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RIEMANNIAN FOLIATIONS WITH PARALLEL CURVATURE

ROBERT A. BLUMENTHAL

§ 1. Introduction

Let M be a smooth compact manifold and let «f be a smooth codi-
mension q Riemannian foliation of M. Let T(M) be the tangent bundle
of M and let E c T(M) be the subbundle tangent to &. We may regard
the normal bundle Q = T(M)/E of ^ as a subbundle of T(M) satisfying
T(M) = E® Q. Let g be a smooth Riemannian metric on Q invariant
under the natural parallelism along the leaves of #\ This is equivalent
to the existence of a bundle-like metric [16] and to the existence of a
transverse O(g)-structure [5]. Recall that a connection F on Q is basic
if the induced parallel translation along a path lying in a leaf of 8F agrees
with the natural parallelism along the leaves and that such a connection
is characterized by the condition that FXY = [X, Y]Q for all vector fields
X tangent to E and Y tangent to Q where [X, Y]Q denotes the Q-compo-
nent of the Lie bracket of X and Y [3]. The torsion of V is the tensor field
of type (1, 2) on M defined by T(X, Y) = FXYQ- VγXq - [X, Y]Q where X
and Y are vector fields on M. There is a unique torsion-free metric-
preserving basic connection F on Q [9], [11] defined as follows. Let xe M.
Let /: U-> V be a submersion whose level sets are the leaves of ^\U
where U is a neighborhood of x in M and V is an open set in Rq. There
is a unique Riemannian metric g on V such that f*(g) = g\ U. Let F be
the Riemannian connection on V. Then P\U = f~\F). It is natural to
study the relationship between the curvature of V and the structure of the
foliated manifold (M, &).

In the present work we study the case of parallel curvature, that is
FR = 0 where R(X, Y)Z denotes the curvature tensor of F.

Let 2F be a Riemannian foliation with parallel curvature of a compact
manifold M.

THEOREM 1. Let M be the universal cover of M and let # be the lift
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of ίF to M. Then M fibers over a simply connected Riemannian symmetric

space with the leaves of # as fibers.

Let peM. Let πp be a two-dimensional subspace of Qp and let {X, Y}

be an orthonormal basis of πp. The (transverse) sectional curvature of

πp is defined by K(πp) = — gp(R(X, Y)X, Y) and depends only on πp. If

K(πp) > 0 (respectively, < 0, > 0) for all two-dimensional subspaces πp c

Qp and all p e M, we say that (M, «̂ *) has positive (respectively, non-positive,

non-negative) sectional curvature.

COROLLARY 1. If (M, fF) has non-positive sectional curvature, then M

is diffeomorphίc to a product L X Rq where L is the (common) universal

cover of the leaves of !F and the leaves of # are identified with the sets

L X {x}, x e Rq.

COROLLARY 2. If πx(M) is finite, then (M, &) has non-negative sectional

curvature and all the leaves of !F are compact with finite holonomy.

Remark. If 8F is a flat Riemannian foliation of the compact manifold

M, then (M, IF) has zero curvature and zero sectional curvature and so,

by Corollary 1, M = L X RQ and # is the product foliation. A theorem of

G. Reeb [14] states that if 3F is a codimension one foliation of a compact

manifold M defined by a closed nonsingular one-form, then M = L X R

and # is the product foliation. It is easy to see that such a codimension

one foliation admits a flat Riemannian structure and so we obtain Reeb's

theorem from Corollary 1.

A differential r-form ω on M is called base-like if on each coordinate

neighborhood U with coordinates (x\ , xk, y\ , yq) respecting the

foliation J^, the local expression of ω is of the form

Σ aίu...,ir(y\ , yOd/1 Λ Λ dy*
l<ii<>~<ir<<l

[16], [17]. Since the exterior derivative of a base-like form is again base-

like, one can construct the base-like cohomology algebra iϊ*(M, IF) —

Σr*o Hr(M,^) of the foliated manifold (M, &). For each r > 0 , let

βr(M, &) be the dimension of Hr(M, &).

