PROBLEMS IN THE EXTENSION OF THE RADIOCARBON CALIBRATION CURVE (10–13 KYR BP)

IRENA HAJDAS,^{1,2} SUSAN D. IVY-OCHS^{1,3} and GEORGES BONANI¹

ABSTRACT. Radiocarbon dating of varved lake sediments shows that, during the Late Glacial (10–12 kyr BP), the offset between the ¹⁴C and the absolute time scales was *ca*. 1 kyr. Varve counting and accelerator mass spectrometry (AMS) dating were used to build absolute and ¹⁴C time scales of sediments from two lakes—Soppensee, Switzerland and Holzmaar, Germany. The resulting chronologies extend back to *ca*. 12.9 kyr cal BP (12.1 kyr BP) in the case of Soppensee and to *ca*. 13.8 kyr cal BP (12.6 kyr BP) in the Holzmaar record. They compare well with each other but differ significantly from the ¹⁴C-U/Th chronology of corals (Bard *et al.* 1993; Edwards *et al.* 1993).

EXTENSION OF THE RADIOCARBON CALIBRATION CURVE

The radiocarbon time scale is affected by variations in the ¹⁴C production rate and changes in the global carbon cycle. The differences between ¹⁴C age and absolute/calendar age can be traced by ¹⁴C dating of material of known absolute age such as trees (calibration curve). Although the continuous tree-ring calibration curve, which is the most precise ¹⁴C calibration method, is available only for the last 11.5 kyr (calendar) (Kromer and Becker 1993), many studies have recently focused on archives alternative to tree rings. Using mass spectrometry (Edwards, Chen and Wasserburg 1987) for precise U/Th dating of small coral samples, Bard *et al.* (1993) and Edwards *et al.* (1993) constructed the ¹⁴C-U/Th curve for the last 20 kyr BP. Another option for studies of variations in the atmospheric ¹⁴C/¹²C ratio is provided by dating of laminated sediments. The accelerator mass spectrometry (AMS) ¹⁴C dating of terrestrial macrofossils deposited in annually laminated (varved) sediments from lakes can be compared with absolute time derived from varve counting. However, as the method is quite often limited by the quality of laminations or the lack of a continuous record, studies of many independent records are required. Two sites, Soppensee (Hajdas *et al.* 1993) and Holzmaar (Hajdas *et al.* 1995b), have been studied for the extension of the calibration curve.

VARVE CHRONOLOGIES - RESULTS FROM SOPPENSEE AND HOLZMAAR

Coupled ¹⁴C/varve time scales were built for Soppensee and Holzmaar. In each case, the ¹⁴C scale is based on AMS measurements on terrestrial macrofossils and the absolute time scale consisted of varve counting. The annual varves (Lotter 1989) in Soppensee are alternating calcite (pale) and organic material (dark) layers, whereas the varves in Holzmaar are clastic (Zolitschka 1991). In both cases, complications in the varve chronologies required corrections. The corrections to each varve chronology were made independently, by statistically matching the younger part to the established tree-ring calibration curve (for details, see Hajdas *et al.* 1993; Hajdas *et al.* 1995b). The ¹⁴C/varve chronology of Soppensee sediments extends to 12.1 kyr BP, which corresponds to *ca.* 13 kyr cal BP (Table 1, Fig. 1). The ¹⁴C record of Lake Holzmaar extends to *ca.* 12.6 kyr BP. On the varve time scale, this corresponds to *ca.* 14 kyr cal BP (Table 1, Fig. 1).

The agreement we obtained between both varve chronologies is best illustrated by the absolute dating of the Laacher See tephra (LST). The Laacher See volcano (West Eifel, G) erupted ca. 11.2 kyr BP (Hajdas *et al.* 1995a), and the layer of ash can be found, as an excellent time marker, in sediments

²Swiss Federal Institute for Environmental Science and Technology (EAWAG) Überlandstrasse 133, CH-8600 Dübendorf, Switzerland

³Ingenieurgeologie, ETH-Hönggerberg, CH-8093 Zürich, Switzerland

¹Institut für Teilchenphysik, ETH-Hönggerberg, CH-8093 Zürich, Switzerland

of many European lakes and bogs. The Soppensee varve chronology dates the LST layer at 12,350 \pm 150 yr cal BP, whereas the varve chronology of the Holzmaar record yields an age of 12,201 \pm 224 yr. The agreement between the chronologies is exemplified by the absolute age of the LST from the two independent records (Fig. 2).

