Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T07:47:31.199Z Has data issue: false hasContentIssue false

Preparation of Novel Hollow Fiber Silica Using an Organic Gel as a Template

Published online by Cambridge University Press:  10 February 2011

Y. Ono
Affiliation:
Chemotransfiguration Project, Japan Science and Technology Corporation (JST), 2432 Aikawa, Kurume, Fukuoka 839–0861, Japan, seijitcm@mbox.nc.kyushu-u.ac.jp
J. Hojo
Affiliation:
Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812–8581, Japan
S. Shinkai
Affiliation:
Chemotransfiguration Project, Japan Science and Technology Corporation (JST), 2432 Aikawa, Kurume, Fukuoka 839–0861, Japan, seijitcm@mbox.nc.kyushu-u.ac.jp
Get access

Abstract

A novel hollow fiber silica was created by the use of the fibrous structures of an organic gel as a template. Its inner diameter ranged from 10 to 200 nm and the outer diameter ranged from 50 to 300 nm. A dichloromethane solution of an organic gelator was mixed with the silicate solution, TEOS/water/catalyst (acetic acid or benzylamine)/solvent (acetic acid or alcohol), which was gelated by the organic gelator. Subsequently, the resultant solution was evaporated in vacuo until the dichloromethane was removed to give a turbid gel. The SEM images of the product showed well-grown fibrous structures. After calcination, it was clearly found by TEM images that these fibers have a tubular structure. The most favorable gelator to form hollow fiber silica is one that has a cationic charge within the molecule, for example, a quaternary ammonium halide salt or a crown ether including a metal cation. In this study, the gel-forming segment of the gelator was a cholesterol derivative. Since the propagation species of silicate in the solution of acetic acid or benzylamine are considered to be anionic, the electrostatic interactions may be important for adsorption of silica onto the template fibers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vries, E. J. de and Kellogg, R-M., J. Chem. Soc., Chem. Commun. 1993, 238 10.1039/c39930000238Google Scholar
de Loos, M., van Esch, J., Stokroos, I., Kellogg, R. M., and Feringa, B. L., J. Am. Chem. Soc. 119, 12675 (1997).10.1021/ja972899zGoogle Scholar
2. Aoki, M., Nakashima, K., Kawabata, H., Tsutsui, S. and Shinkai, S., J. Chem. Soc., Perkin Trans. 2, 1993, 347.Google Scholar
3. Hanabusa, K., Okui, K., Karaki, K., Koyama, T. and Shirai, H., J. Chem. Soc., Chem. Commun. 992, 1371; K. Hanabusa, A. Kawakami, M. Kimura, and H. Shirai, Chem. Lett. 1997, 191.Google Scholar
4. Sohna, J.-E. S. and Fages, F., Chem. Commun. 1997, 327.10.1039/a607346hGoogle Scholar
5. Otsuni, E., Kamaras, P, and Weiss, R. G., Angew. Chem., Int. Ed. Engl. 35, 1324 (1996).Google Scholar
6. Terech, P., Furman, I., and Weiss, R. G., J. Phys. Chem. 99, 9558 (1995).10.1021/j100023a038Google Scholar
7. Murata, K., Aoki, M., Suzuki, T., Harada, T, Kawabata, H., Komori, T., Ohseto, F., Ueda, K., and Shinkai, S., J. Am. Chem. Soc. 116, 6664 (1994) and references therein.10.1021/ja00094a023Google Scholar
8. James, T. D., Murata, K., Harada, T., Ueda, K., and Shinkai, S., Chem. Lett. 1994, 273.10.1246/cl.1994.273Google Scholar
9. Jeong, S. W., Murata, K., and Shinkai, S., Supramol. Sci. 3, 83 (1996).10.1016/0968-5677(96)00021-1Google Scholar
10. Brotin, T., Utermohlen, R., Fages, F., Bouas-Laurent, H., and Desvergne, J. - P., J. Chem. Soc. Chem. Commun. 1991, 416.10.1039/C39910000416Google Scholar
11. For recent comprehensive reviews, see Terech, P. and Weiss, R. G., Chem. Rev. 97, 3133 (1997); S. Shinkai and K. Murata, J. Mater. Chem. (Feature Article), 8, 485 (1998).10.1021/cr9700282Google Scholar
12. Murata, K., Ph D. thesis, Kyushu University, 1997. Google Scholar
13. Huo, Q., Margolese, D. I., Ciesla, U., Feng, P., Gier, T. E., Sieger, P., Leon, R., Petroff, P. M., Schiith, F., and Stucky, G. D., Nature, 368, 317 (1994).10.1038/368317a0Google Scholar
14. Brinker, C. J. and Scherer, G. W., Sol-Gel Science, (Academic Press, San Diego, 1990), pp. 97107.Google Scholar
15. Ono, Y., Nakashima, K., Sano, M., Kanekiyo, Y., Inoue, K., Hojo, J., and Shinkai, S., Chem. Commun. 1998, 1477. 10.1039/a802829jGoogle Scholar
16. Ono, Y., Kanekiyo, Y., Inoue, K., Hojo, J., and Shinkai, S., Chem. Lett. 1999, 23.10.1246/cl.1999.23Google Scholar