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Abstract

Teleconnections that link climate processes at widely separated spatial locations form a key component of the climate
system. Their analysis has traditionally been based on means, climatologies, correlations, or spectral properties,
which cannot always reveal the dynamical mechanisms between different climatological processes. More recently,
causal discovery methods based either on time series at grid locations or on modes of variability, estimated through
dimension-reduction methods, have been introduced. A major challenge in the development of such analysis methods
is a lack of ground truth benchmark datasets that have facilitated improvements in many parts of machine learning.
Here, we present a simplified stochastic climate model that outputs gridded data and represents climate modes and
their teleconnections through a spatially aggregated vector-autoregressive model. The model is used to construct
benchmarks and evaluate a range of analysis methods. The results highlight that the model can be successfully used to
benchmark different causal discovery methods for spatiotemporal data and show their strengths and weaknesses.
Furthermore, we introduce a novel causal discovery method at the grid level and demonstrate that it has orders of
magnitude better performance than the current approaches. Improved causal analysis tools for spatiotemporal climate
data are pivotal to advance process-based understanding and climate model evaluation.

Impact Statement

Progress in climate science and beyond rests more and more on novel data science methods. Of a particular
relevance are causal discovery methods that help advance process-based understanding and climate model
evaluation. The present work has two main contributions: first, a simplified benchmark model that allows to
systematically evaluate causal discovery methods with respect to the typical challenges of gridded climate data,
and second, a novel spatiotemporal causal discovery method. The benchmark data will proliferate new
methodological developments to gain new insights from widely available climate datasets from satellites or
climate model output.

0 This research article was awarded Open Data and Open Materials badges for transparent practices. See the Data Availability Statement for
details.
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1. Introduction

Global climate is a highly interdependent spatiotemporal dynamical system, with events in one region
having profound effects many weeks or months later in other regions thousands of kilometers away. For
example, since Sir Gilbert Walker’s seminal works in the 1920s (Walker, 1923), the tropical Pacific region
has been established as a major driver of global climate. Such remote effects have been termed
teleconnections, and their understanding constitutes a key research question both to foster theory building
and since knowledge of time-delayed relationships can provide important sources of seasonal predict-
ability (Robertson et al., 2018). Furthermore, their representation in climate models can guide process-
based model evaluation (Eyring et al., 2019; Nowack et al., 2020).

Studies to investigate the existence and character of teleconnections have been based on observational
data, starting with Bjerknes (1969), but also on numerical modeling, for example, by climate models
participating in the Coupled Climate Model Intercomparison Project (Eyring et al., 2016). Over the years,
a large number of analysis methods have been developed and employed, from standard pairwise
correlation, regression, and composite analyses (Von Storch and Zwiers, 2001) to nonlinear (Balasis
et al., 2013) and event-based (Boers et al., 2019), but still pairwise, methods. More recently, linear and
nonlinear causal discovery methods (Ebert-Uphoffand Deng, 2012; Runge etal., 2014, 2019b) have been
applied, which attempt to statistically unveil spurious associations due to common drivers or indirect
associations. See Runge et al. (2019a) for an overview of causal discovery methods.

Since the 1980s, climate observations from satellites have been available as gridded latitude—longitude
datasets of many physical climate variables. There are two conceptually different approaches in analyzing
teleconnections from such datasets. One is to estimate associations among time series at individual grid
locations, leading to the original pointwise teleconnection maps (Wallace and Gutzler, 1981), one-point
correlation maps (Von Storch and Zwiers, 2001), and to the more recent approach of climate network
analysis where the associations (typically correlations) among all grid points are treated as a network that
can be analyzed with network-theoretic tools (Tsonis and Swanson, 2008; Donges et al., 2009a,b;
Gozolchiani et al., 2011). Associations among grid locations have also been analyzed with causal
discovery methods (Deng and Ebert-Uphoff, 2014).

Another approach is to view the global climate system as driven by a number of major modes of climate
variability. Modes such as El Nifio—Southern Oscillation (ENSO; Philander, 1990), the North Atlantic
Oscillation (NAO; Hurrell et al., 2003), the Pacific Decadal Oscillation (Newman et al., 2016), the
Madden—Julian Oscillation (MJO; Madden and Julian, 1994), or the Stratospheric Polar Vortex (Waugh
et al., 2017) span time scales from weeks to decades and govern global climate from the ocean to
stratospheric dynamics. These modes may be viewed as emergent phenomena whereby large regions
behave in a coherent way.

To obtain analyzable time series (climate indices), modes need to be extracted from the gridded data.
Such a spatial aggregation can be achieved either by expert knowledge to define regional averages or
statistical dimension-reduction methods such as principal component analysis (PCA; Von Storch and
Zwiers, 2001), also known as empirical orthogonal functions (EOFs), or its Varimax rotated version
(Kaiser, 1958; Vautard and Ghil, 1989). Furthermore, nonlinear dimension-reduction methods exist, for
example, through causal effects (Chalupka et al., 2016), kernel methods (Schdlkopf and Smola, 2008), or
deep learning (Tibau et al., 2018). Based on these mode estimations, the modes’ teleconnections have
been analyzed with a large range of methods from correlation to causal discovery approaches (Ebert-
Uphoffand Deng, 2012; Runge etal.,2014,2015; Kretschmer et al., 2016; Kretschmer et al., 2017; Runge
et al., 2019a). There are also works that employ a mixed approach with causal discovery on partly grid
point time series and partly modes (Di Capua et al., 2020).

Our focus here is on causal discovery methods both at the grid level and the mode level as a means to
gain a more mechanistic process-oriented understanding of teleconnections beyond pairwise correlations.
In pairwise correlation, the aim is to test whether pairs of variables are correlated, without accounting for
other variables. The challenge of climate data for causal methods is the data’s inherent spatiotemporal
nature that has not yet much been addressed in the research community dealing with causal methods
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(Runge et al., 2019a). An important drawback of causal methods in climate research is that they cannot be
evaluated and benchmarked on real data due to the lack of ground truth, since experimental intervention is
not possible in the climate system. The most common approach is to evaluate the physical plausibility of
results and their agreement with existing literature. Consequently, it can be challenging to obtain new
knowledge not in agreement with the one already established. Benchmark databases and competitions
have been a cornerstone of the tremendous success in reaching the extremely fast performance gains in
machine learning, for example, of object recognition (Krizhevsky et al., 2017). There already exists an
online platform hosting challenging time series datasets for causal discovery (http://www.causeme.net;
Runge et al., 2019a), together with an associated competition on pseudoclimate data (Runge et al., 2020).
Other works, such as the one by Ebert-Uphoff and Deng (2017), offer synthetic data to evaluate methods
at the grid level. However, for the challenging spatiotemporal nature of the climate system observed as
gridded data, no such benchmark exists.

Our paper has two main contributions: first, a novel simplified stochastic climate model, termed
spatially aggregated vector-autoregressive (SAVAR) model, that outputs gridded data and provides such a
benchmark. Second, we propose a new hybrid causal discovery approach that uses the assumption
underlying the SAVAR model and estimates causal relationships at the mode level while yielding causal
networks at the grid level. The SAVAR model can be used to benchmark both grid-level causal discovery
methods and a combination of dimension-reduction and causal discovery methods. To exemplify the
potential of both SAVAR and the novel causal discovery method, we use SAVAR models that emulate the
teleconnections of a reanalysis surface pressure dataset to compare the algorithm’s effectiveness against
different state-of-the-art algorithms for causal discovery at the grid level.

There are a few related works in the literature. Our model is partially inspired by Linear Inverse Models
(Penland and Sardeshmukh, 1995). The main difference to our work is twofold. First, the present work
explores many of the statistical properties of the model, such as its identifiability and stability. In addition,
the model is framed in the domain of climate networks, and the physical implications of potential
statistical scenarios are discussed. Second, SAVAR is a versatile model whose purpose is not to directly
explain teleconnections or climate relationships, but to improve methods and algorithms that ultimately
increase our understanding of the climate system. Another relevant work is the one presented by Fulton
and Hegerl (2021). The authors present a novel method based on Monte Carlo simulations to create
ground truth for physically interpretable patterns of modes of climate variability and then evaluate PCA-
based dimension reduction against other methods such as slow feature analysis (Wiskott and Sejnowski,
2002), optimally persistent patterns (DelSole, 2001), and low-frequency component analysis (Wills et al.,
2018). In contrast, our work is more focused on modeling and reconstructing the causal relationships
among modes. However, their mode generation framework may be integrated to construct more complex
SAVAR models.

