RIEMANNIAN FOLIATIONS WITH PARALLEL CURVATURE

ROBERT A. BLUMENTHAL

§1. Introduction

Let M be a smooth compact manifold and let \mathcal{F} be a smooth codimension q Riemannian foliation of M. Let T(M) be the tangent bundle of M and let $E \subset T(M)$ be the subbundle tangent to \mathcal{F} . We may regard the normal bundle Q = T(M)/E of \mathcal{F} as a subbundle of T(M) satisfying $T(M) = E \oplus Q$. Let g be a smooth Riemannian metric on Q invariant under the natural parallelism along the leaves of \mathcal{F} . This is equivalent to the existence of a bundle-like metric [16] and to the existence of a transverse O(q)-structure [5]. Recall that a connection V on Q is basic if the induced parallel translation along a path lying in a leaf of \mathcal{F} agrees with the natural parallelism along the leaves and that such a connection is characterized by the condition that $\nabla_X Y = [X, Y]_q$ for all vector fields X tangent to E and Y tangent to Q where $[X, Y]_q$ denotes the Q-component of the Lie bracket of X and Y [3]. The torsion of V is the tensor field of type (1, 2) on M defined by $T(X, Y) = \nabla_X Y_q - \nabla_Y X_q - [X, Y]_q$ where X and Y are vector fields on M. There is a unique torsion-free metricpreserving basic connection V on Q [9], [11] defined as follows. Let $x \in M$. Let $f: U \to V$ be a submersion whose level sets are the leaves of $\mathscr{F}|U$ where U is a neighborhood of x in M and V is an open set in \mathbb{R}^{q} . There is a unique Riemannian metric \overline{g} on V such that $f^*(\overline{g}) = g | U$. Let \overline{V} be the Riemannian connection on V. Then $\overline{V}|U = f^{-1}(\overline{V})$. It is natural to study the relationship between the curvature of V and the structure of the foliated manifold (M, \mathcal{F}) .

In the present work we study the case of parallel curvature, that is $\nabla R = 0$ where R(X, Y)Z denotes the curvature tensor of ∇ .

Let \mathscr{F} be a Riemannian foliation with parallel curvature of a compact manifold M.

THEOREM 1. Let \tilde{M} be the universal cover of M and let $\tilde{\mathscr{F}}$ be the lift Received March 15, 1982. of \mathcal{F} to \tilde{M} . Then \tilde{M} fibers over a simply connected Riemannian symmetric space with the leaves of $\tilde{\mathcal{F}}$ as fibers.

Let $p \in M$. Let π_p be a two-dimensional subspace of Q_p and let $\{X, Y\}$ be an orthonormal basis of π_p . The (transverse) sectional curvature of π_p is defined by $K(\pi_p) = -g_p(R(X, Y)X, Y)$ and depends only on π_p . If $K(\pi_p) > 0$ (respectively, $\leq 0, \geq 0$) for all two-dimensional subspaces $\pi_p \subset Q_p$ and all $p \in M$, we say that (M, \mathscr{F}) has positive (respectively, non-positive, non-negative) sectional curvature.

COROLLARY 1. If (M, \mathscr{F}) has non-positive sectional curvature, then \tilde{M} is diffeomorphic to a product $\tilde{L} \times R^q$ where \tilde{L} is the (common) universal cover of the leaves of \mathscr{F} and the leaves of $\widetilde{\mathscr{F}}$ are identified with the sets $\tilde{L} \times \{x\}, x \in R^q$.

COROLLARY 2. If $\pi_1(M)$ is finite, then (M, \mathscr{F}) has non-negative sectional curvature and all the leaves of \mathscr{F} are compact with finite holonomy.

Remark. If \mathscr{F} is a flat Riemannian foliation of the compact manifold M, then (M, \mathscr{F}) has zero curvature and zero sectional curvature and so, by Corollary 1, $\tilde{M} \cong \tilde{L} \times R^q$ and \mathscr{F} is the product foliation. A theorem of G. Reeb [14] states that if \mathscr{F} is a codimension one foliation of a compact manifold M defined by a closed nonsingular one-form, then $\tilde{M} \cong \tilde{L} \times R$ and \mathscr{F} is the product foliation. It is easy to see that such a codimension one foliation admits a flat Riemannian structure and so we obtain Reeb's theorem from Corollary 1.