THEOREM 2. If (M, IF) has positive sectional curvature, then βx(M, 8F)

— 0.

Recall from [13] the definition of the growth of a leaf L of IF. Pick

a Riemannian metric on M (bundle-like or not) and restrict to obtain a
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Riemannian metric on L. Let p e L and define the growth function of L

at p by gp(r) = voi (2?p(r)) where Bp{r) denotes the open ball in L of radius

r centered at p. The growth type of L is then defined to be the growth

type of the function gp : R+ -» R+ and is independent of the choice of

metric on M and of p e L [13].

THEOREM 3. The growth type of each leaf of 2F is dominated by the

growth type of πx{M).

§ 2. Proofs

Let π : F(Q) -> M be the frame bundle of Q, let ω be the connection

form on F(Q) associated to V, and let H c T(F(Q)) be the corresponding

horizontal distribution. Let {(Ua, fa, gaβ)}a>βeA be an ί^-cocycle defining ^

Let F(i?0 be the frame bundle of Rq. Then {(π-\Ua)Ja^ gaβ)}a,βeA is an

F(Rq)-coo,y&e on F((?) and defines a codimension g(g + 1) foliation &' of

F(Q). Let Ef c T(F(Q)) be the integrable distribution whose integral

manifolds are the leaves of &'. Since F is basic we have Ef a H [12].

Let 0 be the i?«-valued one-form on F(Q) defined by ^ ( 7 ) = u-\π*u(Y)Q)

for ueF(Q), YeTu(F(Q)) where u : Rq-> Qπiu) denotes the vector space

isomorphism which sends the standard basis of Rq to the frame u of Qff(M).

The torsion form of F is the Rq-valued two-form Θ on F(Q) defined by

ΘU(X, Y) = {dθ)u(XHy YH) for u e F(Q) and X, Y e TU(F(Q)). Since F is the

Riemannian basic connection, we have Θ = 0.

For each he Rq let B(h) be the unique horizontal vector field on

F(Q) satisfying π*u{B{h)u) = u(h) for all u e F(Q). Let JS* - B(ez) for i =

1, , q where {el9 , β j is the standard basis of i?9 and let Q'dT(F(Q))

be the g-plane bundle spanned by JS1, , Eq. Then H = E/ ® Q/ and so

T(F(Q)) = E' ®Q' ®V where V is the bundle of vertical vectors. Hence

we may regard Q' ® V as the normal bundle of 3F1. Let El be the q X q

matrix with a 1 in the hth column and £ t h row and 0 elsewhere and let

σ(E%) be the corresponding fundamental vector field on F(Q). Then {E\

σ(Eξ) : ί, h, k = 1, , q} is a trivialization of the normal bundle of ZF'\

Recall that a vector field Y on F(Q) which is normal to J^' is said to

be parallel along the leaves to 2Ff if (f^^Y^'^Ua)) is a well-defined

vector field on faS^'\U^)) C F(Rq) for each αeA. This is equivalent to

Y being invariant under the natural parallelism along the leaves and is

characterized by the condition that [X, Y] is tangent to SFf whenever X

is a vector field tangent to J Γ / [5]. Since the fundamental vector fields
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on F(Rq) are preserved by the maps gaβ^ it follows that the vector fields

σ{El) are parallel along the leaves to IF'. Since F is the Riemannian

basic connection, it is transversely projectable and hence [X, El] is tangent

to &r/ for ί = 1, , q whenever X is a vector field tangent to 2Ff [10],

and so E\ , Eq are parallel along the leaves to 3Ff. Hence {E\ σ(E%):

i9 h, k = 1, , q] is an e-structure for SFf [5].

