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Algebraic Properties of a Family of
Generalized Laguerre Polynomials

Farshid Hajir

Abstract. We study the algebraic properties of Generalized Laguerre Polynomials for negative integral

values of the parameter. For integers r, n ≥ 0, we conjecture that L
(−1−n−r)
n (x) =

Pn
j=0

`n− j+r
n− j

´

x j/ j!

is a Q-irreducible polynomial whose Galois group contains the alternating group on n letters. That

this is so for r = n was conjectured in the 1950’s by Grosswald and proven recently by Filaseta and

Trifonov. It follows from recent work of Hajir and Wong that the conjecture is true when r is large with

respect to n ≥ 5. Here we verify it in three situations: (i) when n is large with respect to r, (ii) when

r ≤ 8, and (iii) when n ≤ 4. The main tool is the theory of p-adic Newton Polygons.

1 Background and Summary of Results

The Generalized Laguerre Polynomial (GLP) is a one-parameter family defined by

L(α)
n (x) = (−1)n

n
∑

j=0

(

n + α

n − j

)

(−x) j

j!
.

Here, as usual, the binomial coefficient
(

t
k

)

is defined to be t(t−1) · · · (t−k+1)/k! for
non-negative integers k; the inclusion of the sign (−1)n is not standard. Sometimes it

is more convenient to work with the monic integral polynomial L(α)
n (x) = n!L(α)

n (x).
The monographs by Pólya and Szegő [PZ], Szegő [Sz], and Andrews, Askey, and Roy

[AAR] contain a wealth of facts about this and other families of orthogonal polyno-

mials. We have the second order linear (hypergeometric) differential equation

xy ′ ′ + (α + 1 − x)y ′ + ny = 0, y = L(α)
n (x),

as well as the difference equation

L(α−1)
n (x) − L(α)

n (x) = L(α)
n−1(x).

A quick glance at the mathematical literature makes it clear that the GLP has been
extensively studied primarily because of the very important roles it plays in various

branches of analysis and mathematical physics. However, not long after its appear-

ance in the literature early in the twentieth century, it became evident, in the hands
of Schur, that the GLP also enjoys algebraic properties of great interest.
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584 F. Hajir

For instance, in 1931, Schur [Sc2] gave a pretty formula for the discriminant of
L(α)

n (x):

(1.1) ∆
(α)
n =

n
∏

j=2

j j(α + j) j−1.

In [Sc1, Sc2], he showed that L(0)
n (x) (classical Laguerre polynomial, first studied by

Abel), and L(1)
n (x) (derivative of classical Laguerre), are irreducible in Q[x] for all n;

he also calculated their Galois groups.

Recently, a number of articles concentrating on the algebraic properties of the GLP
have appeared, including Feit [F], Coleman [C], Gow [Go], Hajir [H1], Filaseta and

Williams[FW], and Sell [S]. In all of these papers, the authors take a sequence (αn)n

of rational numbers and consider the irreducibility and Galois group of L(αn)
n (x) over

Q . The best general such result to date is for constant sequences αn.

Theorem (Filaseta–Lam/Hajir) Suppose α is a fixed rational number which is not a

negative integer. Then for all but finitely many integers n ≥ 0, L(α)
n (x) is irreducible over

Q and has Galois group containing An.

It should be noted that the reducible GLP for rational values of the parameter α
do exist (already infinitely many exist in degrees 2, 3, or 4, cf. Section 6). The irre-

ducibility part of the above theorem is due to Filaseta and Lam [FL]; the supplement

on the Galois group was added in [H2]. The proof of both parts is effective.

At the values of the parameter α excluded by the theorem of Filaseta and Lam (the
negative integers), one finds some of the most interesting families of GLP, e.g., the

truncated exponential series, and the Bessel Polynomials (see below). In this paper,
we consider irreducibility and Galois groups of GLP for exactly these values of the

parameter α. Note that their exclusion from the theorem is quite necessary; namely,

when α is a negative integer, L(α)
n (x) is reducible for all n ≥ |α|. Indeed, writing

α = −a with n = a + m, where a is an integer in [1, n] we have

(1.2) L(−a)
n (x) = xa · L(a)

m (x), L(a)
m (0) 6= 0.1

Given the above observation, namely that for small negative integral values of

the parameter α, L(α)
n (x) is a simple factor times a Laguerre polynomial of positive

parameter, it is natural to replace the parameter α by a parameter r via the translation
α = −1 − n − r, and to consider instead

(1.3) L〈r〉
n (x) := L(−1−n−r)

n (x) =

n
∑

j=0

(

n − j + r

n − j

)

x j

j!
.

1Incidentally, the repeated roots at the origin evident in the above factorization (for 2 ≤ a ≤ n i.e.,
−n ≤ α ≤ −2) explain the presence of the factors α + j, j = 2, . . . , n, in (1.1). Their multiplicites in
the discriminant (i.e., j − 1) express the tameness of the corresponding ramified points in the extension

C(α) →֒ C(α)[x]/(L(α)
n (x)) of function fields. It would be interesting to obtain a similarly conceptual

explanation of the factors j j as well.
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It is also useful to note that

(1.4) L〈r〉
n (x) := n!L〈r〉

n (x) =

n
∑

j=0

(

n

j

)

(r + 1)(r + 2) · · · (r + n − j)x j,

is monic and has positive integer coefficients, assuming, as we do throughout the

paper, that r is a non-negative integer.

The parametrization (1.3) is a natural one in some respects (in addition to being

a convenient representation of the family of polynomials we wish to consider). For
instance, differentiation with respect to x of L(α)

n (x) has the effect of lowering n by

1 and raising α by 1, so in the new parametrization, differentiation leaves r fixed:

∂xL
〈r〉
n (x) = L

〈r〉
n−1(x). Indeed, the most familiar such “derivative-coherent” sequence

of polynomials, namely the truncations of the exponential series, is obtained when
we set r = 0:

En(x) := L〈0〉
n (x) =

n
∑

j=0

x j

j!
.

Let us review some known algebraic facts about L
〈r〉
n (x) for small r ≥ 0. The

exponential Taylor polynomials En were first studied by Schur. He showed that they

are irreducible over Q [Sc1], and have Galois group An or Sn (over Q) according
to whether n is divisible by 4 or not [Sc2]. Coleman [C] gave a different proof of

these results. For the case r = 1, irreducibility and the calculation of the Galois
group using methods of Coleman and Schur, respectively, were established in [H1].

Moreover, in [H1], the values of n for which the splitting field of L
〈0〉
n (x) or L

〈1〉
n (x)

can be embedded in an Ãn-extension were determined using formulae of Feit [F] and

a criterion of Serre [Se]. All of the above was carried out for r = 2 by Sell in [S].

But perhaps the best-studied family of GLP is that of Bessel Polynomials (BP) zn(x)
which are simply the monic GLP with r = n. Namely we have

zn(x) :=

n
∑

j=0

(2n − j)!

j!(n − j)!
x j

= L〈n〉
n (x).