A differential *r*-form ω on M is called base-like if on each coordinate neighborhood U with coordinates $(x^1, \dots, x^k, y^1, \dots, y^q)$ respecting the foliation \mathscr{F} , the local expression of ω is of the form

$$\sum\limits_{1\leq i_1<\cdots < i_r\leq q}a_{i_1,\cdots,i_r}(y^{\scriptscriptstyle 1},\,\cdots,\,y^q)dy^{i_1}\wedge\cdots\wedge\,dy^{i_r}$$

[16], [17]. Since the exterior derivative of a base-like form is again base-like, one can construct the base-like cohomology algebra $H^*(M, \mathscr{F}) = \sum_{r\geq 0} H^r(M, \mathscr{F})$ of the foliated manifold (M, \mathscr{F}) . For each $r \geq 0$, let $\beta_r(M, \mathscr{F})$ be the dimension of $H^r(M, \mathscr{F})$.

THEOREM 2. If (M, \mathcal{F}) has positive sectional curvature, then $\beta_1(M, \mathcal{F}) = 0$.

Recall from [13] the definition of the growth of a leaf L of \mathcal{F} . Pick a Riemannian metric on M (bundle-like or not) and restrict to obtain a

146

Riemannian metric on L. Let $p \in L$ and define the growth function of L at p by $g_p(r) = \operatorname{vol}(B_p(r))$ where $B_p(r)$ denotes the open ball in L of radius r centered at p. The growth type of L is then defined to be the growth type of the function $g_p: R^+ \to R^+$ and is independent of the choice of metric on M and of $p \in L$ [13].

THEOREM 3. The growth type of each leaf of \mathcal{F} is dominated by the growth type of $\pi_1(M)$.

§2. Proofs

Let $\pi: F(Q) \to M$ be the frame bundle of Q, let ω be the connection form on F(Q) associated to V, and let $H \subset T(F(Q))$ be the corresponding horizontal distribution. Let $\{(U_a, f_a, g_{a\beta})\}_{a,\beta\in A}$ be an R^q -cocycle defining \mathscr{F} . Let $F(R^q)$ be the frame bundle of R^q . Then $\{(\pi^{-1}(U_a), f_{a,*}, g_{a\beta,*})\}_{a,\beta\in A}$ is an $F(R^q)$ -cocycle on F(Q) and defines a codimension q(q + 1) foliation \mathscr{F}' of F(Q). Let $E' \subset T(F(Q))$ be the integrable distribution whose integral manifolds are the leaves of \mathscr{F}' . Since V is basic we have $E' \subset H$ [12]. Let θ be the R^q -valued one-form on F(Q) defined by $\theta_u(Y) = u^{-1}(\pi_{*u}(Y)_Q)$ for $u \in F(Q)$, $Y \in T_u(F(Q))$ where $u : R^q \to Q_{\pi(u)}$ denotes the vector space isomorphism which sends the standard basis of R^q to the frame u of $Q_{\pi(u)}$. The torsion form of V is the R^q -valued two-form Θ on F(Q) defined by $\theta_u(X, Y) = (d\theta)_u(X_H, Y_H)$ for $u \in F(Q)$ and $X, Y \in T_u(F(Q))$. Since V is the Riemannian basic connection, we have $\Theta = 0$.

For each $h \in \mathbb{R}^q$ let B(h) be the unique horizontal vector field on F(Q) satisfying $\pi_{*u}(B(h)_u) = u(h)$ for all $u \in F(Q)$. Let $E^i = B(e_i)$ for $i = 1, \dots, q$ where $\{e_1, \dots, e_q\}$ is the standard basis of \mathbb{R}^q and let $Q' \subset T(F(Q))$ be the q-plane bundle spanned by E^1, \dots, E^q . Then $H = E' \oplus Q'$ and so $T(F(Q)) = E' \oplus Q' \oplus V$ where V is the bundle of vertical vectors. Hence we may regard $Q' \oplus V$ as the normal bundle of \mathscr{F}' . Let E_h^k be the $q \times q$ matrix with a 1 in the h^{th} column and k^{th} row and 0 elsewhere and let $\sigma(E_h^k)$ be the corresponding fundamental vector field on F(Q). Then $\{E^i, \sigma(E_h^k) : i, h, k = 1, \dots, q\}$ is a trivialization of the normal bundle of \mathscr{F}' . Recall that a vector field Y on F(Q) which is normal to \mathscr{F}' is said to be parallel along the leaves to \mathscr{F}' if $(f_{a_*})_*(Y|\pi^{-1}(U_a))$ is a well-defined vector field on $f_{a_*}(\pi^{-1}(U_a)) \subset F(R^q)$ for each $\alpha \in A$. This is equivalent to Y being invariant under the natural parallelism along the leaves and is characterized by the condition that [X, Y] is tangent to \mathscr{F}' whenever X is a vector field tangent to \mathscr{F}' [5]. Since the fundamental vector fields