Our SAVAR model may be seen as a spatiotemporal version of Frankignoul and Hasselmann’s famous
stochastic climate model (Hasselmann, 1976; Frankignoul and Hasselmann, 1977; Arnold, 2001). Our
model also assumes that the fast and chaotic dynamics of weather can be modeled as noise. While
Frankignoul and Hasselmann’s model did originally not study the spatial distribution of the fast and
chaotic dynamics, here we consider a particular spatiotemporal model where spatial modes of climate
variability are viewed as covariant noise representing fast dynamics at the grid level and where
teleconnections are modeled as causal relationships between these spatial patterns. In the first place,
the goal of this model is not to model particular teleconnections, but their spatiotemporal characteristics
and interdependency structure in general for benchmarking purposes.

Using our model as ground truth, we exemplarily compare various methods of causal discovery for
common challenges (Runge et al., 2019a). Our model can flexibly be adapted to help researchers select the
best causal method according to the challenges of their data as well as the assumptions they are willing to
make. If the assumptions underlying the SAVAR model are fulfilled, we find in our experiments that our
grid-level causal method is orders of magnitude better than baseline causal discovery methods, which do
not make such assumptions about a mode structure and attempt to directly infer the causal graph at the grid
level.
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Improved causal discovery methods for spatiotemporal climate data are important to advance process-
based understanding. Furthermore, the ability of a climate model to simulate the modes’ causal inter-
dependencies can be used as a key component of model evaluation to guide model improvements and
ultimately improved climate projections (Eyring et al., 2019; Falasca et al., 2019; Hall et al., 2019;
Nowack et al., 2020).

The paper has two main parts: first, essential definitions are introduced along with a description of
some of the most widespread algorithms and methods. We note that the methods described do not
represent an exhaustive list, as there are many more approaches. The second part introduces our own
contributions, the SAVAR benchmark model and a new causal discovery algorithm at the grid level.
Specifically, in Section 2, we give an overview of teleconnection analysis methods comprising causal
discovery methods both in combination with dimension-reduction methods and at the grid level. Here, we
also introduce our novel method for causal discovery directly at the grid level. In Section 3, we introduce
our proposed benchmark SAVAR model, briefly develop its statistical properties, and give an analysis
example. Section 4 uses the SAVAR model to benchmark different teleconnection analysis methods.
Finally, Sections 5 and 6 provide a discussion and conclusions.

2. Teleconnection Analysis Approaches

Teleconnection analysis methods may be classified with respect to two different perspectives (Figure 1):
first, whether they consider grid-level time series or mode time series extracted through dimension-
reduction methods, and second, whether they are based on correlations or causal discovery. These two
aspects are developed in the subsequent subsections where we exemplarily review a range of methods
spanning these methodological possibilities. We will refer to the estimation of interdependencies among a
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Figure 1. Overview of network estimation methods from two perspectives: nodes can be defined as
individual grid locations or at the mode level (vertical dimension). Links can be based on correlation or
causation (horizontal dimension). For instance, some nodes in a network may be at the node level and
others at the grid level (e.g., correlation maps of El Nifio—Southern Oscillation). Causal links may be
defined in the bivariate Granger causality case or in a multivariate framework with PCMCI.
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number of time series variables as network estimation, be it among climate mode index time series or
among grid-level time series.

2.1. Correlation and causal discovery

The horizontal axis in Figure 1 depicts the correlation—causation dimension with correlation-based
approaches on the left and a full multivariate causal discovery framework with multivariate Granger
causality, the PCMCI framework (Runge et al., 2019b), or many other methods (Runge et al., 2019a) on
the right. In between a pure correlation and full multivariate causal discovery framework, there is also a
middle ground. Causal links may, for example, be defined in the bivariate Granger causality (Lozano et al.,
2009; Attanasio et al., 2013; Barnett and Seth, 2015) sense, which only partially accounts for confoun-
ders. For real applications, dozens of modes have been identified in the climate literature (De Viron et al.,
2013). Their pairwise statistical relationships can be represented by graphs or networks.

2.1.1. Correlation and bivariate dependency analysis

The most common and simple approach to estimate a teleconnection network from time series (either
at the grid level or from climate indices) consists in estimating the (Pearson) correlation among time-
lagged variables (up to a maximum time lag 7, ). Then a network (graph) G among the time series can be
obtained by considering only significant correlations for each time series pair at a particular time lag. That
is, G contains an edge from X|__ to X’ if p-value ( X ) < a, where a is the significance level and the
p-value can be based on a t-statlstlc

Next to the binary adjacency matrix g one can encode the strength of lagged links in a matrix ®(z),
where @Y (7) denotes the strength of the link between X __and X/ as quantified by a correlation coefficient
or a standardized regression (®7(zr) =0 if no link exists). Correlation is normalized in [—1, 1], and
standardized regression coefficients are in units of standard deviations of the respective variables.

While Pearson correlation makes an assumption of linearity of the underlying dependencies, a range of
measures exists for the nonlinear case, such as mutual information (Balasis et al., 2013). However, they
are only about the form of the statistical dependency and have nothing to do with causality which requires
additional assumptions and the ability to account for confounders.

A next step toward causality is to employ bivariate dependency methods such as bivariate Granger
causality (Granger, 1969; Barnett and Seth, 2015) or Transfer entropy (Schreiber, 2000). The latter two at
least account for the confounding effect of autocorrelation. However, all these methods share the
characteristic that they are bivariate, do not consider the confounding effect of other variables, and
cannot deal with contemporaneous causal relationships. Among others, two variables can be statistically
dependent because there is a direct relationship between them (i.e., one is the cause of the other) or
because they both have a common cause that makes their values co-vary. Additionally, common causes
may bias the estimation of the correlation coefficient when this is estimated through bivariate regression.
In such cases, it is important to go beyond correlation and move to causal discovery.

t—1°

2.1.2. Causal discovery

Causal discovery based on the Granger Causality paradigm has been applied to climate research as early
as 1997 (Kaufmann and Stern, 1997), but a full formalization of the causal discovery problem beyond
Granger causality is more recent (Spirtes et al., 2000; see Runge et al., 2019a, for an overview of causal
discovery in the context of Earth sciences).

Causal inference and causal discovery share a common framework, and both focus on uncovering the
underlying causal relationships in a system. The difference between the two terms is that causal discovery,
sometimes also called causal structural learning, focuses on estimating the graph that represents the
qualitatively relationships, that is, whether or not a causal link between two nodes in the graph exists.
Causal inference, sometimes also being termed causal effect estimation, on the other hand, aims to
determine the quantitative causal effects of the variables among each other.
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To formalize the causal discovery task, we briefly introduce the idea of an underlying structural causal

model (SCM) and some graph terminology. Consider multivariate time series X/ = (Xj, XLI, ) for
Jj=1,...,N that follow a process model described by
X)=f;(P(X]). ) withj=1,...N. (1)

Here, the functions f; express how the variables b'd depend on their drivers, or parents in graph
terminology, P (X)) C (X, X/—1, .., Xi—p). Here, X, = (X, X7, ..., X) and p is the order of the process.
If the noise variables #; are jointly independent and there are no cycles, then the SCM is a Markovian
model. When assuming stationarity, the causal relationship of the pair of variables (XLT, X’,) is the same
as that of all time-shifted pairs (X;'_T, Xjf,) This is why below we can fix one variable at time ¢ and take
7>0. Given such an SCM, the corresponding causal graph () is defined as follows: the nodes are given
by the X’ at diffepent time points 7 and a link X;_T —X ;:xists if X;_, € P(X’,) This causal link indicates
that X! _ drives X/, and, analogously, X! _is a cause of X/, in the sense that X __is in the right-hand side of
the equation that defines X/ in the SCM. We call links within a variable X/ autodependencies and links
between different variables cross-dependencies. In the following, we only consider the case where links
are time-lagged, that is, P(X’,)Q(X,_l Y s Xl_,,).

For such an SCM, Figure 1 illustrates the difference between correlation and causation. Consider four
processes (e.g., four climate modes) X',X?,X3 X* that are coupled as shown in Figure 1 by some linear or
potentially very complex functional dependencies, for example,

X =aiX,_, +n,, @)
X?=aX? | +boX) 1, 3)
X} = asX}_ | —bsX, 5+, “
X} =ayX) | +byX 5+t (5)

The goal of causal discovery (lower right side in Figure 1) is to estimate these direct interdependencies
and their time lags. On the other hand, here a pairwise correlation analysis (lower left side in Figure 1)
would yield spurious dependencies due to common drivers (e.g., X> < X' — X?), transitive indirect paths
(e.g., X! — X3 — X*), or combinations thereof. Autocorrelation in the modes typically leads to many
more connections, also in the reverse direction.