Grosswald pointed out that the BPs play a distinguished role among GLPs due to cer-

tain “symmetries” which in our notation amounts to their invariance under exchange
of r and n. They are arithmetically interesting as well (for example the prime 2 does

not ramify in the algebra Q[x]/(zn(x)) despite the presence of many powers of 2 in
the discriminant of zn, cf. (1.1)). Their irreducibility was conjectured by Grosswald

[Gr], who also showed that their Galois group is always the full symmetric group

(assuming his conjecture). The irreducibility of all BPs was proved, first for all but
finitely many n by Filaseta [F1], and later for all n by Filaseta and Trifonov [FT].

As an extension of Grosswald’s conjecture, we have the following.

Conjecture 1.1 For integers r, n ≥ 0, L
〈r〉
n (x) is irreducible over Q .
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Conjecture 1.2 For integers r, n ≥ 0, if L
〈r〉
n (x) is irreducible over Q , then its Galois

group over Q contains the alternating group An.2

There is already a fair bit of evidence for this pair of conjectures. As described
above, they are true for all n if r = 0, 1, 2 or r = n. In Sell [S], it was shown that

L
〈r〉
n (x) is irreducible over Q if gcd(n, r!) = 1; that is already enough to show that for

each fixed r, Conjecture 1.1 is true for a positive proportion of integers n ≥ 0 (this
proportion goes to zero quickly with r however).

Our first and main result is as follows.

Theorem 1.3 For a fixed integer r ≥ 0, all but finitely many L
〈r〉
n (x) are irreducible

over Q and have Galois group (over Q) containing An.

For a more precise (effective) statement, see Theorems 4.4 and 5.4. The irre-

ducibility part of Theorem 1.3 is a companion of sorts for the Filaseta–Lam Theorem.
As an illustration of the effectivness of our approach and to gather more evidence for

Conjectures 1.1 and 1.2, we prove the following theorem.

Theorem 1.4 If r is a fixed integer in the range 0 ≤ r ≤ 8, then for all n ≥ 1, L
〈r〉
n (x)

is irreducible and has Galois group containing An over Q .

Investigating the irreducibility of L
〈r〉
n (x) for a fixed n and all large r has a different

flavor; the methods we use here give us only a weak result (see the Remark following

Theorem 2.9). In a joint work with Wong [HW], using algebro-geometric and group-
theoretic techniques, we prove that given an integer n ≥ 5, and a number field K , for

all but finitely many α ∈ K , L(α)
n (x) is K-irreducible and has Galois group (over K)

containing An. In particular, for n ≥ 5, Conjectures 1.1 and 1.2 hold for all r large

enough with respect to n.

Here, we complement the above result of [HW] by showing that Conjectures 1.1
and 1.2 hold for all r ≥ 0 if n ≤ 4 (Theorem 6.3). As for the possibility of verifying

further cases of these conjectures, the methods used by Filaseta and Trifonov [FT] in

proving the irreducibility of L
〈r〉
n (x) for r = n should hopefully yield results in the

middle range where r ≈ n.

The basic strategy we use for proving irreducibility of L
〈r〉
n (x) was developed by

Sell [S] for the case r = 2 as an extension of the proof for r = 1 given in [H1], which

was itself an adaptation of Coleman’s proof [C] for the case r = 0. Here is a sketch of

it. We fix r ≥ 0 and suppose g is a proper divisor in Q[x] of L
〈r〉
n (x). In Step 1, using

a criterion of Coleman [C] formalized by Sell [S], we show that deg(g) is divisible

by n0, the largest divisor of n which is co-prime to
(

n+r
r

)

. Then deg(g)/n0 is at most

r!, so is bounded since r is fixed. In Step 2, thanks to a criterion of Filaseta [F2],
we eliminate this bounded number of possibilities for deg(g)/n0, giving the desired

contradiction. For Filaseta’s criterion to apply, we require the existence of certain
auxiliary primes, and this is where we have to assume that n is large with respect to r

so as to apply results from analytic number theory on the existence of primes in short

intervals; these are gathered together in Section 3.

2Note that once we know the Galois group of a degree n polynomial f contains An, then it is either An

or Sn according to whether the discriminant of f is a square or not; the latter is easily determined for our
polynomials using Schur’s formula (1.1).
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We should point out that the Coleman and Filaseta criteria are both based on the
theory of p-adic Newton polygons. Indeed, the key idea of Step 1 is the simple obser-

vation that if p is a prime divisor of n which does not divide the constant coefficient
of L

〈r〉
n (x), then the p-adic Newton polygons of L

〈r〉
n (x) and En coincide.

For the computation of the Galois group, we use the criterion described in [H2],

which was already implicit in Coleman [C] and is also based on Newton Polygons.
Finally, a bibliographic comment. In Grosswald’s meticulously written treatise

Bessel Polynomials [Gr], he considers not just the BP zn(x) but “Generalized Bessel

Polynomials (GBP)” zn(x; a) and gives much information about their algebraic and
analytic properties. The GBP is just a different parametrization of the GLP, as de-

scribed on p. 36 of [Gr]. Therefore, even though it is not billed as such, Grosswald’s
book is a rich source of information about the GLP.

2 Irreducibility Criteria

For a prime p and z ∈ Q∗, we write ordp(z) for the p-adic valuation of z : ordp(z) =

a, where z = pam/n with integers m and n not divisible by p. It is convenient to put
ordp(0) = ∞. We extend the p-adic valuation ordp to the algebraic closure Q p of

the p-adic completion Qp of Q in the standard way, see Gouvêa [G] for example.
Our main tool is the p-adic Newton Polygon. We use three results which follow

from the Main Theorem of Newton Polygons (Theorem 2.1 below); these are stated

below as Corollary 2.2, Lemma 2.7, and Theorem 5.2. We review the definition of
Newton Polygons below; for further details, the reader is referred to Gouvêa [G],

Amice [A], Artin [Ar], and Hensel and Landsberg [HL]; the latter is, to the best of

my knowledge, where the general notion of p-adic Newton Polygons originated. An
excellent survey on the applications of Newton Polygons for irreducibility is Mott

[M].
The p-adic Newton Polygon (or p-Newton polygon) NPp( f ) of a polynomial

f (x) =
∑n

j=0 c jx
j ∈ Q[x] is the lower convex hull of the set of points

Sp( f ) = {( j, ordp(c j))|0 ≤ j ≤ n}.

It is the highest polygonal line passing on or below the points in Sp( f ). The vertices

(x0, y0), (x1, y1), . . . , (xr, yr), i.e., the points where the slope of the Newton poly-
gon changes (including the rightmost and leftmost points) are called the corners of

NPp( f ); their x-coordinates (0 = x0 < x1 < · · · < xr = n) are the breaks of NPp( f ).

For the i-th edge, joining (xi−1, yi−1) to (xi , yi), we put mi = (yi − yi−1)/(xi − xi−1)
and call this the i-th slope of NPp( f ).

Theorem 2.1 (Main Theorem of Newton Polgyons) Let (x0, y0), (x1, y1), . . . ,
(xr, yr) denote the successive vertices of NPp( f ). Then there exist polynomials f1, . . . , fr

in Qp[x] such that

(i) f (x) = f1(x) f2(x) · · · fr(x),

(ii) for i = 1, . . . , r, the degree of fi is xi − xi−1,
(iii) for i = 1, . . . , r and αi any root of fi in Qp, we have ordp(αi) = −mi.