Let u e F(Q) and let X e TU(F(Q)). Then there is a unique expression

X = XE, + XQ, + Xv Thus ΘU(X) = ΘU(XQ) = θu(B(h)u) = Λ for some Λ e iϊ9

and so Xq, = B(ΘU{X))U. Also ωtt(X) = ωtt(XΓ) = ωtt(<;(A)J = A for some

A e gl(qr, B) and so Xv = σ(ωu(X))u. Letting X = [£;*, £ j ] w , we obtain

% [JB', E%))u and [ES ^ F . = σ(ωu([E\

Since

- ΘJ[E*, E%) = E«(?(^0 - Elθ(E') - ΘJ

= (&)u(.E*, El) = θn(Ei,EQ = 0,

we have [E\ E%, = 0. Let Ω be the curvature form of V and write Ω =

Σ,lk-i ®\ El where the Ω\ are two-forms on F(Q). Since

- ωu([E\ E%) = £«ω(JS;0 - Eίω(E') - ωu([E\ E%)

= (dω)u(Eί, Eί) = ΩJJEt, Ei) ,

we have that

[E\ E% = - ± Ω\(β\ E')σ(Eΰ .

Let uQeF(Q) and let P(uQ) = {weF(Q): α can be joined to uQ by a

horizontal curve}, the holonomy bundle through u0. Let w e P(u0) and let

j9 = π(u) e M. Let c : (— ε, ε) -> M be a smooth curve with c(0) = /?, and

let c* : (— ε, ε)-> F(Q) be the unique horizontal lift of c satisfying c*(0)

= w. Fix 1 < ί, j , l<q and let X(ί) = c*(f)i9 Y(t) = c*^)^ and Z(ί) =

c*(ί)z. Then X, Y and Z are normal vector fields along c which are

parallel along c and hence, since R is parallel, PmR(X, Y)Z = 0. Defining

/ : ( - e,6)-Λ« by /(*) = c*(ί)-'(Λ(2Γ, 7)Z)c ( ί ), we have that Pc(0)R(X, Y)Z

= M(/'(0)) and so /7(0) = 0. But

and hence /(ί) = ΩcHt){E%ω, Ej

cHt))-eι = P column of ΩcHt)(Eι

cHt), ElHt)). Thus

c*(0)(P column of β(££, SO) = f(0) = 0 and hence
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lth column of Ω{E\ Ej)) = 0

for all WeHu. Thus Ωh

k(E\ Es) is constant on P(u0) for each l<h,k<q.
Let Φ(u0) be the holonomy group with reference point uo; that is,

Φ(u0) = {A e gl(q, R) : u0 and u0A can be joined by a horizontal curve}.
Then P(u0) is a reduced bundle with structure group Φ(u0) such that the
natural parallelism along the leaves of 2F carries elements of P(u0) to
elements of P(u0) and so P(uQ) is a transverse Φ(αo)-structure for 3F [5]
and ω is reducible to a basic connection in P(u0). Let V c T(P(u0)) be
the subbundle consisting of vectors tangent to the fibers of P(u0). Then
T(P(uo)) = E'®Q'®V and ^ ' is a foliation of P(M0) whose tangent
bundle is E'. Let Au , Ar be a basis of the Lie algebra of Φ(w0). Then
{E\ '",E\ σ(A,\ - >,σ(Ar)} is an e-structure for &' on P(a0). On P(u0)
we have

[£', £ 1 , . = 0

B(Ai-ej) = 2]

where f\j9 c*y, and 6*y are constants.
Let G be the unique simply connected Lie group with Lie algebra

spanned by elements Z1? , Zq, Bu , Br satisfying

[B{, Bj] =

it Zj] = ±[B Zj] = ±

Let A be the subalgebra of g spanned by Bu , Br and let m be the sub-
space of g spanned by Zu , Zq. Then g = A Θ m, [A, A] c A, [A, m] c m, and
[m, m] C A. Let Xe^r and write X uniquely as X = Y + Z where Ye A,
Zβm. Let τ(X) = Y — Z. Then τ is an automorphism of g and τ2 is the
identity. Since G is simply connected there is an automorphism F : G-^G
such that .F* = r. Let i ϊ be the identity component of the subgroup of
G fixed by F. Then if is a closed Lie subgroup of G and the triple
(G, if, F) is a symmetric space.
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Let ueP(u0). Since E\'-,Eq, σ(Ax), , σ(Ar) are parallel along
the leaves to &', there is a neighborhood W of u in P(u0) and a smooth
submersion f : W -> G such that