There are many causal discovery methods for time series (see Runge et al., 2019a, for an overview). We
here consider the PCMCI method (Runge, 2018; Runge et al., 2019b), which has been applied already in a
wide range of scenarios (Kretschmer et al., 2016, 2017; Di Capua et al., 2020; Krich et al., 2020; Nowack
et al., 2020). PCMCl is an adaptation of the conditional independence-based PC algorithm (named after
its inventors Peter Spirtes and Clark Glymour; Spirtes et al., 2000) that addresses strong autocorrelations
in time series via the use of a momentary conditional independence (MCI) test. PCMCI, as part of the
conditional independence-based framework, has the advantage that it can flexibly account for various
functional causal relations and different data types (continuous and categorical, and univariate and
multivariate).

The central idea is to iteratively test whether two variables are statistically independent conditional on
any subset of the other variables at any time lag. Two variables X and Y are conditionally independent
given a (potentially multivariate) variable Z, denoted by X 11 Y|Z, if p(x, y|z) = p(x|z)p(y|z)Vx,y,z, where
p denotes the associated probability density functions. In the example in the lower part of Figure 1
assuming that no autocorrelations are present (a; = 0), X> and X> are correlated due to the common driver
X', that s, XIZJ_LXf. However, they become independent once X' is taken into account, X,ZJ_LXf |X ,172. To
practically test this hypothesis, there exist a large variety of conditional independence tests (see Runge,
2018; Runge et al., 2019b). For linear relationships and Gaussian distributed variables, partial correlation
can be used. The partial correlation of two variables X and Y given a set of variables Z is defined as the
correlation between the residuals resulting from fitting linear regressions of each X and Y on Z. To test the
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significance of partial correlation, a 7-test can be used. Given X LL Y and X LL Y|Z, we say that Z is the set
that d-separates X and Y in graph terminology.

More formally, given N time series X/ for j=1,...,N, PCMCI consists of two stages. First, the
PC; condition selection efficiently identifies relevant conditions %’i for all time series variables X/
through a variant of the PC algorithm that removes irrelevant conditions for each of the N variables by
iterative conditional independence testing. Then a link X! | — X is determined by the MCI test:

MCI: X!, 11X/ |B,\{X! },B, ,. (6)

The MCI test conditions on both the parents of X’, and the time-shifted parents of X! _. These two
stages, PC; and MCI, serve the following purposes. PC; removes irrelevant lagged conditions (up to
some T,y ) for each variable. A large significance level apc (e.g., 0.2) in the tests lets PC; adaptively
converge to typically only few relevant conditions that include the causal parents with high probabil-
ity, but might also include some false positives. The MCI test then addresses false positive control for
the highly interdependent time series case. More precisely, while the conditioning on the parents of X’
(the potential effect) is sufficient to establish conditional independence in the infinite sample limit
(Markov property), the additional condition on the lagged parents (parents of X!__, the potential cause)
leads to a test that is better suited for autocorrelated data. See Runge et al. (2019b) for a detailed
discussion.

A causal interpretation of the relationships estimated with PCMCI comes from the standard assump-
tions in the conditional independence-based framework (Spirtes et al., 2000; Runge, 2018; Runge et al.,
2019b), namely causal sufficiency, the Causal Markov condition, Faithfulness, non-contemporaneous
effects, and stationarity. As demonstrated in Runge et al. (2019b), PCMCI has high detection power and
controlled false positives also in high-dimensional and strongly autocorrelated time series settings. The
main free parameters of PCMCI are the chosen conditional independence test, the maximum time lag
Tmax, and the significance levels a in MCI and apc in PC;, where the latter can be optimized, and the
maximum time lag should be larger than the order p of the process (equation (1)).

Given a significance level a, the output of PCMCI is the set of parents for all time series variables:

P ={X_,:p—valuemci(X'_,, X})<a Vi} Vj. 7

The corresponding links then form the estimated graph G. While PCMCI assumes no contemporaneous
links, PCMCI* (Runge, 2022) can be used without this assumption. Furthermore, both algorithms assume
causal sufficiency, an assumption that can be relaxed by using LPCMCI (Gerhardus and Runge, 2020).

2.1.3. Causal link quantification

Next to the task of estimating whether a link between two variables exists (detection), a follow-up
question is how they are related (quantification; Runge et al., 2019b). This can take the form of a
normalized strength measure such as partial correlation (e.g., MCI partial correlation) or by some
statistical model approach. Given the parents estimated from causal discovery, one would then fit a
model X/ =f (Pf ) . Under a linear assumption on f, this turns into multivariate regression problems for all
variables j and results in a coefficient matrix @ for every time lag z. Then the causal effect between X’ and
X at lag 7 corresponds to the coefficient @ (7). Given a linear SCM X2 = aX? | +bX, , +n?, then a and

t
b are ®**(1) and ®*!(2), respectively, if the time series are not standardized. Note that the coefficients not
contained in the respective parent sets are defined to be zero, that is, ®(z):=0 for X;_T$77j .
For the experiments in Section 4, the coefficient matrix ® is estimated with univariate or multivariate
linear regression by the method of ordinary least squares (OLS). For the first case, each coefficient is

estimated independently. That is, for every X! __in 7/, we fit the following linear model:

X =@ ()x_. ®)
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For the multivariate case for a given variable, the coefficients of its parents are fitted using OLS
simultaneously:

=Y &@xi. ©)

Xi_ ep

For example, in Figure 1, in order to estimate the coefficients of equation (3) (®**(1) =a, and
®°!(2) = b,), we need to perform a linear regression of X? onits parents (P?), namely, X?  and X! ,.Note
that not considering autocorrelation, that is, not controlling for X! |, would lead to a biased result since
X|_, is related to X? through the autocorrelation of X'. Both effects have to be disentangled.

2.2. Grid-level analyses, dimensionality reduction, and climate networks

In the seminal work of Wallace and Gutzler (1981), correlations among grid location time series were used
to investigate so-called teleconnection maps where each grid point’s value was determined by the largest
anticorrelation with any other grid point. This led to the discovery of major teleconnection patterns like
the NAO. Subsequently, patterns or modes like the NAO, ENSO, and many others became the focus of
research, and dimensionality reduction methods were developed to extract typically univariate index time
series from gridded satellite datasets. Then teleconnection studies by means of correlation or causal
discovery can be carried out among those mode time series. More recently, climate network analysis has
emerged as an approach where grid locations are treated as nodes of a network, links are estimated by a
variety of methods such as correlation, and the resulting networks are analyzed using complex network
methods.

The vertical axis in Figure 1 spans the dimension that defines the variables constituting the nodes in the
network from full grid-level to full mode-level analyses. These two aspects will be covered in the
following subsections, but we note that methods can also take a middle ground. For instance, some nodes
in a network may be at the mode level and others at the grid level (e.g., correlation maps of ENSO; Chronis
et al., 2008; Di Capua et al., 2020).

2.2.1. Dimension reduction via principal component analysis and Varimax rotation
In the present work, we focus on two common dimensionality reduction methods, PCA and PCA—
Varimax, that we also employ in our exemplary benchmark analysis below. In climate research, these are
more commonly referred to as EOF analysis and a particular form of rotated empirical orthogonal function
analysis. Although we focus on these two methods in the present work, there are also other methods, for
example, slow feature analysis (Wiskott and Sejnowski, 2002), low-frequency component analysis (Wills
et al., 2018), or those based on causal feature learning approaches presented by Chalupka et al. (2016,
2017), as well as further methods based on deep learning (Tibau et al., 2018, 2021; Adsuara et al., 2021).
In PCA, a gridded climate field is partitioned into orthogonal vectors (Von Storch and Zwiers, 2001).
A common way to compute them is through singular value decomposition. Let Y €RX*7 be a climate
variable weighted by the square root of the cosine of the latitude with L grid points, and let Q be its
covariance matrix; it is possible to factorize Q2 as Q = WDWT, where W is a matrix whose rows are the
eigenvectors of Q and D is a diagonal matrix whose entries are the eigenvalues. The derived eigenvalues
provide a measure of the variance of each vector. The principal components X are the projection of Y onto
these eigenvectors, X = WY. The reduction of the dimension of PCA comes from truncating the matrix W
by taking only the first N rows with largest eigenvalues (W) to obtain a lower-dimensional X. That is,

Xy =WyY. (10)

By construction, the PCA patterns and the principal components are each orthogonal. A physical
interpretation of PCA vectors is challenging due to the orthogonality constraint since physical systems are
not necessarily orthogonal. Furthermore, patterns may be globally spread.
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To partially overcome these limitations, PCA patterns can be rotated by some criterion. One such
criterion, the Varimax rotation (Kaiser, 1958; Vautard and Ghil, 1989) criterion,

2
. 1N L L L1 ,
R =argglax Z;Z(WNR)M—Z ZXK:(WNR)M ) (11)

3 n

has been used, where R is a rotation matrix. The objective is to minimize the mode complexity by
making the large loadings larger and the small loadings smaller. By using the Varimax rotation matrix
R, W™ =Ry - Wy is as sparse as possible. Then,

Xy =Wy"Y. (12)

This leads to nonorthogonal and often more regionally confined modes. The resulting patterns then
may be more physically interpretable. Nevertheless, there is always a degree of arbitrariness, for example,
in the number N of modes retained before rotation or the criterion chosen. N is then a free parameter of
such dimensionality reduction approaches.

