Since Pk(y2) = Pkiyf (y € A), it is easy to see that ipk)k^i sat-

isfies the hypothesis of (c) above. Since none of the Frechet algebras H(F[r2,ri}),
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ff ( r [ r 2 , r i ) ) , H(T (r2,ri]) is a uniform Frechet algebra, A is homeomorphically iso-

morphic to H(T(r2, n)). D

REMARK 3.11. The following sequences u = (wfc)fc>1 exhibits the different cases con-

sidered in the statement of the main Theorem.

(1) wjfc(n) = (Jfc + l )W(n e Z); ^(Z.w) Si H(T(0,oo)).

(2) Wfc(n) = l(n ^ 0) and wfc(n) = (k + l )"n(n < 0); ll{Z,w) S i?(r (0,1]).

(3) wfc(n) = (ifc + l ) n ( n ^ 0 ) and uik(n) = l(n < 0);

(4) Wfc(n) = (1 + |n|)fc(n € Z);
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