k e r n e l ^ ) = E'v
f*y(E;) = z i h y ) , £ = i , . - . , 9

f * M A j ) J = Br/<9» = 1, - - ^ r

for all y e VF. Let ί7 = 7r( WO, a neighborhood of ττ(w) in M. Then / induces

a smooth submersion f:U-> G/H such that kernel(Z^) = Ep for all p e U

and the diagram

U-j+G/H

commutes. Let θ be the canonical left-invariant ^-valued one-form on G

and let θ^ be the A-component of θ. Then θk defines a G-invariant con-

nection in the principal ίf-bundle G —• G/ίf which induces the canonical

linear connection on the symmetric space G/H [8], and J*θιι = ω. Thus

if F{GjH) is the frame bundle of G/H and ω is the connection form on

F(G/H) corresponding to the canonical linear connection on GjH, we have

that (/#)*δJ = ω on F(Q)/^ Thus we can find a G/#-cocycle {(C7α, /β, gΛβ)}Λ,βeA

defining J^ such that (/J*ω = ω on F(Q)/ϋa. If UaΓ\UβΦφ then, since

(/J*ω = ω = (/Ό*ω on F(Q)lUaΓiUβ9 it follows that (gaβj*ω = ω on

F(GIH)lfβ(UanUβ). Without loss of generality we may assume that Z7αΠ C/̂

is connected whenever it is non-empty. Hence, since ω is a complete

analytic linear connection on the simply connected analytic manifold

G/H, gaβ extends to an affine isomorphism of G/H [8].

Hence !F is transversely homogeneous. The foliated manifold (M, # )

admits a complete bundle-like metric, and so we have that # is regular

[1]. Hence the space of leaves M/# is a complete, Riemannian, Hausdorff

manifold and the natural projection / : M-> M/β is a fibration [16]. Let

N denote the Riemannian manifold M/#. Since the metric on N is in-

duced by the bundle-like metric on M, it follows that the curvature tensor

field of N is parallel. Thus N is a complete, simply connected, Riemannian

locally symmetric space and hence is Riemannian symmetric [8] and so

Theorem 1 is proved.
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If (M, !F) has non-positive sectional curvature, then N has non-positive
sectional curvature. Since N is complete and simply connected we have
that N is diffeomorphic to Rq [8] and hence the fibration / : M -> N is a
product, proving Corollary 1. See [2] for similar results in the flat non-
Riemannian case.

If πλ(M) is finite, then M is compact and so the leaves of # are
compact. Thus all the leaves of 2F are compact. Hence & is a closed
metric foliation and so the holonomy group of each leaf is finite [15].
Since N is compact it has non-negative sectional curvature [18] and so
(M, 3F) has non-negative sectional curvature, proving Corollary 2.

We now prove Theorem 2. Each covering transformation σ of M induces
an isometry Ψ(σ) of N. We thus obtain a homomorphism Ψ: πx{M) -> I(N)
where I(N) denotes the isometry group of N such that Ψ(σ)of = foσ for
all σ e πλ(M). Let Σ be the image of Ψ in I(N) and let K be the closure
of Σ. For each r > 0 let Ar

κ(N) be the space of i£-invariant r-forms on
N and let Ar(M, !F) be the space of base-like r-forms on M. Let
η e Ar

κ(N). Then f*η is an r-form on M which is base-like with respect
to # . Since η is J-invariant it follows that f*η is 7r1(M)-invariant and
hence there exists a unique ω e Ar(M, 2F) such that f*η — p*ω where
p : M —> M is the covering projection. Conversely, suppose ω e Ar(M, 8F).
Then p*ω is base-like and hence there exists a unique r-form η on N
such that p*ω = f*η. Since p*ω is ττ1(M)-invariant it follows that η is
I'-invariant and hence ίΓ-invariant. Thus η e Ar