Proof See any of the references given above.
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Corollary 2.2 (Coleman) Suppose f ∈ Q[x] and p is a prime. If an integer d divides

the denominator (in lowest terms) of every slope of NPp( f ), then d divides the degree of

any factor g ∈ Q[x] of f .

Proof The following proof is from Coleman [C].

Since a Q[x]-factor of f of degree k induces a degree k Qp[x]-factor of f when
considered as a polynomial over Qp, and since every Qp[x]-polynomial is a product

of irreducible ones, it suffices to prove that every Qp[x]-irreducible divisor g of f has

degree divisible by d. Letting α be a root in Qp of such a polynomial g, the rational
number −ordp(α), by virtue of being one of the slopes of NPp( f ) (thanks to Theo-

rem 2.1), has denominator divisible by d. Thus, d divides the index of ramification of
the extension Qp(α)/Qp, a divisor of the degree of this extension (cf. [G, Proposition

5.4.2]), which is precisely the degree of g.

Remark. This corollary has in fact appeared a number of times in the literature, see

Mott [M] and the references therein. For example, Dumas [D] was certainly already

aware of it in 1906 and used it in various examples, though to the best of my knowl-
edge he did not state it formally.

In [C], Coleman computed the Newton Polygon of En(x) at an arbitrary prime

p; this computation was facilitated by part (i) of the following Lemma, which is a

classical fact due to Legendre.

Lemma 2.3 Suppose m, r are non-negative integers, and p is a prime.

(i) If we write m in base p as

m = a0 + a1 p + · · · + at pt , 0 ≤ ai ≤ p − 1,

then

ordp(m!) =
m − σp(m)

p − 1
,

where σp(m) = a0 + a1 + · · · + at is the sum of the base p digits of m.

(ii) Let b =
(

m+r
r

)

, where m, r are non-negative integers. For any prime p, ordp(b) is

the number of carries in the base p addition of m and r.

Proof For (i), see, for example, Hasse [Ha, Ch. 17, no. 3, p. 263]. For (ii), we apply

(i) to b = (m + r)!/(m!r!) to find

ordp

(

m + r

r

)

=
σp(m) + σp(r) − σp(m + r)

p − 1
.

The latter expression is precisely the number of carries in the base p addition of m

and r.

Given an integer n ≥ 1 and a prime p, we will define s + 1 integers 0 = k0 <
k1 < · · · < ks = n (where s is the number of non-zero p-adic digits of n) called the

pivotal indices associated to (n, p) as follows. Let us write n in base p recording only

the non-zero digits, namely

n = b1 pe1 + b2 pe2 + · · ·+ bs pes , 0 < b1, . . . , bs < p, e1 > e2 > · · · > es ≥ 0.
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The pivotal indices associated to (n, p) are the partial sums

(2.1) ki = b1 pe1 + b2 pe2 + · · · + bi pei , i = 0, . . . , s.

Note that k0 = 0 and ks = n. This definition is motivated by Coleman’s calculation
of NPp(En) (see Lemma 2.5 below). We will also see that a fundamental fact about

the GLP L
〈r〉
n (x) for r ≥ 0 is that its p-Newton polygons lies on or above NPp(En). To

explain this, we introduce some more terminology.

Definition 2.4 Suppose f (x) =
∑n

j=0 a j
x j

j!
∈ Q[x] and p is a prime number.

Following Pólya and Szegő, we say f is p-Hurwitz integral if ordp(a j) ≥ 0 for j =

0, . . . , n. We call it Hurwitz integral if it is p-Hurwitz integral for all primes p, i.e.,

if the Hurwitz coefficients a j are integral. We say that f is p-Coleman integral if f

is a p-Hurwitz integral and additionally ordp(aki
) = 0 for i = 0, . . . , s, with ki as

defined in (2.1), i.e., the Hurwitz coefficients are all p-integral and the pivotal ones

are p-units.

This definition is motivated by the following Lemma.

Lemma 2.5 If f ∈ Q[x] is p-Coleman integral of degree n, then

(i) NPp( f ) = NPp(En);

(ii) the breaks of NPp( f ) are precisely the pivotal indices associated to (n, p);

(iii) the slopes of NPp( f ) all have denominator divisible by pordp(n).

Proof We know from Coleman [C] that the breaks of NPp(En) are the pivotal points
associated to (n, p). Since f is p-Hurwitz integral, NPp( f ) lies on or above NPp(En).

On the other hand, by definition, the corners of NPp(En) lie on NPp( f ), so NPp( f ) =

NPp(En). Assertion (iii) follows from (i) and (ii) together with (2.1), because, using
Lemma 2.3, the slopes of NPp(En) are calculated to be

mi =
ordp(1/ki!) − ordp(1/ki−1!)

ki − ki−1

= −ki − σp(ki) − ki−1 + σp(ki−1)

(p − 1)(ki − ki−1)

= − bi pei − bi

bi pei (p − 1)
= − pei − 1

pei (p − 1)
.

Our proof of Theorem 1.3 rests on the following two irreducibility criteria.

Lemma 2.6 (Coleman Criterion) Suppose f ∈ Q[x] has degree n and p is a prime

number. If f is p-Coleman integral, then pordp (n) divides the degree of any factor g ∈
Q[x] of f . If f is p-Coleman integral for all primes p dividing n, then f is irreducible

in Q[x].

Proof This is essentially Theorem 1.7 of Sell [S]. By Lemma 2.5, the slopes of NPp( f )

all have denominators divisible by pordp(n). Now apply Corollary 2.2.
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Example The classical Laguerre polynomial

L(0)
n (x) =

n
∑

j=0

(

n

j

)

x j

j!

is p-Coleman integral for every prime p. To show this, we simply note that for j =

ki ∈ {k0, k1, . . . , ks}, the base p expansions of j = b1 pe1 + · · · + bi pei and n − j =

bi+1 pei+1 +· · ·+bs pes are completely “disjoint” so there is no carry in the base p addition
of these numbers, which, by Lemma 2.3, implies that ordp(

(

n
j

)

) = 0 for such j. Thus,

by Lemma 2.5, NPp(L(0)
n (x)) = NPp(L

〈0〉
n (x)) for all primes p, and by Lemma 2.6, we

get another proof of the irreducibility of L(0)
n (x).

An immediate consequence of Theorem 2.1 is that the Newton Polygon of the

product of two polynomials is formed by the concatenation, in ascending slope, of

their edges (i.e., is their Minkowski sum). This fact played an important role in Du-
mas’ work. It can also be used to prove the following criterion due to Filaseta (see

[F2] for the proof, but note that the convention for Newton Polygons in that paper

differs slightly from ours).

Lemma 2.7 (Filaseta Criterion) Suppose

f (x) =

n
∑

j=0

b j
x j

j!
∈ Q[x]

is Hurwitz-integral and |b0| = 1. Let k be a positive integer ≤ n/2. Suppose there exists

a prime p ≥ k + 1 such that

ordp(n(n − 1) · · · (n − k + 1)) > ordp(bn).