New results from the Swedish varves (Wohlfarth *et al.* 1995) and Japanese laminated Lake Suigetsu (Kitagawa *et al.* 1995) agree with the Soppensee and Holzmaar varve chronologies up to 12 kyr BP. However, in their reconstruction, ¹⁴C ages become close to calendar ages beyond 12 kyr BP. In the Holzmaar chronology, an offset between the ¹⁴C and the calendar age is *ca.* 1.4 kyr (see Fig. 1, Table 1) at 12.6 kyr BP. This shows that the atmospheric ¹⁴C/¹²C ratio was higher at the beginning of the Late Glacial than during the Younger Dryas (YD) and the early Holocene (~10 kyr). The ¹⁴C–U/Th curve (Bard *et al.* 1993; Edwards *et al.* 1993) shows an even larger (up to 2 kyr) offset between ¹⁴C

Site	ETH- no.	Sample, depth (cm)	¹⁴ C age (yr BP)	Varve age (cal yr BP)
	7246	HZM9	9515 ± 75	10,904
	7241-1	HZM10.1	$10,085 \pm 80$	11,245
	7248-3	HZM11.3	$10,195 \pm 85$	11,510
	7249	HZM12	$10,520 \pm 90$	11,786
	7250	HZM13-a	$11,210 \pm 95$	12,101
	7250	HZM13-b	$11,380 \pm 90$	12,101
	12471+2†	HZM30.1+2	$11,250 \pm 110$	12,236
	12475	HZM32.1	$11,600 \pm 140$	12,737
	12476	HZM32.2	$11,940 \pm 130$	12,750
	7254	HZM17	$12,100 \pm 110$	12,781
	12481+2	HZM35.1+2	$12,570 \pm 130$	13,571
	7255	HZM18	$12,430 \pm 110$	13,752
	7256	HZM19-a	12,590 ± 110	13,757
	7256	HZM19-b	$12,520 \pm 110$	13,757
Soppensee‡				
20ppensee+	7701	540.5-544.5	9970 ± 100	$11,204 \pm 10$
	7710	544.5-549.5	$10,135 \pm 100$	11,335 ± 11
	6803	549.5-551.5	9965 ± 75	$11,413 \pm 10$
	6828	568.5-569.5	$10,400 \pm 70$	$11,909 \pm 12$
	7703	573.5-580.5	$10,440 \pm 100$	$12,088 \pm 15$
	5290	593-595	$10,760 \pm 105$	12,329 ± 13
	6930	596.5-598.5	$11,190 \pm 80$	$12,412 \pm 14$
	6932	599.5-601.5	$11,160 \pm 60$	$12,488 \pm 15$
	6804	603.5-605.5	$11,050 \pm 80$	$12,604 \pm 15$
	6933	605.5-606.5	$11,470 \pm 70$	$12,668 \pm 15$
	5305	606-808	11,380 ± 105	12,668 ± 15
	6805	609.5-610.5	11,300 ± 90	12,668 ± 15
	6806	610.5-611.5	11,385 ± 90	$12,681 \pm 15$
	6807	628.5-630.5	$12,040 \pm 90$	12,904 ± 15
	6808	631-632	11,930 ± 90	12,940 ± 15
	6809	633–634	$12,150 \pm 90$	$12,977 \pm 15$

TABLE 1. AMS ¹⁴C Ages of Terrestrial Macrofossils Selected from Sediments of Soppensee and Holzmaar and the Corresponding Varve Ages

*Hajdas et al. (1993)

†Hajdas et al. (1995a)

‡Hajdas et al. (1995b)

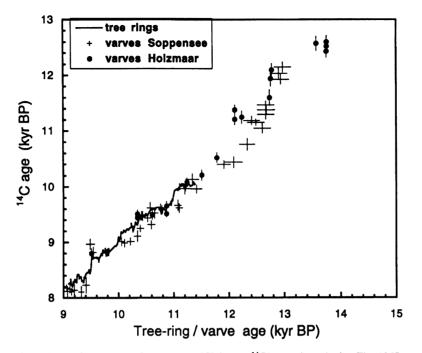
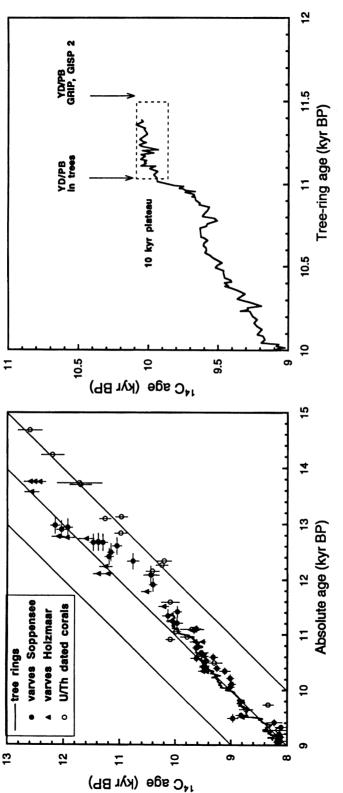