κ(N). We have constructed
an isomorphism of cochain complexes

A°(M, &) -^> A\M, &) -^>

i
A°K(N)-

and hence we obtain an isomorphism in cohomology H*(M, if) -> H%(N).
Since (M, 2F) has positive sectional curvature it follows that N has positive
sectional curvature. Thus N is compact [18] and so K is compact. Hence
the inclusion of the algebra of if-invariant forms on N into the algebra
of differential forms on N induces an injection H$(N) -> H*(N) [4], [6].
Thus H*(M, 3F) is isomorphic to a subalgebra of H*(N). Since N is simply
connected we have that H\N) = 0 and hence H\M, &) = 0.

Let Σ\N be the orbit space of Σ. To prove Theorem 3 we construct
a map h : M\ϊF -» Σ\N and apply a result in [1]. Let L be a leaf of IF.

https://doi.org/10.1017/S0027763000020390 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000020390


152 R03ΞRT A. BLUMENTHAL

Choose a leaf L of # such that p(L) = L. Let x = /(L) e N. Then the

orbit of x under Σ depends only on L and we denote it by h(L). The

growth type of a leaf L of J^ is dominated by the growth type of /ι(L) [1]

which in turn is dominated by the growth type of Σ. Hence, since Σ is

a homomorphic image of π^M), we have that the growth type of L is

dominated by the growth type of πx(M).

§ 3. Examples

EXAMPLE 1. Let G be a compact connected Lie group of dimension

q and let g be the Lie algebra of G. Let M be a compact manifold and

suppose ω is a smooth ^-valued one-form of rank q on M satisfying

dω + \ [ω, ω] = 0. Then ω defines a smooth codimension q foliation & on

M which is a Lie foliation modeled on G [7]. Let ( , ) be a bi-invariant

Riemannian metric on G. Then <, > induces on (M, 3F) a Riemannian

structure with parallel curvature and non-negative sectional curvature.

EXAMPLE 2. Let H be a Lie subgroup of the 7z-dimensional torus Tn.

Then the foliation 3F of Tn by the cosets of H admits a Riemannian

structure with vanishing curvature and βi(Tn, &) Φ 0.

EXAMPLE 3. Let M be the unit tangent bundle of the two-holed torus

T2. Let 3F be the foliation of M by the circle fibers. Then ίF admits a

Riemannian structure with parallel curvature and negative sectional

curvature and βx(M, &) Φ 0.

EXAMPLE 4. Let Φ : πι(T2) -> SO(S) be a homomorphism whose image

is dense in SO(3). This defines a left action of TΓI(JΓ2) on S\ Let H be

the universal cover of T2. Then if is a principal ^(TJ-bundle over T2

Let M = H X ί l ( Γ 2 )S
2 be the associated bundle with fiber S2. The foliation

of H X S2 whose leaves are the sets H X {x}, xe S2 passes to a foliation

ίF of M all of whose leaves are dense. Since nx{T2) acts on S2 by iso-

metries, (M, J^) admits a Riemannian structure with parallel curvature

and positive sectional curvature. Also 0i(M, J^) = 0.

EXAMPLE 5. Define a left action of the integers Z on S2 by letting

the generator act as

cos 2πa sin 2πa 0

— sin 2ττtf cos 2πa 0

0 0 1
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where 0 < a < 1 is irrational. Let M = R XZS\ Then M is an S2-bundle
over Sι with a codimension 2 foliation J^. The foliated manifold (M, SF)
admits a Riemannian structure with parallel curvature and positive
sectional curvature and βx(M, ϊF) = 0. There are exactly two compact
leaves. If L is a non-compact leaf then L is diffeomorphic to T2. The
foliation of L by the leaves of SF is an irrational slope foliation and
hence is a flat Riemannian foliation and βx(L9 8F) φ 0.
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