Then f (x) cannot have a factor of degree k in Q[x].

We now give the key calculation allowing the application of the Coleman Criterion
to our family of polynomials.

Lemma 2.8 (i) If p is a prime divisor of n, then L
〈r〉
n (x) is p-Coleman integral if

and only if
(

n+r
r

)

6≡ 0 mod p.

(ii) If ordp(n) > ordp(r!), then L
〈r〉
n (x) is p-Coleman integral.

Proof From (1.3), we recall that

L〈r〉
n (x) =

n
∑

j=0

a j
x j

j!
, a j =

(

n − j + r

n − j

)

,

is clearly Hurwitz integral. If p|
(

n+r
r

)

, then ordp(ak0
) > 0 because by (2.1), k0 = 0

and a0 =
(

n+r
r

)

. In that case, therefore, L
〈r〉
n (x) is not p-Coleman integral. On the

other hand, suppose p does not divide
(

n+r
r

)

. Then, by Part (ii) of Lemma 2.3, there
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is no carry in the base p addition of n = b1 pe1 + · · · + bs pes and r. Recalling the
definition of ki , we see that for 0 ≤ i ≤ s, there cannot be a carry in the addition of

(n− ki) and r because the base p expansion of n− ki is simply a truncation of that of
n, i.e., n − ki = bi+1 pei+1 + · · · + bs pes . Thus, ordp(a0) = 0 implies that ordp(a j) = 0

for j ∈ {k0, k1, · · · , ks}, i.e., that L
〈r〉
n (x) is p-Coleman integral, completing the proof

of (i).
From the definition of a0, we have a0 ≡ 1 mod pordp(n)−ordp (r!), so (ii) follows

from (i).

Theorem 2.9 (i) If gcd(n,
(

n+r
r

)

) = 1, then L
〈r〉
n (x) is irreducible over Q .

(ii) If gcd(n, r!) = 1, then L
〈r〉
n (x) is irreducible over Q .

Proof If n is coprime to
(

n+r
r

)

, L
〈r〉
n (x) is p-Coleman integral for every prime divisor

p of n by Lemma 2.8, so it is irreducible over Q by the Coleman Criterion 2.6. Part

(ii), which was first obtained by Sell [S], follows from (i) since gcd(n, r!) = 1 implies

gcd(n,
(

n+r
r

)

) = 1.

Remark. Fix a positive integer n. It is not difficult to show that the positive integers r

for which there exists a prime p > n satisfying ordp(r + 1) = 1 has density one. For

each such r, (1.4) implies that L
〈r〉
n (x) and hence L

〈r〉
n (x), is p-Eisenstein and hence

irreducible. Thus for a fixed n, there is an easy proof of irreducibility for a density 1
subset of integers r.

3 Primes in Short Intervals

For the proof of Theorem 1.3, we will need to establish the existence of primes of
appropriate size, namely primes for which the Newton polygon of L

〈r〉
n (x) precludes

the existence of factors of certain degrees. We will state two such results here, to be

used in the next section.
The first is a well-known consequence of the Prime Number Theorem, generaliz-

ing Chebyshev’s theorem on the existence of a prime in (n, 2n). For lack of a suitable

reference with an explicit constant, a proof is supplied.

Theorem 3.1 Given h ≥ 2, there exists a constant C(h) such that whenever N >
C(h), the interval [N(1 − 1/h), N] contains a prime. We may take C(h) = eh+1/2(1 −
1/h)−h.

Proof We have from Rosser and Schoenfeld [RS], that

π(x) >
x

log x − 0.5
for 67 ≤ x,

π(x) <
x

log x − 1.5
for e1.5 < x.

Since h ≥ 2, the first inequality applies for x = N and the second one applies for

x = N − N/h, assuming only N ≥ 67. We then have

π(N) − π(N − N/h) >
N

log N − 0.5
− N − N/h

log N + log(1 − 1/h) − 1.5
.
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Combining the fractions, the right hand side is positive if and only if

log N > 1/2 + h − h log(1 − 1/h),

proving the lemma for N ≥ 67. Note that from (1 − 1/h)−h > e, one obtains

that C(h) > e4.5 > 67 for h ≥ 3; thus we only need to consider h = 2. We have
C(2) = 4e2.5 > 48. For N ∈ [48, 67], one easily checks by hand that the lemma

holds.

For Galois group computations in Section 5, we record the following.

Corollary 3.2 If n + r ≥ 48 and n ≥ 8 + 5r/3, then there exists a prime p in the

interval (n + r)/2 < p < n − 2.

Proof The condition n ≥ 8 + 5r/3 is equivalent to (n + r)/2 ≤ 4(n − 3)/5. We

suppose first that n ≥ 750 and put N = n − 2.5 > 747 > C(5); applying Theorem
3.1 with h = 5, we deduce that there exists a prime p ∈ [4N/5, N]. Thus we have

n + r

2
≤ 4

5
(n − 3) <

4

5
(n − 2.5) ≤ p ≤ n − 2.5 < n − 2,

proving the Corollary for n ≥ 750. The assumptions n + r ≥ 48 and n ≥ 8 + 5r/3
imply that n ≥ 33. For 33 ≤ n ≤ 749, one verifies directly the existence of a prime

in the range (4(n − 3)/5, n − 2).

For the proof of Theorem 1.4, we will use the following result from Harborth and
Kemnitz [HK], which is a combination of Theorem 3.1 together with a finite but long

computation.

Theorem 3.3 (Harborth-Kemnitz) If n ≥ 48683, then the interval (n, 1.001n] con-

tains a prime.

4 Irreducibility of L
〈r〉
n (x) for Large n

We fix r ≥ 0, and write n = n0n1 = n2n3, where

n1 =

∏

p| gcd(n,(n+r
r ))

pordp(n), n3 =

∏

p|n

ordp(n)≤ordp(r!)

pordp (n).

Note that the n0 is the largest divisor of n which is coprime to
(

n+r
r

)

. We also have
n2|n0 (see the proof of Lemma 2.8), so n1|n3| gcd(n, r!). Consequently,

(4.1) n1 ≤ r!,

which is a somewhat crude estimate. To improve it slightly, recall from Lemma 2.3
that a prime p divides

(

n+r
n

)

if and only if there is a carry in the base p addition of

n and r. Thus, if n ≡ 0 (mod pa), and r < pa, then p does not divide
(

n+r
n

)

so p
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does not divide n1; for example, primes exceeding r do not divide n1. Therefore, for
a given fixed r, we have

(4.2) n1 ≤
∏

p|r!

ordp (n)≤logp(r)

pordp(n) ≤
∏

p|r!

p⌊logp(r)⌋.

Let us note if r ≥ 4 is fixed, ⌊log2(r)⌋ < ord2(r!). To see this, let t = ⌊log2(r)⌋ and
observe that

ord2(r!) = ⌊r/2⌋ + ⌊r/22⌋ + ⌊r/23⌋ + · · · + ⌊r/2t⌋

is a sum of t ≥ 2 strictly decreasing positive integers, proving the claim. It follows

that

(4.3) If r ≥ 4, then n1 ≤ r!/2.