Regarding the resulting networks, the nodes of the network are then defined as the modes extracted by
such a dimension reduction. The links can then be estimated by correlation or causal discovery
approaches. For example, in the mode dimension of Figure 1 (lower part), the variables X would be
defined by multiplying the field ¥ with Wy, for N =4, where Wy are the resulting loadings of a
dimension-reduction method. Each colored area represents the elements of each of the four rows of
Wy. To simplify the notation and since in this work we always truncate W to the true value N, in the
following, we will refer to the estimated weights from dimension-reduction methods (WN) as W.

2.2.2. Climate networks

In the past years, climate network analysis (Tsonis and Swanson, 2008; Donges et al., 2009a,b;
Gozolchiani et al., 2011; Fan et al., 2017; Falasca et al., 2019) has emerged as another approach to
analyze teleconnections. The nodes of a climate network are the individual grid locations of a gridded
climate field. Among these, some measure of association (or similarity) is computed, most commonly
the Pearson correlation. Then the climate network’s links are defined by thresholding the correlation
values. These networks can then be subjected to global and local network-theoretic measures such as
the node degree or betweenness centrality as a measure that counts how many shortest paths in a
network pass through a given grid point. While this procedure results in a binary undirected network,
time-lagged correlations have been employed to define directed networks and many further variants
exist (see Donges et al., 2009b, for an overview). The underlying idea is that emergent properties of
a system can be extracted in this way. For example, climate networks have been used to predict
ENSO events (Ludescher et al., 2014) or to evaluate climate models (Falasca et al., 2019).
Another pairwise network approach, but with event synchronization instead of correlation, was used
in Boers et al. (2019).

Climate network analysis at the grid level has also been approached with causal discovery methods.
Notable examples are Ebert-Uphoff and Deng (2012) and Deng and Ebert-Uphoff (2014), where the
authors employ the conditional independence-based PC algorithm to estimate directed networks at the
grid level. The causal climate networks were then used to evaluate remote teleconnections and
information flows in observational data, as well as changes of the network connectivity due to the
forcing of enhanced greenhouse gasses in model data. Here, the links G” are between the grid points,
i,j=1,...,L. Other relevant studies define climate networks from the spherical harmonics coefficients
obtained from a spectral decomposition of atmospheric data (Zerenner et al., 2014; Samarasinghe
et al., 2020).

However, there are a number of statistical and interpretational challenges with the causal approach at
the grid level. In Sections 4.1.4 and 4.2, we provide an example, and Figure 5 illustrates these
challenges. On a statistical side, conducting a causal discovery approach with conditional independence
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tests among thousands of grid location time series given sample sizes of similar order is much more
challenging than among a few climate mode time series. This problem results in low statistical power in
detecting individual links (Runge et al., 2019b). Furthermore, neighboring grid locations often have
highly redundant time series (depending also on the grid resolution). Consider the estimation of a causal
link between two remote locations. The PC algorithm tests whether these two are conditionally
independent given any other subset of grid location time series, including the neighboring ones. Since
conditioning on highly redundant time series decreases the dependence between the two remote grid
locations, this aggravates the problem of low detection power. In Runge (2018), the redundancy
problem is discussed for the extreme case that one variable is a deterministic function of another
variable. Moreover, causal discovery methods face computational problems for datasets with hundreds
or thousands of variables.

Although there is a larger complexity of causal networks at the grid level, there are several reasons for
this type of analysis. First, such large networks open the door to introduce concepts and tools from
complex network theory (Newman, 2018), for example, node centrality measures. In addition, because
networks are represented at the grid level, it is possible to trace the effect of a perturbation produced in one
grid point to the whole grid through the estimated network. And finally, one can deal with nonstationary
networks both in time and space, simultaneously. For example, there can be a change in the shape and the
position of a mode distinct from a change in the underlying graph (see Section 5).

2.3. Mapped-PCMCI for causal discovery at the grid level

We present a new method that aims to overcome some of these challenges. The method is based on the
assumption that the causal dependencies within a gridded dataset have a lower-dimensional mode
representation, in line with the perspective of a number of modes of variability driving global climate
variability. The approach consists of four steps:

1. Perform a dimensionality reduction method on the gridded data to extract a limited number of

N mode time series variables X = ()A(l, ...,)A(N) with corresponding weights (or loadings)
PN ~ 1 ~ N
W= (W W),
2. Apply a causal discovery method to X to obtain the parents (P ()A( l), P()A(N)) and the
estimated causal network Q of the modes.
3. Estimate (lagged) causal effects for all links to obtain a coefficient matrix CT)(Q S
4. “Invert” the dimension reduction, that is, use the modes’ weights W to map ®(z) back to causal

effects among the grid locations. This is done by rlght— and left- mult1p1y1ng CD( ) with W and
its pseudoinverse (W), respectively, that is, Dy (r) = W (I)( W

RNXN

Figure 2 shows a representation of Mapped-PCMCI.

In the first step, we estimate a weight matrix W that projects the original data into a mode space of
smaller dimension N, where N is a free parameter. In the next step, we estimate the network G between
these modes by finding the parents of each mode. In the third step, we estimate the causal effect of the
links of Q by fitting a coefficient matrix of the VAR process in the mode space (D( ). Finally, in the last
step, we map the information contained in Q and (I)( ) onto the grid space by using W and its
pseudoinverse. Because there are fewer modes than grid points, W is not square but need to have a
nonzero kernel and using its pseudoinverse implies necessarily some loss of information. However,
depending on the underlying assumptions, it may not affect the estimation of (7). For more details, see
Section 3 and Appendix B in the Supplementary Material. The third step aims to obtain a spatial grid-
level representation of the causal network that has been obtained at the mode level. This is referred to in
the literature as a climate network (Donges et al., 2009a,b), and we offer here a way to obtain a causal
climate network. Furthermore, such a representation can be helpful in modeling spatially changing
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(a) (b)

(c) (d)

X5

Figure 2. Representation of the Mapped-PCMCI algorithm. (a) Perform a dimensionality reduction
method on a gridded dataset to obtain a mapping between the gridded data and its lower-dimensional
representation. (b) Apply a causal discovery method to obtain the parents and the estimated causal
network from the resulting time series. (c) Estimate the lagged causal effects for all links to obtain a
coefficient matrix. (d) “Invert” the dimensionality reduction mapping to obtain the causal network and
the causal effects at the grid level.

phenomena. A case in point is when we have a climate pattern that regularly changes position and shape,
such as the MJO.

The first three steps, dimensionality reduction, causal discovery, and causal effect estimation, can be
performed with different methods. In our exemplary benchmark analysis, we employ PCA/Varimax,
correlation/PCMCI, and univariate/multivariate regression, respectively. When using PCMCI as the
causal discovery method, we refer to this approach as Mapped-PCMCI. In Algorithm 1 in Section C of
the Supplementary Material, we provide pseudocode for Mapped-PCMCI with Varimax dimension
reduction and a linearity assumption.

Note that in the case of PCA or Varimax, the weight vectors are nonzero everywhere. This would imply
that when mapping the causal effects @(7) from the mode to the grid space, many grid points will be
connected to each other. To address this problem, one can either use a significance test to identify for
which grid locations the weight vectors are nonsignificant or use a threshold to set small weights to zero.
We use here the significance test approach. We have developed a modification of the Varimax algorithm,
which we term Varimax™, that uses bootstrap and hypothesis testing to estimate which values of the
loadings do not significantly differ from 0. A detailed description can be found in Appendix C.3 in the
Supplementary Material.