on $F(R^q)$ are preserved by the maps $g_{\alpha\beta_*}$, it follows that the vector fields $\sigma(E_h^k)$ are parallel along the leaves to \mathscr{F}' . Since V is the Riemannian basic connection, it is transversely projectable and hence $[X, E^i]$ is tangent to \mathscr{F}' for $i = 1, \dots, q$ whenever X is a vector field tangent to \mathscr{F}' [10], and so E^1, \dots, E^q are parallel along the leaves to \mathscr{F}' . Hence $\{E^i, \sigma(E_h^k): i, h, k = 1, \dots, q\}$ is an e-structure for \mathscr{F}' [5].

Let $u \in F(Q)$ and let $X \in T_u(F(Q))$. Then there is a unique expression $X = X_{E'} + X_{Q'} + X_V$. Thus $\theta_u(X) = \theta_u(X_{Q'}) = \theta_u(B(h)_u) = h$ for some $h \in R^q$ and so $X_{Q'} = B(\theta_u(X))_u$. Also $\omega_u(X) = \omega_u(X_V) = \omega_u(\sigma(A)_u) = A$ for some $A \in gl(q, R)$ and so $X_V = \sigma(\omega_u(X))_u$. Letting $X = [E^i, E^j]_u$, we obtain

$$[E^{i}, E^{j}]_{Q'_{u}} = B(\theta_{u}([E^{i}, E^{j}]_{u}))_{u} \text{ and } [E^{i}, E^{j}]_{v_{u}} = \sigma(\omega_{u}([E^{i}, E^{j}]_{u}))_{u}.$$

Since

$$egin{aligned} &- heta_u([E^i,\,E^j]_u)=E^i_u heta(E^j)-E^j_u heta(E^i)- heta_u([E^i,\,E^j]_u)\ &=(d heta)_u(E^i_u,\,E^j_u)=\Theta_u(E^i_u,\,E^j_u)=0\,, \end{aligned}$$

we have $[E^i, E^j]_{Q'} = 0$. Let Ω be the curvature form of V and write $\Omega = \sum_{h,k=1}^{q} \Omega_k^h E_h^k$ where the Ω_k^h are two-forms on F(Q). Since

$$egin{aligned} &-\omega_u([E^i,E^j]_u)=E^i_u\omega(E^j)-E^j_u\omega(E^i)-\omega_u([E^i,E^j]_u)\ &=(d\omega)_u(E^i_u,E^j_u)=arDelta_u(E^i_u,E^j_u)\,, \end{aligned}$$

we have that

$$[E^i, E^j]_V = -\sum_{h,k=1}^q \Omega^h_k(E^i, E^j) \sigma(E^k_h) .$$

Let $u_0 \in F(Q)$ and let $P(u_0) = \{u \in F(Q) : u \text{ can be joined to } u_0 \text{ by a}$ horizontal curve}, the holonomy bundle through u_0 . Let $u \in P(u_0)$ and let $p = \pi(u) \in M$. Let $c: (-\varepsilon, \varepsilon) \to M$ be a smooth curve with c(0) = p, and let $c^*: (-\varepsilon, \varepsilon) \to F(Q)$ be the unique horizontal lift of c satisfying $c^*(0)$ = u. Fix $1 \leq i, j, l \leq q$ and let $X(t) = c^*(t)_i, Y(t) = c^*(t)_j$, and Z(t) = $c^*(t)_i$. Then X, Y and Z are normal vector fields along c which are parallel along c and hence, since R is parallel, $V_{\varepsilon(0)}R(X, Y)Z = 0$. Defining $f: (-\varepsilon, \varepsilon) \to R^q$ by $f(t) = c^*(t)^{-1}(R(X, Y)Z)_{c(t)}$, we have that $V_{c(0)}R(X, Y)Z$ = u(f'(0)) and so f'(0) = 0. But