We will not need it, but we remark that, more generally, for any prime p satisfying
p ≤ r/2, ⌊logp(r)⌋ < ordp(r!).

Lemma 4.1 If there is a prime p satisfying max( n+r
2

, n − n0) < p ≤ n, then L
〈r〉
n (x)

is irreducible over Q .

Proof By Lemmas 2.8 and 2.6, every Q[x]-factor of L
〈r〉
n (x) has degree divisible by

n0. If n1 = 1, then n = n0 and we are done, so we assume n1 > 1 and proceed

by contradiction. We suppose L
〈r〉
n (x) has a Q[x]-factor of positive degree k ≤ n/2.

We know that k ∈ {n0, 2n0, 3n0, . . . , (n1 − 1)n0}. To eliminate these possibilities, we
apply the Filaseta Criterion. Since the latter requires the constant coefficient to be 1,

we renormalize our polynomial by setting

f (x) = a−1
0 L〈r〉

n (a0x) =

n
∑

j=0

b j
x j

j!

with integral Hurwitz coefficients b j = a
j−1
0 a j , where a0 =

(

n+r
r

)

. Note that b0 = 1

and bn = an−1
0 . Of course, the factorization over Q of f (x) mirrors exactly that of

L
〈r〉
n (x). With the hypotheses on p, we have p ≥ k + 1 (since k ≤ n/2). Moreover,

p ≥ n − k + 1 since k ≥ n0. Finally, p ∤ bn = an−1
0 since (n + r)/2 < p < n + 1.

Applying the Filaseta Criterion 2.7 to f (x), we find it does not have a factor of degree

k, hence neither does L
〈r〉
n (x), giving the desired contradiction.

Definition 4.2 For an integer r ≥ 0, we define

B(r) =

{

48 r = 0, 1, 2, 3

er!+1/2(1 − 1/r!)−r! r ≥ 4.
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Lemma 4.3 Given r ≥ 0, for every integer n > B(r), there exists a prime p satisfying

max
( n + r

2
, n − n0

)

< p ≤ n,

where n0 is the largest divisor of n coprime to
(

n+r
r

)

.

Proof First let us assume r ≥ 4; we note that B(r) > r(r!)/(r! − 2). Thus, n >
B(r) implies r < n

(

1 − 2
r!

)

. Adding n to both sides of the latter inequality and

dividing by 2, we find n+r
2

< n
(

1 − 1
r!

)

. Next, since r ≥ 4, by (4.3), n1 ≤ r!/2, so
n − n0 = n − n/n1 ≤ n(1 − 2/h) < n(1 − 1/h) with h = r!. We have shown that

max((n + r)/2, n − n0) < n(1 − 1/h). On the other hand, n > eh+1/2(1 − 1/h)−h,

hence by Theorem 3.1, there exists a prime p satisfying max((n + r)/2, n − n0) <
n(1 − 1/h) ≤ p ≤ n.

Now let us assume 0 ≤ r ≤ 3 and n ≥ 48. For r ∈ [0, 3], by (4.1), n1 ≤
3! so n − n0 ≤ 5n/6. On the other hand, (n + r)/2 ≤ (n + 3)/2 ≤ 5n/6, thus
max((n + r)/2, n − n0) ≤ 5n/6. By applying Theorem 3.1 with h = 7, we find

[6n/7, n] ⊂ (5n/6, n] contains a prime for n > 5320, and then by a direct check
for 48 ≤ n ≤ 5320, we find that (5n/6, n] contains a prime for all n ≥ 48. This

completes the proof of the lemma.

Combining the above lemmata gives the proof of the first part of Theorem 1.3.

More precisely, we have proved the following.

Theorem 4.4 For r ≥ 0, if n > B(r), then L
〈r〉
n (x) is irreducible over Q .

5 Galois Groups

We begin by recalling a simple criterion based on ramification (as measured by the

Newton polygon) for an irreducible polynomial to have a “large” Galois group.

Definition 5.1 Given f ∈ Q[x], let N f , called the Newton Index of f , be the least

common multiple of the denominators (in lowest terms) of all slopes of NPp( f ) as p

ranges over all primes.

To see that N f is effectively computable, first note that 0 is defined to have de-

nominator 1, so slope 0 segments of NPp( f ) do not contribute to N f . On the other

hand, for p large enough, all coefficients of f have p-adic valuation 0, so NPp( f )
consists of a single slope 0 segment. For a monic polynomial f ∈ Z[x], for example,

the Newton Index requires merely the computation of NPp( f ) for the prime divisors
p of its constant coefficient. Note also that N f divides the least common multiple of

the first n positive integers, where n = deg( f ).

The following result from [H2] can be quite useful for calculating the Galois group
of polynomials which have many ramified primes in their splitting field.

Theorem 5.2 Given an irreducible polynomial f ∈ Q[x], N f divides the order of the

Galois group of f . Moreover, if N f has a prime divisor q in the range n/2 < q < n− 2,

where n is the degree of f , then the Galois group of f contains An. In that case, the Galois

group of f is An if the discriminant of f is a rational square, and Sn otherwise.
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Example If f (x) = L
〈3〉
5 (x), then f is irreducible over Q by Lemma 2.8. An easy

calculation shows N f = 60; indeed we need only consider p = 2, 3, 5, 7, for which
NPp( f ) has slopes whose denominators are divisible by, repectively, 4, 3, 5 and 2.

Thus, the Galois group of f has order divisible by 60. Since the discriminant of f is

not a square (by (1.1) or (5.1) below), the Galois group of f is S5.

Lemma 5.3 Suppose p is a prime in the interval (n + r)/2 < p ≤ n. Then the

p-Newton polygon of L
〈r〉
n (x) has −1/p as a slope. In particular, p|NL〈r〉

n (x).

Proof Under the assumptions, it is an easy exercise to calculate the p-Newton poly-

gon of L
〈r〉
n (x) directly from (1.3); instead, we use the tools we have developed to

get the result. According to Lemma 2.5, the corners of NPp(En) have x-coordinates

0, p, and n (simply 0 and n if p = n of course), so it has −1/p as a slope. Writing

L
〈r〉
n (x) =

∑n
j=0 a jx

j/ j!, one checks easily that ordp(a0) = ordp(ap) = 0, and we
always have ordp(an) = 0 since an = 1. Since NPp(L

〈r〉
n ) lies on or above NPp(En),

and they agree at the corners of the latter, they must coincide.

Theorem 5.4 Let r ≥ 0 be an integer.

(i) If there exists a prime p satisfying (n + r)/2 < p < n − 2, and if L
〈r〉
n (x) is

irreducible over Q , then its Galois group over Q contains An.

(ii) If n ≥ max(48 − r, 8 + 5r/3), and if L
〈r〉
n (x) is irreducible over Q , then its Galois

group over Q contains An.

(iii) For n > B(r), with B(r) given in Definition 4.2, the Galois group of L
〈r〉
n (x) over

Q contains An.