3. Benchmarking Teleconnection Analysis Methods—The SAVAR Model

Many of the tremendous performance gains in machine learning, for example, of object recognition
(Schmidhuber, 2015) were spurred by open benchmark databases and competitions that allowed for a
consistent comparison of methods. In this spirit, the http://www.causeme.net (Runge et al., 2019a)
benchmark platform aims at improving the development of causal discovery methods by hosting
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multivariate time series datasets with known underlying causal relations. However, for the challen-
ging spatiotemporal nature of the climate system, no such benchmark exists. In the following, we
derive a novel model formulation inspired by Frankignoul and Hasselmann’s stochastic climate
model that can serve as a benchmark for evaluating dimension-reduction and causal discovery
methods.

3.1. Derivation

In Frankignoul and Hasselmann’s model (Hasselmann, 1976; Frankignoul and Hasselmann, 1977), the
variability of climate is attributed to internal random forcing by the short time scale weather components
of the system. For example, the heat balance equation from Frankignoul and Hasselmann (1977)
governing the evolution of an SST anomaly 7'(#) at a grid location or regional average is defined as

d
ET(f) =f(T, W), (13)

where f is a forcing function determined by various heat fluxes, radiation, and momentum across the air—
sea interface. The basic assumption of Frankignoul and Hasselmann’s model is that the characteristic
correlation time scale of the atmospheric variables (here, e.g., wind speed) W(¢) is small compared with
the time scale of the response 7(¢). Under an additional linear approximation, the fluctuations 77,W’
around some mean state can be written as an Ornstein—Uhlenbeck process

d

ST = =0, (1) +0,W' (1), (14)
for some linear coefficient 6, governing a negative slow-acting feedback and o,, governing the variance of
weather dynamics modeled as the white noise term W’ (7). Converted to a discrete-time representation, the

Ornstein—Uhlenbeck process becomes an autoregressive (AR) model
T, =0,T,_, +5,W, (15)

with the substitutions 0, = 1 — 6,A¢ and 5, = o,V/At.

Our goal is to extend this idea to model spatially resolved modes of climate variability and their time-
delayed teleconnections, resulting in a gridded data output that can serve to benchmark both dimension-
reduction and network estimation methods. To model multiple modes of climate variability, we need to
move from a univariate AR to a vector-autoregressive (VAR) model, and to model spatiotemporal modes,
we need a mapping between the grid level and the mode level.

In the following, we define the SAVAR model that combines a VAR model with a spatial mapping. See
Figure 3 for illustration.

We denote the number of modes as N. The causal teleconnection dependencies among the N modes at
some time delay 7 (up to a maximum delay 7 ,x ) are modeled by the dependency matrices ®(z) € R¥*V
just as in a usual VAR process.

The spatial mapping is achieved by a spatial weight vector W € R¥* that defines N mode regions over
L grid points. Within each region, we model fast dynamics as covariant noise among the different grid
points belonging to a specific mode. From a physical perspective, these fast dynamics within each mode
give rise to emergent behavior such that other modes are driven collectively by the grid points belonging
to each mode. Lety/ = (y,), be the value of the variable y at time ¢ of the #th grid point. We define the full
SAVAR model in matrix notation as

Tmax

Y, =W" Z O(r) Wy, _, +&,

=1

8[ NN(Iuy’ zy)’
Ty =AW DW'T +Dy.

(16)
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Figure 3. lllustration of the spatially aggregated vector-autoregressive model. Climate fields 'y, evolving
as given in equation (16) are represented by time series on a regular grid. Climate modes of variability are
defined by regions W; of covariant Gaussian noise & ~ N (,uy, Ey) where X, denotes the spatial
covariance matrix of the grid level noise. Time series at the grid level are mapped to the mode level by
x;=WYy,. The interdependencies between the modes (causal network), here represented by black arrows,
are defined by ®, where ®;;(t) denotes the effect of the jth mode into the ith mode at time lag t.

Here, W is the Moore—Penrose pseudoinverse to map from the mode level to the grid level. As a
simplification, we assume the modes to be linearly independent such that W has independent rows and is
full rank. Physically, a sufficient, but not necessary, condition for linearly independent rows of W would
be that the mode regions do not overlap. & € R stands for the serially independent noise. Dy € R¥*Y and
Dye RE*L denote diagonal covariance matrices that model the noise variability occurring at the mode
level and each individual grid point, respectively. 1 is a measure for the relative strength of these two
sources of noise. In the implementations, we fix Dy and Dy as identity matrices and consider zero means
#y = 0. Note that this formulation appears to include only one climate variable (field), for example, surface
pressure or precipitation. However, it is possible to extend L to have a model consisting of as many climate
variables as necessary.

3.2. Causal and physical interpretation

The SAVAR model defined in equation (16) is a VAR model which is one type of an SCM (Pearl et al.,
2000). This model can be represented by a time series graph (Runge, 2018; Runge et al., 2019b) with time-
lagged directed arrows y!_, — y; for nonzero (W*®(z)W) ;; with 7> 0 and contemporaneous bidirected
arrows y' < y; fornonzero (W DyWT) ;- Due to the bidirected contemporaneous arrows, standard causal
discovery methods that assume Causal Sufficiency can only detect lagged links between grid points
belonging to different modes.

From a physical perspective, the off-diagonal of W Dy WT models the covariance structure of the fast
dynamics. Time-lagged direct causal effects model the characteristic that emergent behavior within each
mode region leads to collective driver-response relationships modeled by (W' ®(z)W); rather than
individual causal effects between single grid points.

Furthermore, at the mode level, we can give a causal interpretation. Inserting x, = Wy,, left-
multiplying by W in model (16), and noting that WW " =1 since W is assumed to be full rank, we arrive
at the mode representation

https://doi.org/10.1017/eds.2022.11 Published online by Cambridge University Press


https://doi.org/10.1017/eds.2022.11

el2-14 Xavier-Andoni Tibau et al.

Xy =Z(I)(‘L')X,,, + &,

=1

& ~ N (Wi, Z), (17)
2, = AWW DWW + WD, W'
=Dy + WDy W'.

We assume the variability at the grid point level to be much smaller compared with the emergent mode
level variability. For example, in the El Niflio region, the variability between neighboring grid points
beyond the large-scale behavior is negligible. This is the case for large A for which we get Xy~ADy. Then
model (17) is approximately a Markovian SCM, here a VAR model, with independent noise terms &;.
Alternatively, if the modes are nonoverlapping, that is, if WD, WT is a diagonal matrix, then the model will
be a Markovian SCM without approximation. This model can be represented by a directed acyclic time
series graph with directed arrows x!__ — x] for nonzero ®(z) ;; and no contemporaneous bidirected arrows.
The goal of causal discovery methods at the mode level is to estimate this graph from mode time series
estimated by applying dimension-reduction to the grid-level time series.

3.3. Statistical properties

From equation (16), we can deduce some statistical properties of the system, namely, stability, stationarity,
and identifiability. Informally, a system is stable if it does not diverge toward infinity over time, and it is
called stationary if the associated distribution is not a function of time, and consequently, properties such
as mean or variance are independent of time.

Proposition 3.1. The SAVAR process defined in equation (16)is stable if and only if the corresponding
VAR process (equation (17)) is stable. In particular, the choice of W does not influence stability.

In other words, Proposition 3.1 states that the stability of the SAVAR model only depends on the mode-
space VAR process defined by @ and not on the noise terms or the weight vectors.

Identifiability is an important property of statistical models and refers to the possibility of learning the
model parameters (here ® in the mode space and WH®W at the grid level) from the observational
distribution. To show to what extend SAVAR is identifiable, we rewrite the first line of equation (17) as an
VAR(1) process defined by an extended connectivity matrix A, € RN 7N Equally, in equation (16),
W*®W can be replaced by A, (for more details and a precise definition of A, and Ay, see Appendix A in
the Supplementary Material).

Proposition 3.2. Given Ay, it is possible to identify A, up to similarity. Similarly, given Ay, it is possible
to identify A, up to similarity.

Two matrices A and B are said to be similar if there is an invertible matrix P such that B = P~'AP. This
means that one can identify A, up to a change of the basis. The order of the rows of W does not reduce the
physical interpretability of the modes, since each mode is defined by the nonzero values of each row of W,
independently of its order. Details and proofs of Propositions 3.1 and 3.2 can be found in Appendix B in
the Supplementary Material.