Fig. 1. Comparison between Soppensee and Holzmaar ¹⁴C/varve chronologies. The AMS ¹⁴C ages (plotted with 1-σ uncertainty) obtained on terrestrial macrofossils selected from sediment of Soppensee, Holzmaar are plotted vs. calendar years (tree rings and varve years). Both ¹⁴C/varve chronologies show features of the tree-ring curve, *e.g.*, plateaus in ¹⁴C age at 9.6 and 10 kyr BP.

and calendar years during this period (Fig. 2). A lack of agreement exists between all the methods and an extension of the ¹⁴C calibration curve beyond tree-ring data, *i.e.*, 10 kyr BP is still problematic. Because the differences first appear beyond the tree-ring curve (Fig. 2), dating of the Late Glacial is very important for this discussion.

Recently, the duration of the YD, the calendar age of the onset and the end of the event have been determined by studies of various high-resolution records, *e.g.*, ice cores, laminated sediments and tree rings. A comparison between them shows certain similarities but also differences, which cannot yet be explained. There is an offset between the absolute age of the YD/PB (Preboreal) transition in ice cores and the Soppensee record. Although ice cores place it at 11,580 BP (GRIP (Johnsen *et al.* 1992)) and 11,640 BP (GISP 2 (Taylor *et al.* 1993)), *i.e.*, just at the beginning of the 10-kyr ¹⁴C age plateau, the Soppensee varve chronology dates the transition at *ca.* 11 kyr cal BP (Fig. 3), which is at the end of the age plateau. A similar age of *ca.* 11 kyr cal BP is also indicated by the tree-ring data (Kromer and Becker 1993), although the transition in this record is based on variations of δD and $\delta^{13}C$ in wood (Becker, Kromer and Trimborn 1991). In sediments of Lake Gościąż, the end of the YD was dated at 11,200 (+500/-200) yr cal BP (Goslar *et al.* 1993). It must be noted that a discrepancy exists between the length of the YD in Soppensee (1140 yr) and Holzmaar (450 yr) (Hajdas *et al.* 1995b). The length and the boundaries of the YD in Holzmaar are currently being more closely studied on new cores (B. Zolitschka, personal communication).

Recently reported ¹⁴C dating results from the Norwegian Lake Kråkenes (Gulliksen *et al.* 1994) show that most of the 10-kyr plateau belongs within the YD. Also new data from Gościąż (Goslar *et*

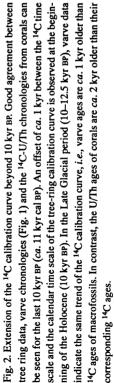


Fig. 3. Dating of the YD/PB boundary. The arrows indicate the location of the beginning of the YD as determined from the absolute time scale of ice cores and tree rings with respect to the 10-kyr plateau.

al. 1994) do not place the transition at the beginning of the plateau (Fig. 3) as the ice core records do. Assuming that the event was felt simultaneously over the North Atlantic region or even the whole world (Alley *et al.* 1993), differences of up to 500 yr in dating of such dramatic changes seem to be unlikely. Resolving this problem is critical for dating the Late Glacial as well as for the extension of the 14 C calibration curve.

ACKNOWLEDGMENTS

We acknowledge B. Zolitschka for providing us with the Holzmaar samples. We thank our tandem crew for their support. This project was partially supported by the Swiss National Science Foundation.