$$(R(X, Y)Z)_{c(t)} = c^{*}(t)(\mathcal{Q}_{c^{*}(t)}(E_{c^{*}(t)}^{i}, E_{c^{*}(t)}^{j})c^{*}(t)^{-1}(c^{*}(t)_{i}))$$

and hence $f(t) = \Omega_{c^{*}(t)}(E_{c^{*}(t)}^{i}, E_{c^{*}(t)}^{j}) \cdot e_{t} = l^{\text{th}}$ column of $\Omega_{c^{*}(t)}(E_{c^{*}(t)}^{i}, E_{c^{*}(t)}^{j})$. Thus $\dot{c}^{*}(0)(l^{\text{th}}$ column of $\Omega(E^{i}, E^{j})) = f'(0) = 0$ and hence

$W(l^{\text{th}} \text{ column of } \Omega(E^i, E^j)) = 0$

for all $W \in H_u$. Thus $\Omega_k^h(E^i, E^j)$ is constant on $P(u_0)$ for each $1 \le h, k \le q$.

Let $\Phi(u_0)$ be the holonomy group with reference point u_0 ; that is, $\Phi(u_0) = \{A \in \mathrm{gl}(q, R) : u_0 \text{ and } u_0A \text{ can be joined by a horizontal curve}\}.$ Then $P(u_0)$ is a reduced bundle with structure group $\Phi(u_0)$ such that the natural parallelism along the leaves of \mathscr{F} carries elements of $P(u_0)$ to elements of $P(u_0)$ and so $P(u_0)$ is a transverse $\Phi(u_0)$ -structure for \mathscr{F} [5] and ω is reducible to a basic connection in $P(u_0)$. Let $V' \subset T(P(u_0))$ be the subbundle consisting of vectors tangent to the fibers of $P(u_0)$. Then $T(P(u_0)) = E' \oplus Q' \oplus V'$ and \mathscr{F}' is a foliation of $P(u_0)$ whose tangent bundle is E'. Let A_1, \dots, A_r be a basis of the Lie algebra of $\Phi(u_0)$. Then $\{E^1, \dots, E^q, \sigma(A_1), \dots, \sigma(A_r)\}$ is an e-structure for \mathscr{F}' on $P(u_0)$. On $P(u_0)$ we have

$$egin{aligned} & [E^i, E^j]_{q'} = 0 \ & [E^i, E^j]_{r'} = \sum\limits_{k=1}^r f^k_{ij} \sigma(A_k) \ & [\sigma(A_i), \sigma(A_j)] = \sum\limits_{k=1}^r c^k_{ij} \sigma(A_k) \ & [\sigma(A_i), E^j] = B(A_i \cdot e_j) = \sum\limits_{k=1}^q b^k_{ij} E^k \end{aligned}$$

where f_{ij}^k , c_{ij}^k , and b_{ij}^k are constants.

Let G be the unique simply connected Lie group with Lie algebra g spanned by elements $Z_1, \dots, Z_q, B_1, \dots, B_r$ satisfying

$$egin{aligned} & [Z_i, Z_j] = \sum\limits_{k=1}^r f_{ij}^k B_k \ & [B_i, B_j] = \sum\limits_{k=1}^r c_{ij}^k B_k \ & [B_i, Z_j] = \sum\limits_{k=1}^q b_{ij}^k Z_k \,. \end{aligned}$$

Let *h* be the subalgebra of *g* spanned by B_1, \dots, B_r and let *m* be the subspace of *g* spanned by Z_1, \dots, Z_q . Then $g = h \oplus m$, $[h, h] \subset h$, $[h, m] \subset m$, and $[m, m] \subset h$. Let $X \in g$ and write X uniquely as X = Y + Z where $Y \in h$, $Z \in m$. Let $\tau(X) = Y - Z$. Then τ is an automorphism of *g* and τ^2 is the identity. Since G is simply connected there is an automorphism $F: G \to G$ such that $F_* = \tau$. Let H be the identity component of the subgroup of G fixed by F. Then H is a closed Lie subgroup of G and the triple (G, H, F) is a symmetric space. Let $u \in P(u_0)$. Since E^1, \dots, E^q , $\sigma(A_1), \dots, \sigma(A_r)$ are parallel along the leaves to \mathscr{F}' , there is a neighborhood W of u in $P(u_0)$ and a smooth submersion $\overline{f}: W \to G$ such that