3.4. Examples

The SAVAR model provides ground truth networks for both the grid level and the emergent mode
representation as discussed in Section 3.2. In the following, we illustrate the SAVAR model with two
example applications for mode-level causal discovery and grid-level causal discovery.

3.4.1. Mode-level causal discovery
In the following, we investigate a SAVAR model whose SCM is described by the set of equations (2)—5). For
a realization with length 7 = 1,000, the model, represented in Figure 4, has a grid of 15 x 55 points, with
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(a) Ground-truth. (b) Varimax-PCMCI. (¢) PCA-PCMCI.

10 20 20 30 o 10 20 30 40 50

Figure 4. Example of a four-mode spatially aggregated vector-autoregressive model and network
estimation based on PCA-PCMCI and Varimax—PCMCI. When the algorithm used to detect spatial
patterns is not suitable to recover them from data (in this specific case, principal component analysis
[PCA]J), then both spatial and causal inferred conclusions may be wrong. (a) The ground truth. Each row
represents the weight vector of a mode (columns of W). In red, the underlying causal network is shown (G).
(b) The first four components of Varimax estimated weights (W ') and in red the estimated PCMCI causal
network (Q) (c) The first four components of PCA estimated weights (W ') and in red the estimated PCMCI
causal network (1 g)

N =4 modes and with coefficients a;,b; being equal to 0.2. Ground truth modes W are highlighted in
Figure 4a. The causal relations among these modes are shown by the red arrows. Figure 4b shows the weights
and causal links as estimated using the PCMCI approach with Varimax dimension reduction and Figure 4c
the approach using PCA and PCMCI. In both approaches, we only consider the first four components and set
opc =0.2,a=0.05, 71yj, = 1, and 7,x = 3. Varimax correctly identifies the modes’ weights, whereas PCA
finds a different set of weights that mixes True Modes 2 and 3. In Figure 4b, PCMCI then estimates the correct
causal relations, while the estimated graph in Figure 4c, based on a wrongly inferred set of weights, cannot be
compared to the true graph anymore. From this result, one might draw the wrong conclusion that the region of
True Mode 2, which forms part of the PCA Component 2, causes Component 4.

We do not claim that Varimax—PCA is a valid estimator of the SAVAR model weights. However, it
seems to disentangle the two sources of variance better: first, the shared variance among grid locations
time series due to the fast time scale covariance Xy in model (16), that make up the SAVAR weights, and
second, the shared variance of grid points due to the causal teleconnections encoded in @. Here, a strong
common driver 2 < 1 — 3 leads to large shared variance for grid locations in Regions 2 and 3, and hence
both regions end up in the same PCA component. Varimax, with its rotation criterion seeking to make
large loadings larger and the small loadings smaller, here better identifies Regions 2 and 3 as separate
components.

3.4.2. Causal discovery at the grid level

In Figure 5, we illustrate an application of grid-level methods to a SAVAR model. The model has two
modes X' and X? belonging to Regions 1 and 2, respectively. Both modes have autodependence at lag
1 and mode X! drives mode X* at time lag 2. The SCM is given by X! =0.2X!  +5!' and
X?=0.2X7_, +0.2X}_, +n*. Here, Mapped-PCMCI, based on a correct estimation of the mode weights,
is able to 1dent1fy the correct (mapped) causal structure: grid points in Region 1 cause grid points in
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(a) Ground-truth (b) Mapped-PCMCI (c) PCMCI (d) Correlation
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Figure 5. Example of a two-mode spatially aggregated vector-autoregressive model and grid-level
network estimations. Ground truth (a), network estimated by Mapped-PCMCI (b), by PCMCI at the grid
level (c), and by correlation at the grid level (d). The blue arrows indicate dependencies at lag 1, and the
brown arrows indicate dependencies at lag 2. The light blue and light brown arrows indicate a false
positive link detected by the method. For the sake of visualization, autodependencies in the same grid
point are not shown, and only a small fraction of false positives are shown (< 50% and < 10% in (c) and
(d), respectively). Table 1 shows the performance metrics for each method. Details of the structural causal
model can be found in Section 3.4.2.

Region 2. If, on the other hand, we apply PCMCI directly at the grid level, the low power of this high-
dimensional and redundant estimation problem (see Section 2.2.2) leads to most links being missing. Last,
using lagged correlations results in false links from Region 2 to Region 1 due to autodependencies that
here act as a common driver (see also Runge et al., 2014, for a discussion of lagged correlations). Table 1
shows the performance metrics (defined in Section 4.1.3) for the three methods applied to this toy
example; for T = 1,000, 7pin = 1, Tmax = 2, apc = 0.2, and a = 0.05, Mapped-PCMCI uses the Varimax™
algorithm (Algorithm 3 in Appendix C in the Supplementary Material) with N = 2 components retained.

4. Exemplary Benchmark Analysis

We now give an exemplary benchmark analysis of several teleconnection analysis methods at the mode level
and the grid level. We cover three main categories of challenges regarding (a) the underlying process, (b) the
specifications of the dataset, and (c) the computational and statistical complexity (Runge et al., 2019a).

4.1. Network estimation in the mode space

4.1.1. Experimental setup
In total, we conduct eight experiments, and Table 2 summarizes the setups.
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Table 1. Performance metrics for the structural causal model described in Section 3.4.2. PCMCI and Mapped-PCMCI use 7=1,000,
Tmin=1, Tmax=2, apc=0.2, and 0=0.05. PCMCI uses the Varimax™ algorithm (Algorithm 3 in Appendix C in the Supplementary
Material) with N=2 components and a significance level of 0.01. The metrics used to evaluate the detection of the links in the true
graph are precision (Pr#) and recall (Re¥). To assess the coefficient of the detected links, the mean square error (MSE?) and the
mean relative absolute error (MRAE?) have been used. For more details, see Section 4.1.3.

Metric Mapped-PCMCI PCMCI Correlation
MSE® 1.87x 107 0.003 0.005
MRAE? 0.071 1.079 1.255
Pr# 1.000 0.222 0.125
Re” 0.979 0.333 0.750

Table 2. Summary of experiments for evaluating the causal methods presented in Table 3. For each experiment, we simulate and

evaluate 100 SAVAR realizations to obtain confidence intervals of evaluation metrics.

Experiment id.

Parameter evaluated

Time-sample size T =50,...,500
Covariant noise strength 2=0.01,...,0.50
Number of modes N=3,...20
Autocorrelation P1=02...,0.9

Link density N° cross-links = 1,...,20

Spatial resolution

L =160,...,6,000

Density and cross-coefficient

O =40.2,...,£0.7

Strength of the network

N° cross-links = 1,...,20

Nonstationary trend

0,=0.01,...,2

o Sample size (time series length): Both the efficiency of dimensionality reduction and the causal methods
depend on the number of samples available. In this experiment, the time series length T is varied.

* Strength of modes: The ratio between the individual noise in each grid point and the covariance
among the grid points belonging to one mode (related to 4 in model (16)) affects how well the
dimensionality reduction can estimate the modes’ weights. Higher covariance (larger ) leads to a
better estimation because the covariance pattern accounts for more of the observed variance than the
individual grid point noise. In this experiment, this parameter /A is varied.

* Number of modes. To evaluate how the underlying dimensionality of the problem affects methods, in
this experiment, the number of underlying climate modes (/) is varied.

* Autocorrelation: As investigated in Runge et al. (2019b), autocorrelation strongly impacts causal
discovery methods. Autocorrelation also affects dimension-reduction methods. In this experiment,
the strength of the autocorrelation (®“(z)) of each variable is varied.

* Link density: More interconnected modes increase confounding and transitive effects, which is a
challenge for methods studied here. In this experiment, the number of connections between different
climate modes is varied.

* Spatial resolution: The resolution of the underlying grid can impact dimension-reduction methods
and is varied in this experiment.

* Density and coefficient strength of the network: We evaluate two extreme cases of SAVAR
processes: sparse and weakly connected versus a highly and strongly connected process. To do
so, we gradually vary the number of links and the value of their coefficients.
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* Nonstationary trend: To evaluate the effect of nonstationarity, we add a different independent trend to
each climate variable coming from an Ornstein—-Uhlenbeck process. That is, we add to model (16) the
term W Z, where Z, €R" is the solution of an Ornstein—Uhlenbeck process % = —0,Z,+0,4(1).6,
and o, are the parameters of the process that define the drift to and deviation from its mean function.
7(t) is unit-variance zero-mean white noise. In this experiment, we gradually vary o,.