REFERENCES

- Alley, R. B., Bond, G., Chappelaz, J., Clapperton, C., Del Genio, A., Keigwin, L. and Peteet, D. 1993 Global Younger Dryas? EOS, December 14: 586–588.
- Bard, E., Arnold, M., Fairbanks, R. and Hamelin, B. 1993 ²³⁰Th-²³⁴U and ¹⁴C ages obtained by mass spectrometry on corals. *In* Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. *Radiocarbon* 35(1): 191–199.
- Becker, B., Kromer, B. and Trimborn, P. 1991 A stable-isotope tree-ring timescale of the Late Glacial/ Holocene boundary. *Nature* 353: 647–649.
- Edwards, R. L., Beck, J. W., Burr, G. S., Donahue, D. J., Chappell, J. M. A., Bloom, A. L., Druffel, E. R. M. and Taylor, F. W. 1993 A large drop in atmospheric ¹⁴C/ ¹²C and reduced melting in the Younger Dryas, documented with ²³⁰Th ages of corals. *Science* 260: 962– 968.
- Edwards, R. L., Chen, J. H. and Wasserburg, G. J. 1987 ²³⁸U-²³⁴U-²³⁰Th-²³²Th systematics and the precise measurement of time over the past 500,000 years. *Earth and Planetary Science Letters* 81: 175–192.
- Goslar, T., Arnold, M., Bard, E. and Pazdur, M. (ms.) 1994 Variations of atmospheric ¹⁴C levels around the Lateglacial/Holocene boundary. Paper presented at the 15th International ¹⁴C Conference, 15–19 August, Glasgow, Scotland.
- Goslar, T., Kuc, T., Ralska-Jasiewiczowa, M., Rozanski, K., Arnold, M., Bard, E., van Geel, B., Szeroczynska, K., Wicik, B., Wieckowski, K. and Walanus, A. 1993
 High resolution lacustrine record of the Late Glacial/ Holocene transition in Central Europe. *Quaternary Science Reviews* 12: 287–294.
- Gulliksen, S., Possnert, G., Mangerud, J. and Birks, H. (ms.) 1994 AMS ¹⁴C dating of the Kråkenes Late Weichselian sediments. Paper presented at the 15th International Radiocarbon Conference, 15–19 August, Glasgow, Scotland
- Hajdas, I., Ivy, S. D., Beer, J., Bonani, G., Imboden, D., Lotter, A. F., Sturm, M. and Suter, M. 1993 AMS radiocarbon dating and varve chronology of Lake Soppensee: 6000 to 12,000 ¹⁴C years BP. *Climate Dynamics* 9: 107–116.
- Hajdas, I., Ivy-Ochs, S. D., Bonani, G., Lotter, A. F.,

Zolitschka, B. and Schlüchter, C. 1995a Radiocarbon age of the Laacher See Tephra: $11,230 \pm 40$ BP. *In* Harkness, D. D., Miller, B. F. and Scott, E. M., eds., Proceedings of the 15th International ¹⁴C Conference. *Radiocarbon* 37(3): in press.

- Hajdas, I., Zolitschka, B., Ivy-Ochs, S. D., Beer, J., Bonani, G., Leroy, S. A. G., Ramrath, M., Negendank, J. F. W. and Suter, M. 1995b AMS radiocarbon dating of annually laminated sediments from lake Holzmaar, Germany. *Quaternary Science Reviews* 14: 137–143.
- Johnsen, S. J., Clausen, H. B., Dansgaard, W., Iversen, P., Jouzel, J., Stauffer, B. and Steffensen, J. P. 1992 Irregular glacial interstadials recorded in a new Greenland ice core. *Nature* 359: 311–313.
- Kitagawa, H., Fukuzawa, H., Wakamura, T., Okamura, M., Takemura, K., Hayashida, T. and Yasuda, Y. 1995
 AMS ¹⁴C dating of the varved sediments from Lake
 Suigetsu, central Japan and atmospheric ¹⁴C changes
 during the late Pleistocene. *In* Harkness, D. D., Miller,
 B. F. and Scott, E. M., eds., Proceedings of the 15th International ¹⁴C Conference. *Radiocarbon* 37(3): in press.
- Kromer, B. and Becker, B. 1993 German oak and pine ¹⁴C calibration, 7200 BC to 9400 BC. *In Stuiver, M.,* Long, A. and Kra, R. S., eds., Calibration 1993. *Radiocarbon* 35(1): 125–135.
- Lotter, A. F. 1989 Evidence of annual layering in Holocene sediments of Soppensee, Switzerland. Aquatic Sciences 52: 19–30.
- Taylor, K. C., Lamorey, G. W., Doyle, G. A., Alley, R. B., Grootes, P. M., Mayewski, P. A., White, J. W. C. and Barlow, L. K. 1993 The "flickering switch" of late Pleistocene climate change. *Nature* 361: 432–436.
- Wohlfarth, B., Bjorck, S. and Possnert, G. 1994 The Swedish timescale - a potential calibration tool for the radiocarbon time scale during the late Wiechselian. *In* Harkness, D. D., Miller, B. F. and Scott, E. M. eds., Proceedings of the 15th International ¹⁴C Conference. *Radiocarbon* 37(3): in press.
- Zolitschka, B. 1991 Absolute dating of Late Quaternary Lacustrine sediments by high resolution varve chronology. *Hydrobiologia* 214: 59–61.