Proof For (i) and (ii), we apply Corollary 3.2 in combination with Theorem 5.2 and
Lemma 5.3. For (iii), first suppose 0 ≤ r ≤ 3 and n > B(r) = 48. Then, the interval

((n + 3)/2, n − 2) contains a prime; we can verify this by applying Theorem 3.1 with
N = n − 3 and h = 3 which proves it for n ≥ 114, then we check the remaining

n ∈ [48, 114] by hand. When we combine (i) with Theorem 4.4, we obtain (iii) for

r ≤ 3. Now suppose r ≥ 4. We have B(r) > max(48 − r, 8 + 5r/3), so we can apply
(ii) in tandem with Theorem 4.4 to complete the proof.

We have thus completed the proof of Theorem 1.3. We remark that Schur’s orig-
inal method [Sc2, Satz A], which was used in [H1] for the case r = 1, would yield a

proof of Theorem 5.4 as well.

Remark. By plugging α = −1 − n − r into Schur’s formula (1.1), the discriminant

of n!L
〈r〉
n (x) is seen to be

(5.1) ∆
〈r〉
n = (−1)n(n−1)/2

n−1
∏

j=1

( j + 1) j+1(r + j)n− j .

In particular, ∆
〈r〉
n < 0, for n ≡ 2, 3 (mod 4) (recall our blanket assumption r ≥ 0).

For these values of n, therefore, we know that the Galois group of L
〈r〉
n (x) is not con-

tained in An. If we fix n > 5, n ≡ 0, 1 (mod 4), then by (5.1), the Galois group

of L
〈r〉
n (x) is contained in An if and only if r is the x-coordinate of an integral point

on a (fixed) smooth curve of genus at least 1, of which there are only finitely many
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by Siegel’s theorem. Thus, Conjecture 1.2 would imply that, for fixed n, the Galois
group of L

〈r〉
n (x) is Sn except for a (small) finite number of integers r ≥ 0.

Similarly, for fixed r, the proportion of n for which ∆
〈r〉
n is a square can be large if

r is small (as we have already seen for r = 0, 1, 2). Filaseta has pointed out that this

is not so for large r. Specifically, one can check that for r = 3, ∆
〈r〉
n is a square if and

only if n ≡ 1 (mod 4) and n + 2 is 3 times a square; for r = 4, 5, the n for which ∆
〈r〉
n

is a square occur in Fibonacci-type recurrences, namely, for r = 4, n ≡ 0 mod 4,

and 2n + 4 = ǫ
j
3 + ǫ

− j
3 for some j, and similarly for r = 5, n ≡ 1 mod 4 and

2n + 6 = ǫ
j
15 + ǫ

− j
15 for some j. Here ǫ3 = 2 +

√
3, ǫ15 = 4 +

√
15 are the fundamental

units of Q(
√

3), Q(
√

15) respectively. For fixed r ≥ 6, if n ≡ (r + 1)2 mod 4, then

for n large enough, ∆
〈r〉
n cannot be a square because its p-valuation must be 1 for

some prime p ∈ ((n + r)/2, n + r). On the other hand, if n ≡ r2 mod 4, then

integers n for which ∆
〈r〉
n is a square correspond to integral points on a smooth curve

y2
= cr(x+2) · · · (x+2⌊r/2⌋) of positive genus (for some easily determined non-zero

constant cr); there are, therefore, only finitely many such n by Siegel’s theorem.

6 Properties of L
〈r〉
n (x) for n ≤ 4

In this section, as well as the next, we establish more evidence for Conjectures 1.1
and 1.2 of a somewhat complementary nature to Theorem 1.3. Namely, we fix n and

consider those α ∈ Q for which L(α)
n (x) is irreducible over Q . This point of view

has a rather different flavor. For arbitrary n, the methods of this paper allowed us to
get only a weak result in this direction (see the Remark following Theorem 2.9). If

n ≥ 5, a much more fruitful, algebro-geometric, point of view, adopted in [HW],
is to consider the covering of curves X1 → P1 given by the projection-to-y map,

where X1 : L
(y)
n (x) = 0 is the projective curve defined by the n-th degree GLP. The

Galois closure of this cover, call it X ′, has monodromy group Sn (by Schur’s result

that L(0)
n (x) has Galois group Sn). By estimating from below the genus of X1 and

other quotients of X ′, the following theorem was proved in [HW].

Theorem 6.1 (Hajir-Wong) Suppose an integer n ≥ 5 and a number field K are

fixed. There is a finite subset E(n, K) ⊂ K such that for α ∈ K − E(n, K), we have

(i) L(α)
n (x) is irreducible over K, and

(ii) the Galois group of L(α)
n (x) contains An if 5 ≤ n ≤ 9, and is the full symmetric

group if n ≥ 10.

Applying the theorem with K = Q , we have the following nice complement to the

main theorem 1.3 of this paper.

Corollary 6.2 For each n ≥ 5, there is a bound Cn such that Conjectures 1.1 and 1.2

hold for the pair (n, r) whenever r ≥ Cn.

Remark. The constant Cn in the above corollary is ineffective since the proof of the

theorem preceding it rests on Faltings’ theorem on finitude of rational points on

curves of genus at least 2. For the corollary, we could apply Siegel’s theorem on
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integral points instead, but this does not resolve the effectivity issue either since for
n ≥ 5, the relevant curves have genus greater than 1.

For n ≤ 4, on the other hand, GLP admitting proper factors over Q turn out to

be plentiful, as such factors correspond to rational points on certain curves of genus
0 or 1. In this section, we calculate the (very few) integral points on these curves

effectively, thereby establishing Conjectures 1.1 and 1.2 for n ≤ 4 and all r ≥ 0.

We summarize the results in the following theorem. During the proof, we will give
parametrizations for all α ∈ Q , n ≤ 4, for which L(α)

n (x) is Q-reducible. We also

parametrize, for n = 4, an infinite family of specializations which are reducible but
have exceptional Galois group D4.

Theorem 6.3 (i) If n ≤ 4 and r ≥ 0, then L
〈r〉
n (x) is irreducible over Q and has

Galois group containing An. If n ≤ 3, this Galois group is in fact the full symmetric

group Sn.

(ii) For each n ∈ {2, 3, 4}, there exist infinitely many rational numbers α such that

L(α)
n (x) is reducible over Q .

(iii) There are infinitely many rational numbers α for which L(α)
4 (x) is irreducible over

Q with Galois group not containing A4.

Proof To prove irreducibility of L
〈r〉
n (x) for a fixed n, and arbitrary r ≥ 0, the tech-

niques we have used so far (the existence of ramification at primes dividing n!) would
have to be modifed, because for suitable r, not all primes less than n ramify in the

splitting field of L
〈r〉
n (x) over Q . We can take a more direct approach and give ele-

mentary arguments for proving (i). Then we go back and study rational points on

certain curves which correspond to the exceptional specializations over Q of L(α)
n (x),

proving (ii) and (iii). My original arguments for proving (i) also relied on the study

of these rational points. The simpler arguments given here were kindly provided by

the referee.

For n = 2, the sign in the discriminant formula (5.1) is already enough to show

the irreducibility of all L
〈r〉
n (x) for n = 2, and, similarly, (1.1) shows that L(α)

2 (x) is

reducible exactly when α + 2 is a rational square. Finally, (5.1) also shows that L
〈r〉
3 (x)

does not have Galois group A3.