All experiments are setup with the following default parameters. In the experiments, some of these
are then varied, whereas the others are kept at their default values. The time series length is fixed to
T = 500. The modes are constructed as follows. In a grid with spatial resolution 40 x 60, a total of five
modes are distributed homogeneously. The weights of the modes are in quadratic nonoverlapping
boxes, and their shape is that of a bivariate Gaussian distribution computed from a random positive-
definite covariance matrix. (Figure 4 shows an example.) Note that not all points belong to a mode. The
underlying causal model among these modes is given by the matrix @ in model (16). All modes are
autocorrelated and have coefficients drawn from a truncated Gaussian distribution with mean 0.3 and
variance 0.2. The coefficients lie outside the interval (—0.2,0.2) and have a probability of 0.5 to be
negative. Furthermore, five cross-dependencies are randomly chosen with a randomly chosen max-
imum time lag of 1,...,3, and a coefficient drawn from the same distribution as the autocorrelation
coefficients, with a probability of 0.2 to be negative. For the nonstationary trend experiment, we set
6 =1, and for the experiment where the number of modes varies, the number of cross-dependencies is
always twice the number of modes.

4.1.2. Method setup
We apply the methods introduced in Section 2 to the datasets of above described experiments. The
methods are listed in Table 3.

Regarding the used methods and parameters, for PCA (see equation (10)) and Varimax (see equation
(12)), we always truncate the components at the true number of modes. This makes a network evaluation
feasible since it has to be based at least on the same number of modes. In applications, this choice will
usually be guided by the climate expert. The parameters for PCMCI are apc = 0.2 and a = 0.05 for the
MCI step. Finally, the estimation of the coefficients is done by fitting both univariate and multivariate
linear regressions (equations (8) and (9), respectively).

4.1.3. Evaluation metrics
We evaluate each of the three steps that constitute the causal discovery pipeline described in Section 2. The
description and the parameters of the methods can be found in their respective subsections.

Our evaluation is complicated by the fact that dimension-reduction methods yield mode components
that do not necessarily even approximate the true underlying weights from the SAVAR model. They may
be in a different order, or, as the example in Figure 4 illustrates, the modes may cover different regions.
Since the estimated causal networks are based on these estimated modes, they can, in principle, not well be

Table 3. Methods used for causal discovery on estimated modes. Step 1 corresponds to the dimensionality reduction method, Step 2
is the causal graph estimation method, and Step 3 refers to the link coefficient estimation.

Short name Step 1 Step 2 Step 3

PCA—Corr PCA Unconditional correlation Univariate linear regression
PCA-PCMCI PCA PCMCI Multivariate linear regression
Var—Corr Varimax Unconditional correlation Univariate linear regression
Var-PCMCI Varimax PCMCI Multivariate linear regression

Abbreviation: PCA, principal component analysis.
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compared to the true SAVAR graph. The implications regarding evaluation affect all metrics. For example,
a different order of the components implies a different order of the rows and columns of ®. To be able to
compare the results, we use an algorithm that pairs to each true mode the estimated component that is most
correlated with it among those components that have not yet been paired. The algorithm can be found in
Appendix C in the Supplementary Material.

The dimensionality reduction methods such as Varimax or PCA (see Section 2.2.1) output a weight
matrix W with associated principal component time series X The reconstruction of each mode,
and therefore of a component X', is given by the rows of W. To evaluate Step 1, we use the
Mean Absolute Pearson correlation between the reconstruction of the modes (the rows of W) and the

true modes (the rows of W), MAPY = sz _1lp (W’ W l‘) |, and between each X’ and its reconstruction,
X', MAPX = 5 LSV lp (X LX ) |. Note that because we truncate the number of estimated modes to N, they

always have the same dimensions.
For the evaluation of Step 2, causal graph estimation, we use the commonly used precision and recall

metrics. Let . be the confusion matrix between the true causal graph of SAVAR (G) and its estimation
76 ‘o MYy 5 3 True Positives True Positives
(g) Precision (PI‘ ) 18 given by True Positive+False Positives and Recall ( ) by True Positive-+False Negatives We

say that there is a True Positive when G”(z) =1 and g (r) =1, a False Positive when G’(z) =0 and

@y( ) =1, and a False Negative when G’(z) = 1 and [ (7) =0. Note that these metrics depend on the

significance level of the methods which is fixed to o = 0.05.
Finally, for the evaluation of the link coefficient estimation, we only consider the true links in the
model. Let € = { @Y (1) £0, Vi, j, r} define the true links of the model, that is, when

@Y (7) #£0. We evaluate the goodness of its approximation with the mean squared error (MSE?)
" ~ij 2
and the mean relative absolute error (MRAE?), where MSES=%Z(L i e S(CD’/ (r)—CDJ(r)>

£_ 1 ©(2)-0 (1)
and MRAE® = 2237, e TUCT

4.1.4. Results

Figures 6 and 7 summarize the results of the experiments listed in Table 3 used to compare the methods of
Table 3. By the design of our evaluation, the dimensionality reduction step is key for the performance of
the causal discovery algorithms. If the weights are not correctly estimated, the networks are estimated
among different components and differ more from the true network.

The estimation of weights for both PCA and Varimax improves with sample size and covariant noise
strength (top rows in Figure 6a,b), as well as with spatial resolution (top rows in Figure 7b). We find that PCA
systematically estimates the true weights worse than Varimax. As illustrated in the example in Figure 4, PCA
does not distinguish shared variance due to causal teleconnections from shared variance due to covariant, fast
time-scale dynamics. This can partially explain that PCA’s weight estimation performance decreases for
higher autocorrelation, link density, and a nonstationary trend, all of which enhance spurious correlations
from common drivers, making it harder for PCA to “unmix” the fast and time-delayed contributions to the
variance of a grid location time series. Varimax here even shows mostly increasing performance.

Given modes estimated with Varimax, we analyzed results for network estimations based on correl-
ation and PCMCI, Var—Corr, and Var—PCMCI. As expected, we observe higher precision for PCMCI
throughout all experiments. Despite higher precision, PCMCI also shows often higher recall than
correlation. In other words, for a true link, sometimes a correlation is nonsignificant, while a causal
effect is. This effect was analyzed also in Runge et al. (2019b).

The different experiments provide further insight into how different challenges impact the network
estimation. Larger sample sizes and stronger modes (higher covariance within mode regions) improve
estimation precision and recall, as expected (Figure 6a,b). Better estimated networks subsequently also
lead to more precise estimates of causal effects (lower MSE/MRAE) for Var—PCMCI. On the other hand,
all other approaches do not improve with larger sample size or mode strength.
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Figure 6. Comparison of the methods of Table 3 for different challenges. The different subfigures
represent the change of the performance metrics (y-axis) for the different methods evaluated (described in
Section 4.1.2) as a function of (a) the number of time samples available, (b) the ratio of individual noise in
each grid point and the covariance (1 in equation (16)), (c) the number of variables, and (d) the strength of
the autocorrelation (d" (1)) of each variable. The performance metrics evaluate the reconstruction of the
modes and the signal using mean absolute Pearson correlation (MAPY and MAPX, respectively), the
Precision (Pr™) and Recall (Re™) of the estimated Causal Graph G, and the goodness of the ®-coefficient
estimation with the mean squared error (MSE®) and the mean relative absolute error (MRAE®). The
shaded areas depict the 95% range of the corresponding metric across the 100 repetitions.

For larger numbers of modes (Figure 6¢), we observe decreasing precision, but almost no change in
recall or causal effect estimation. Higher autocorrelation (Figure 6d) slightly decreases network estima-
tion performance across all methods, but it does not seem to have an important effect beyond the
coefficient estimation. The more interconnected the modes are (Figure 7a), the less reliable the networks
and causal effects can be estimated. Similar results can be observed in Figure 7b, where the high density
seems to play a stronger role than the link strength for the metrics.
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(a) Link density. (b) Spatial resolution.
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Figure 7. Comparison of the methods of Table 3 for different challenges (continued). The different
subfigures represent the change of the performance metrics (y-axis) for the different methods evaluated
(described in Section 4.1.2) as a function of (a) the number of links between the modes, (b) the resolution
of the spatial grid, (c) a combination of increasing the number of links between modes and the strength its
corresponding links, and (d) nonstationary trends applied to each climate variable, where the trends
correspond to a slow Ornstein—Uhlenbeck process. The performance metrics evaluate the reconstruction
of the modes and the signal using mean absolute Pearson correlation (MAPY and MAPX, respectively),
the Precision (Pr™) and Recall (Re™) of the estimated Causal Graph G, and the goodness of the coefficient
estimation with the mean squared error (MSE®) and the mean relative absolute error (MRAE®). The
shaded areas depict the 95% range of the corresponding metric across the 100 repetitions.