$$\begin{aligned} & \operatorname{kernel}(\bar{f}_{*_y}) = E'_y \\ & \bar{f}_{*_y}(E^i_y) = Z_{i_{\bar{f}(y)}}, \ i = 1, \cdots, q \\ & \bar{f}_{*_y}(\sigma(A_j)_y) = B_{j_{\bar{f}(y)}}, \ j = 1, \cdots, r \end{aligned}$$

for all $y \in W$. Let $U = \pi(W)$, a neighborhood of $\pi(u)$ in M. Then \overline{f} induces a smooth submersion $f: U \to G/H$ such that $\operatorname{kernel}(f_{*p}) = E_p$ for all $p \in U$ and the diagram

$$\begin{array}{c} W \xrightarrow{\overline{f}} G \\ \pi \downarrow \qquad \qquad \downarrow \\ U \xrightarrow{f} G/H \end{array}$$

commutes. Let $\bar{\theta}$ be the canonical left-invariant g-valued one-form on Gand let $\bar{\theta}_h$ be the h-component of $\bar{\theta}$. Then $\bar{\theta}_h$ defines a G-invariant connection in the principal H-bundle $G \to G/H$ which induces the canonical linear connection on the symmetric space G/H [8], and $\bar{f}^*\bar{\theta}_h = \omega$. Thus if F(G/H) is the frame bundle of G/H and $\bar{\omega}$ is the connection form on F(G/H) corresponding to the canonical linear connection on G/H, we have that $(f_*)^*\bar{\omega} = \omega$ on $F(Q)/_U$. Thus we can find a G/H-cocycle $\{(U_a, f_a, g_{a\beta})\}_{a,\beta\in A}$ defining \mathscr{F} such that $(f_{a*})^*\bar{\omega} = \omega$ on $F(Q)/_{U_a}$. If $U_a \cap U_\beta \neq \phi$ then, since $(f_{a*})^*\bar{\omega} = \omega = (f_{\beta*})^*\bar{\omega}$ on $F(Q)/_{U_a\cap U_\beta}$, it follows that $(g_{a\beta*})^*\bar{\omega} = \bar{\omega}$ on $F(G/H)/_{f_\beta(U_a\cap U_\beta)}$. Without loss of generality we may assume that $U_a \cap U_\beta$ is connected whenever it is non-empty. Hence, since $\bar{\omega}$ is a complete analytic linear connection on the simply connected analytic manifold G/H, $g_{a\beta}$ extends to an affine isomorphism of G/H [8].

Hence \mathscr{F} is transversely homogeneous. The foliated manifold (\tilde{M}, \mathscr{F}) admits a complete bundle-like metric, and so we have that \mathscr{F} is regular [1]. Hence the space of leaves \tilde{M}/\mathscr{F} is a complete, Riemannian, Hausdorff manifold and the natural projection $f: \tilde{M} \to \tilde{M}/\mathscr{F}$ is a fibration [16]. Let N denote the Riemannian manifold \tilde{M}/\mathscr{F} . Since the metric on N is induced by the bundle-like metric on \tilde{M} , it follows that the curvature tensor field of N is parallel. Thus N is a complete, simply connected, Riemannian locally symmetric space and hence is Riemannian symmetric [8] and so Theorem 1 is proved.

150

If (M, \mathscr{F}) has non-positive sectional curvature, then N has non-positive sectional curvature. Since N is complete and simply connected we have that N is diffeomorphic to R^q [8] and hence the fibration $f: \tilde{M} \to N$ is a product, proving Corollary 1. See [2] for similar results in the flat non-Riemannian case.

If $\pi_1(M)$ is finite, then \tilde{M} is compact and so the leaves of $\tilde{\mathscr{F}}$ are compact. Thus all the leaves of \mathscr{F} are compact. Hence \mathscr{F} is a closed metric foliation and so the holonomy group of each leaf is finite [15]. Since N is compact it has non-negative sectional curvature [18] and so (M, \mathscr{F}) has non-negative sectional curvature, proving Corollary 2.