Now suppose n = 3. Let s = r + 1 and put

f (x) := 3!L
〈r〉
3 (x − r − 1) = x3 + 3sx + 2s.

We need to show that f (x) is irreducible over Q . It suffices to show that f does not

vanish on Z. Suppose f (m) = 0 for some integer m. Then,

s =
−m3

3m + 2
≥ 1.

The inequality f (0) = 2s ≥ 2 implies m 6= 0. On the other hand, for non-zero

integers m, the quantity −m3/(3m + 2) is negative. Thus, f has no root in Z and is

therefore irreducible.
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Moreover, we see immediately that L(α)
3 (x) is reducible over Q for infinitely many

rational numbers α, and that this is so exactly for those of the form

α =
m3 − 9m − 6

3m + 2
, m ∈ Q.

For n = 4, we consider linear factors and quadratic factors separately. We start by
simplifying the model via killing the trace term as before, i.e., we reparametrize with

s = r + 1 again and define

g(x, s) := 4!L
〈s−1〉
4 (x − s) = x4 + 6sx2 + 8sx + 3s2 + 6s.

Suppose for some integer s ≥ 1, g(x, s) has an integer root x = m. We first note

that m 6= −1 since g(−1, s) = 3s2 + 4s + 1 > 1 for s > 0. If m ≥ 0, g(m, s) is a
sum of positive integers and hence does not vanish. Thus, m ≤ −2, which implies

that m(3m + 4) > 0 so that g(m, s) = m4 + 2sm(3m + 4) + 3s2 + 6s > 0, giving a

contradiction. Thus, if s ≥ 1, g(x, s) has no linear factors.

Before treating the quadratic factors, let us study the specializations s ∈ Q for
which L

〈s−1〉
4 (x) has a linear factor. A Q-linear factor (x− x0) of g(x, s0) for a rational

number s0 corresponds exactly to a (finite) rational point (x0, s0) on the curve X1 :

g(x, s) = 0. It is easy to see that this curve has genus 1, so is elliptic ((0, 0) is on it).
Upon using the Cayley–Hermite formula, (implemented in Maple 7 for example), to

put X1 in Weierstrass form, we find it is birational to the minimal Weierstrass model
384H2 : Y 2

= X3 + X2 − 25X + 119, of conductor 384 = 27 · 3, where

x = 6
4X + Y + 28

X2 − 22X − 95
, s = −216

X2 + 10X + 8Y + 129

X4 − 44X3 + 294X2 + 4180X + 9025
.

Here we are using the notation from Cremona’s table (available, for instance, in a

very usable format at [PRT]), from which we learn that this elliptic curve has an
infinite Mordell–Weil group over Q , generated by the point P1 = (−1, 12) of infinite

order and the 2-torsion point P0 = (−7, 0). This completes the proof of (b). By
the usual height arguments, it is not difficult to show that the only integral points on

g(x, s) = 0 are

(0, 0), (0,−2), (3,−1), (4,−2), (−1,−1), (−2,−2), (−3,−3), (3,−27), (−3,−9).

All but the last two of these correspond to the trivial factorizations (see (1.2)). This
verifies again that for n = 4 and integers r ≥ 0, L

〈r〉
n (x) does not have a linear factor

over Q (but it also shows that this is the case for r ≤ −11). Note the exceptional
factorization for s = −9,−27, i.e., r = −10,−28, corresponds to the factors x − 6

and x − 30 in L(5)
4 (x) and L(23)

4 (x) respectively.

The quadratic factors of L
〈r〉
4 (x) are also parametrized by a curve (X2 let us call it),

for which we can find a model by writing

g(x, s) = x4 + 6sx2 + 8sx + 3s2 + 6s = (x2 + Ax + B)(x2 − Ax + C)
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and equating coefficients. A simple elimination of the resulting equations gives us
the curve X2 : h(A2, s) = 0, where

h(z, s) := z3 + 12sz2 + 24s(s − 1)z − 64s2

is the cubic resolvent of g(x, s).
To complete the proof of (i), we note that A 6= 0, since the coefficient of x in

g(x, s) does not vanish. On the other hand, g(x, s) ≡ x4 or x4 + 1 mod 2, hence
A ≡ 0 mod 2. Taking z = A2 ≥ 4, we find 24z > 64 and 12z2 > 24z so that

h(A2, s) = z3 + (12z2 − 24z)s + (24z − 64)s2 > 0,

giving the desired contradiction. This completes the proof of Conjecture 1.1 for
n ≤ 4.

To find all s ∈ Q for which L
〈s−1〉
4 (x) has a quadratic factor, one checks that X2

also has genus 1 and is birational to 384H1 : Y 2
= X3 + X2 − 35X + 69 via

A =
−6Y

X2 + 4X − 23
, s =

−27(X − 3)2

(2X − 5)(X2 + 4X − 23)
.

Thus, X1 and X2 in fact form an isogeny class of order 2. (Note in passing that, with

respect to the projection-to-s map, the fiber product X ′
= X1 ×P1 X2 is the minimal

Galois cover of either.) In particular, X2 also has rank 1, with a Mordell–Weil group
generated by P1 = (1, 6) together with 2-torsion point (3, 0). We find the integral

points on this curve correspond exactly to the previously known trivial factorizations,
namely (0, 0), (±2,−2), (±2,−1), (±4,−2).

Turning to the Galois group over Q of g(x, s), we know that it contains A4 if and

only if the cubic resolvent h(z, s) does not have a rational root, i.e,. if and only if the
curve Y2 : h(z, s) = 0, over which X2 is a double cover, does not have a Q-rational

point. Considering h(z, s) as a quadratic in s with discriminant (4z)2(3z2 −20z + 36),

we see that the integral (or rational) points on Y2 correspond the integral (rational)
points on the conic w2

= 3z2 − 20z + 36. This already suffices to prove (iii), and one

can give an explicit formula

s =
z(12 − 6z ±

√
3z2 − 20z + 36)

8(3z − 8)
, (3z − 10)2 − 3w2

= −8,

for rational values of the parameter s at which L
〈s−1〉
4 (x) has dihedral Galois group

D4 (hence is not contained in A4); it is clear that the values of s, w, and z can be
parametrized by the trace of powers of the fundamental unit of Z[

√
3]. If s is re-

stricted to the integers, then by Gauss’s Lemma, z and w are also integers, and one
again shows that s = 0,−1,−2 give the only integral points on the model Y2; we

omit the details. This completes the proof of Conjecture 1.2 for n ≤ 4, as well as that

of the theorem.

Remark. The Galois group of L
〈4〉
4 (x) is A4 for infinitely many integers r, namely ex-

actly those expressible as r = −2 +
√

12k2 + 1, with k ∈ Z (these can be parametrized

by the trace of powers of the fundamental unit of Z[
√

3]).
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7 Proof of Theorem 1.4

Now we want to prove Conjectures 1.1 and 1.2 for arbitrary n and small r.