We now prove Theorem 2. Each covering transformation σ of \tilde{M} induces an isometry $\Psi(\sigma)$ of N. We thus obtain a homomorphism $\Psi: \pi_1(M) \to I(N)$ where I(N) denotes the isometry group of N such that $\Psi(\sigma) \circ f = f \circ \sigma$ for all $\sigma \in \pi_1(M)$. Let Σ be the image of Ψ in I(N) and let K be the closure of Σ . For each $r \geq 0$ let $A_K^r(N)$ be the space of K-invariant r-forms on N and let $A^r(M, \mathscr{F})$ be the space of base-like r-forms on M. Let $\eta \in A_K^r(N)$. Then $f^*\eta$ is an r-form on \tilde{M} which is base-like with respect to \mathscr{F} . Since η is Σ -invariant it follows that $f^*\eta$ is $\pi_1(M)$ -invariant and hence there exists a unique $\omega \in A^r(M, \mathscr{F})$ such that $f^*\eta = p^*\omega$ where $p: \tilde{M} \to M$ is the covering projection. Conversely, suppose $\omega \in A^r(M, \mathscr{F})$. Then $p^*\omega$ is base-like and hence there exists a unique r-form η on Nsuch that $p^*\omega = f^*\eta$. Since $p^*\omega$ is $\pi_1(M)$ -invariant it follows that η is Σ -invariant and hence K-invariant. Thus $\eta \in A_K^r(N)$. We have constructed an isomorphism of cochain complexes

and hence we obtain an isomorphism in cohomology $H^*(M, \mathscr{F}) \to H^*_{\mathcal{K}}(N)$. Since (M, \mathscr{F}) has positive sectional curvature it follows that N has positive sectional curvature. Thus N is compact [18] and so K is compact. Hence the inclusion of the algebra of K-invariant forms on N into the algebra of differential forms on N induces an injection $H^*_{\mathcal{K}}(N) \to H^*(N)$ [4], [6]. Thus $H^*(M, \mathscr{F})$ is isomorphic to a subalgebra of $H^*(N)$. Since N is simply connected we have that $H^1(N) = 0$ and hence $H^1(M, \mathscr{F}) = 0$.

Let $\Sigma \setminus N$ be the orbit space of Σ . To prove Theorem 3 we construct a map $h: M/\mathscr{F} \to \Sigma \setminus N$ and apply a result in [1]. Let L be a leaf of \mathscr{F} . Choose a leaf \tilde{L} of $\tilde{\mathscr{F}}$ such that $p(\tilde{L}) = L$. Let $x = f(\tilde{L}) \in N$. Then the orbit of x under Σ depends only on L and we denote it by h(L). The growth type of a leaf L of \mathscr{F} is dominated by the growth type of h(L) [1] which in turn is dominated by the growth type of Σ . Hence, since Σ is a homomorphic image of $\pi_1(M)$, we have that the growth type of L is dominated by the growth type of $\pi_1(M)$.

§3. Examples

EXAMPLE 1. Let G be a compact connected Lie group of dimension q and let $_{g}$ be the Lie algebra of G. Let M be a compact manifold and suppose ω is a smooth $_{g}$ -valued one-form of rank q on M satisfying $d\omega + \frac{1}{2}[\omega, \omega] = 0$. Then ω defines a smooth codimension q foliation \mathcal{F} on M which is a Lie foliation modeled on G [7]. Let \langle , \rangle be a bi-invariant Riemannian metric on G. Then \langle , \rangle induces on (M, \mathcal{F}) a Riemannian structure with parallel curvature and non-negative sectional curvature.

EXAMPLE 2. Let H be a Lie subgroup of the *n*-dimensional torus T^n . Then the foliation \mathscr{F} of T^n by the cosets of H admits a Riemannian structure with vanishing curvature and $\beta_1(T^n, \mathscr{F}) \neq 0$.

EXAMPLE 3. Let M be the unit tangent bundle of the two-holed torus T_2 . Let \mathscr{F} be the foliation of M by the circle fibers. Then \mathscr{F} admits a Riemannian structure with parallel curvature and negative sectional curvature and $\beta_1(M, \mathscr{F}) \neq 0$.