Proof of Theorem 1.4. As mentioned earlier, the cases r = 0, 1, 2 have already ap-

peared in the literature, missing only the calculation of a few Galois groups for
small n. Since it is no extra work, we give a uniform proof here for all 0 ≤ r ≤ 8. By

Theorem 5.4(iii), this has been reduced to a finite calculation, but the bound given

there is prohibitively large, since B(8) is greater than 2 · 1017511.

We claim that for r ≤ 8 and all n ≥ 1, n1 ≤ 840. This follows immediately from
(4.2).

Thus, for 0 ≤ r ≤ 8 and n ≥ 9, we have n − n0 = n(1 − 1/n1) ≤ (839/840)n.

By Theorem 3.3, the interval (839n/840, n] contains a prime for n ≥ 48742 (note

that 1/839 = 0.00119 . . . > 0.001; one checks easily then that we can replace 48742
by 44350 if we wish). For 0 ≤ r ≤ 8, n ≥ 9, we have (n + r)/2 ≤ 839n/840; we

have therefore shown that for 0 ≤ r ≤ 8, n ≥ 48742, there exists a prime p in the

range max((n + r)/2, n − n0) < p ≤ n. This proves the irreducibility of L
〈r〉
n (x) for

n ≥ 48742 by Lemma 4.1.

Now we need to handle the small degrees. By Theorem 6.3, we can take n ≥ 5.

Using PARI [B], for each pair (n, r) in the box 5 ≤ n ≤ 48741, 0 ≤ r ≤ 8, we
calculated n0 and checked (i) whether n = n0, and (ii) whether the smallest prime

exceeding max((n + r)/2, n − n0) is at most n (PARI is equipped with a table of

primes). If (i) holds, then L
〈r〉
n (x) is irreducible by Theorem 2.9, and if (ii) holds, then

L
〈r〉
n (x) is irreducible by Lemma 4.1. It took PARI only a few seconds to verify that

among these 438631 pairs (r, n), only 20 cases remain (listed in Table 1) where neither

Lemma 4.1 nor Theorem 2.9 applies. Using PARI’s polisirreducible routine we
verified that for these remaining pairs, L

〈r〉
n (x) is irreducible.

In order to supply a more tangible certificate of irreducibility, we list in Table 1,

with one exception, a prime ℓ such that the reduction L
〈r〉
n (x) is irreducible in Fℓ[x].

The very last entry in the table is interesting. Although L
〈8〉
120 is not p-Coleman

integral for any prime divisor p of 120, one checks that all slopes of its p-Newton

polygon are divisible by p for p = 3 and p = 5. By Corollary 2.2, 15 divides the

degree of any irreducible factor of L
〈8〉
120. Thus, even though n0 = 1, we can apply

Lemma 4.1 with n0 = 15 and p = 107 to get the irreducibility of L
〈8〉
120.

Now let us turn to the computation of the Galois group. Again, we need only
consider n ≥ 5. When n < 8, (n/2, n − 2) does not contain a prime, so we cannot

apply Jordan’s criterion. For the 24 polynomials L
〈r〉
n (x) with 0 ≤ r ≤ 8 and 5 ≤ n ≤

7, we used the PARI routine polgalois to verify that the Galois group contains An.

Now suppose n ≥ 8 and r ≤ 8. By Theorem 5.4(ii), we are done if n ≥ 49. Of the

remaining pairs (r, n), when ((n + r)/2, n − 2) contains a prime, we apply Theorem

5.4(i). There remain 47 cases, listed in Table 2. In these 47 cases, since n ≥ 8, there
exists a prime in the interval (n/2, n− 2), labelled q in Table 2. We check in each case

that NPq(L
〈r〉
n (x)) has at least one slope with denominator q, then apply Theorem 5.2.

Thus, in all cases, the Galois group of L
〈r〉
n (x) contains An.
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r n ℓ
3 6 13

4 6 29

5 6 23

5 20 149

6 6 31

6 10 17

6 12 29

r n ℓ
6 20 311

7 6 47

7 10 47

7 12 47

7 20 271

7 42 79

8 6 17

r n ℓ
8 8 29

8 10 137

8 12 173

8 24 191

8 42 113

8 120 613

Table 1

r n q

1 9 5

1 13 7

2 8 5

2 9 5

2 12 7

2 13 7

3 8 5

3 9 5

3 11 7

3 12 7

3 13 7

4 8 5

4 9 5

4 10 7

4 11 7

4 12 7

r n q

4 13 7

5 8 5

5 9 5

5 10 7

5 11 7

5 12 7

5 13 7

6 8 5

6 9 5

6 10 7

6 11 7

6 12 7

6 13 7

7 8 5

7 9 5

7 10 7

r n q

7 11 7

7 12 7

7 13 7

7 15 11

7 19 11

8 8 5

8 9 5

8 10 7

8 11 7

8 12 7

8 13 7

8 14 11

8 15 11

8 18 11

8 19 11

Table 2

8 A Question

Given f (x) =
∑n

j=0 a jx
j ∈ Q[x], let us say g(x) =

∑n
j=0 a jb jx

j is an admissible

modification of f (x) if b j ∈ Z for all 0 ≤ j ≤ n and b0 = ±1, bn = 1. We could

also allow bn = −1, but since multiplication by −1 is harmless when it comes to
irreducibility and Galois groups, we can dispense with it.

Already in Schur’s original treatment of En(x) = L
〈0〉
n (x), he proved not just the

irreducibility of En but also of all its admissible modifications. In [FT], Filaseta and
Trifonov prove the irreducibility of all admissible modifications of the Bessel polyno-

mials zn(x) = n!L
〈n〉
n (x). Also, the Filaseta–Lam theorem quoted in the introduction

was in fact proved for all admissible modifications of L(α)
n (x) for n large enough with

respect to α. These results, combined with Conjecture 1.1 suggest the following ques-

tion.
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Question 8.1 For which pairs of non-negative integers (r, n) is it true that every
admissible modification of L

〈r〉
n (x) is irreducible over Q?

The particular strategy developed in this paper would not appear to be suitable for
answering this question, but the techniques of [FT] and [FL], suitably altered, would

hopefully apply.

Some experimentation reveals that there are exceptions already for n = 2. Indeed,

suppose r = 4m2 − 1 and the modifying coefficients (b0, b1, b2) are (−1, m, 1). The
resulting admissible modification of 2L

〈r〉
2 (x) is

x2 + 8m3x − 4m2(4m2 + 1) = (x − 2m)(x + 2m + 8m3).

If one does not allow the modification of the constant coefficient, then it is not hard

to show that the resulting admissible modifications of L
〈r〉
2 (x) are always irreducible

over Q . Moreover, a PARI calculation for n = 3 and r ≤ 100, with modification
coefficients (b0, b1, b2, b3) satisfying |b0| = 1, b3 = 1, |b1|, |b2| ≤ 100 turned up only

irreducible polynomials (more than 2 million of them).
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[F] W. Feit, Ã5 and Ã7 are Galois groups over number fields. J. Algebra 104(1986), no. 2, 231–260.
[F1] M. Filaseta, On the irreducibility of all but finitely many Bessel polynomials. Acta Math. 174(1995),

no. 2, 383–397.
[F2] , A generalization of an irreducibility theorem of I. Schur. In: Analytic number theory 1,
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