EXAMPLE 4. Let $\Phi: \pi_1(T_2) \to SO(3)$ be a homomorphism whose image is dense in SO(3). This defines a left action of $\pi_1(T_2)$ on S^2 . Let H be the universal cover of T_2 . Then H is a principal $\pi_1(T_2)$ -bundle over T_2 . Let $M = H \times_{\pi_1(T_2)} S^2$ be the associated bundle with fiber S^2 . The foliation of $H \times S^2$ whose leaves are the sets $H \times \{x\}$, $x \in S^2$ passes to a foliation \mathscr{F} of M all of whose leaves are dense. Since $\pi_1(T_2)$ acts on S^2 by isometries, (M, \mathscr{F}) admits a Riemannian structure with parallel curvature and positive sectional curvature. Also $\beta_1(M, \mathscr{F}) = 0$.

EXAMPLE 5. Define a left action of the integers Z on S^2 by letting the generator act as

$\int \cos 2\pi \alpha$	$\sin 2\pi lpha$	0 \
$-\sin 2\pi \alpha$	$\cos 2\pi lpha$	0
\ o	0	1 /

152

where $0 < \alpha < 1$ is irrational. Let $M = R \times_z S^2$. Then M is an S^2 -bundle over S^1 with a codimension 2 foliation \mathscr{F} . The foliated manifold (M, \mathscr{F}) admits a Riemannian structure with parallel curvature and positive sectional curvature and $\beta_1(M, \mathscr{F}) = 0$. There are exactly two compact leaves. If L is a non-compact leaf then \overline{L} is diffeomorphic to T^2 . The foliation of \overline{L} by the leaves of \mathscr{F} is an irrational slope foliation and hence is a flat Riemannian foliation and $\beta_1(\overline{L}, \mathscr{F}) \neq 0$.

References

- R. A. Blumenthal, Transversely homogeneous foliations, Ann. Inst. Fourier, 29 (1979), 143-158.
- [2] —, Foliated manifolds with flat basic connection, J. Differential Geom., 16 (1981), 401-406.
- [2] R. Bott, Lectures on characteristic classes and foliations (notes by L. Conlon), Lecture Notes in Math., no. 279, Springer-Verlag, New York, 1972, 1-80.
- [4] C. Chevalley and S. Eilenberg, Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc., 63 (1948), 85-124.
- [5] L. Conlon, Transversally parallelizable foliations of codimension two, Trans. Amer. Math. Soc., 194 (1974), 79-102.
- [6] W. Greub, S. Halperin and R. Vanstone, Connections, curvature, and cohomology, vol. II, Academic Press, New York, 1973.
- [7] R. Hermann, On the differential geometry of foliations, Ann. of Math., 72 (1960), 445-457.
- [8] S. Kobayashi and K. Nomizu, Foundations of differential geometry, vol. I, II. Interscience Tracts in Pure and Appl. Math., 15, Interscience, New York, 1963.
- [9] C. Lazarov and J. Pasternack, Secondary characteristic classes for Riemannian foliations, J. Differential Geom., 11 (1976), 365–385.
- [10] F. Molino, Connexions et G-structures sur les variétés feuilletées, Bull. Sci. Math., 92 (1968), 59-63.
- [11] —, Etude des feuilletages transversalement complets et applications, Ann. Sci. École Norm. Sup., 10 (1977), 289-307.
- [12] —, Feuilletages et classes caractéristiques, Symposia Mathematica, X (1972), 199-209.
- [13] J. F. Plante, Foliations with measure preserving holonomy, Ann. of Math., 102 (1975), 327-361.
- [14] G. Reeb, Sur certaines propriétés topologiques des variétés feuilletées, Actualités Sci. Indust., no. 1183, Hermann, Paris, 1952.
- [15] B. Reinhart, Closed metric foliations, Michigan Math. J., 8 (1961), 7-9.
- [16] —, Foliated manifolds with bundle-like metrics, Ann. of Math., 69 (1959), 119– 132.
- [17] —, Harmonic integrals on foliated manifolds, Amer. J. Math., 81 (1959), 529– 536.
- [18] J. Wolf, Spaces of constant curvature, McGraw-Hill, New York, 1967.

Department of Mathematics Saint Louis University St. Louis, Missouri 63103