Higher spatial resolution of the underlying data (Figure 7b) slightly improves performance, but mostly
for Var—-PCMCI since it leads to more precise mode estimations. Finally, a nonstationary trend, such as
due to a slowly varying common driver, degrades performance across all methods.
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Our brief discussion shows that overall Var—PCMCI here seems to be most robust and suited to address
the considered challenges. However, in general, which method performs best will depend on the particular
setup.

4.2. Causal discovery at the grid level

For the evaluation of network reconstructions at the grid level, we combine the methods described in
Table 3 with the extra Step 4 described in Section 2.3, namely, “invert” the dimension reduction. In
addition, we include the direct application of correlation and PCMCI at the grid level. Table 4 shows a
summary of these methods.

To exemplify the potential of both SAVAR models and the Mapped-PCMCI algorithm, we have
performed grid-level experiments on three datasets, each of which slightly increases the complexity. A
summary of the benchmark datasets can be found in Table 5.

First, we evaluate the algorithm under a simplified dataset. The dataset is similar as the ones used in
Section 4.1, except that we use N = 3 modes, L = 675, and the noise term is generated from equation (16)
for Dy =1y, Dy =1;,and 1 = 1. In this dataset, all assumptions of Mapped-PCMCI are fulfilled, namely,
the modes are nonoverlapping; therefore, the underlying model is a Markovian SCM, and the noise
follows the distribution of a SAVAR model.

In the following two models, the modes and the underlying causal graph are not given a priori, but
estimated from a global reanalysis dataset of surface pressure (Kalnay et al., 1996) using the Varimax "
algorithm (Algorithm 3 in Appendix C in the Supplementary Material) to get the mode weights and
PCMCI (significance level of 0.01) followed by estimating causal link coefficients to get the entries of the
®-matrix of the SAVAR model.

Table 4. Methods used for causal discovery at the grid level, dimensionality reduction (Step 1), causal graph estimation (Step 2), link
coefficient estimation (Step 3), and the inversion of the dimensionality reduction step (Step 4). Note that the last four methods
correspond to different implementations of Mapped-PCMCI, described in detail in Section 2.3.

Short name Step 1 Step 2 Step 3 Step 4

C — Unconditional correlation Univariate linear regression —

P — PCMCI Multivariate linear regression —

PC PCA Unconditional correlation Univariate linear regression PCA™!

PP PCA PCMCI Multivariate linear regression PCA™!
vtc Varimax Unconditional correlation Univariate linear regression Varimax !
VP Varimax ™ PCMCI Multivariate linear regression Varimax* !

Abbreviation: PCA, principal component analysis.

Table 5. Datasets used for causal discovery at the grid level. The first one, Synthetic dataset, is the simplest; modes do not overlap,
and D, =1Iy, Dy =1I;, and 2= 1. In the second one, Surface Pressure dataset (low resolution), the data are closer to true climate data,
and modes are extracted from a reanalysis dataset and overlap. However, dimensionality is still low, and the noise follows the same
distribution as the first one. In the third one, Surface Pressure dataset, the dimensionality is larger, modes overlap, and the noise is
inferred from data without enforcing any particular spatial distribution.

Name Source Components % Resolution
Synthetic dataset Synthetic 3 Dy=1Iy,D,=1;,and 1=1 15x 45
Surface pressure dataset LR Reanalysis dataset 10 Dy=1Iy,D,=1;,and 1=1 53 x27
Surface pressure dataset Reanalysis dataset 60 %, = Cov(%) 70 x 36
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In the second dataset, we use a lower grid resolution by regridding the data to 53 x 27 and a fixed
number of components N = 10. With these estimated weights and link coefficients, we set Dy =,
Dy =1, and 21 =1 to generate Gaussian noise driving the model. In this dataset, the Mapped-PCMCI’s
assumption of nonoverlapping modes is not completely fulfilled. Compared with the first dataset, this one
is more complex since it has higher dimensionality at both the grid and mode levels, L = 1,431 and
N =10.

Finally, in the third and last dataset, we estimate the number of significant modes (as suggested in
Runge et al., 2015), that is, N =60, and keep a higher spatial resolution of 70 x 36. This results in
L =2,520 grid points. Furthermore, we do not set the SAVAR model noise covariance, but estimate it from
the original data residuals after regressing out the VAR-model: & ~ N (O, /Z\ly) where f_\, = Cov(g) and

&=y, - VAV+ZT _,®(z)Wy,_,. Regarding the assumptions of Mapped-PCMCI, only Gaussian noise is
enforced. Note that the underlying mode process in the last two datasets is not a Markovian SCM,
implying that causal links at time lag z = 0 cannot be correctly identified. This is not a problem in our setup
since we only evaluate links for lags 1-3. Each dataset consists of 100 multivariate time series realizations
with 7' = 500.

Figure 8 presents the comparison of different methods of causal discovery listed in Table 4 for the
datasets listed in Table 5. In addition to the usual challenges of causal discovery, estimating such a huge
network involves two more challenges, namely, the computational requirements and the curse of
dimensionality affecting the detection power of links.

Despite an efficient implementation that typically scales only polynomially in the number of
variables (Runge et al., 2019b), PCMCI will become slow when dealing with hundreds of variables
since it searches through conditioning sets that can become very large. Larger numbers of conditional
independence tests also lead to lower detection power. Lower recall and higher MSE are apparent in
Figure 8 if PCMCl is applied directly at the grid level (orange boxplots), but MSE errors are still lower
than for correlation applied directly at the grid level. Mapped-PCMCI assumes an underlying lower-
dimensional mode structure and this assumption greatly improves network estimations. MSE is the
lowest for the two Mapped-PCMCT approaches with Varimax and PCA as a dimension reduction with
slightly better performance for Varimax. As the dimensionality of the datasets increases, Mapped-
PCMCI improves its performance. Although the assumptions of nonoverlapping modes and a Marko-
vian SCM are not enforced, the results of Mapped-PCMCI are much better in higher dimensionality
datasets. This is consistent with theory since as the dimensionality and the number of redundant grid
points increase, the advantages of Mapped-PCMCI over PCMCI grow. In the case of PCMCI and Corr,
its Precision is slightly higher, but both have a very low Recall. This is in line with what would be
expected (see Section 3.4.2).

The difference between PCA and Varimax is not as pronounced as in previous experiments. This
can be due to the networks being large and sparse. Among all possible links (L X L X 7, ) for each
experiment (30,375, 6,143,283, and 19,051,200), only a small fraction is nonzero, and both methods
can identify regions that are mainly noise and do not contribute to the causal graph. With P**P and
VP performing rather similarly, one may be tempted to conclude that the type of dimension reduction
does not have a large effect. However, consider the example shown in Figure 4 where wrong causal
conclusions would be drawn. The results obtained for the different resolutions of the surface pressure
dataset are relatively similar, with slightly better metrics for the MSE® and Pr'™ in the higher-resolution
dataset. This could indicate that, for globe phenomena, lower resolutions would not have a significant
impact as long as the phenomena could be correctly characterized by the dimension-reduction
method.

5. Discussion

Our first contribution, the SAVAR model, is designed as the simplest possible model of teleconnections
that still covers the challenges of their spatiotemporal nature. The emergent or aggregate way in which
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Figure 8. Comparison of causal discovery methods at the grid level. Comparison of grid-level causal
discovery methods (Tuble 4) for different datasets (Table 5). Each row represents a different dataset that
becomes more challenging for Mapped-PCMCI. The Synthetic data corresponds to a SAVAR model
Sulfilling all the assumptions of Mapped-PCMCI. For the second one, the Surface Pressure dataset (low
resolution), we have used a dataset with mode patterns extracted from a pressure reanalysis dataset
regridding the data to 53 x 27 and using a Gaussian noise following the pattern of the modes. This dataset
violates the assumption of Mapped-PCMCI of nonoverlapping modes. Finally, the Surface Pressure is the
second dataset with higher resolution (70 x 36) inferring the spatial noise distribution directly from the
data. This later dataset does not fulfill two of the requirements of Mapped-PCMCI, namely,
nonoverlapping modes and noise structure emerging from modes ’spatial patterns. Note that, for MSE®,
the scale of the ordinate axis is logarithmic, and moreover, for Pr™ and for both Surface Pressure
datasets, the ordinate axis starts at 0.9. The performance metrics evaluate the reconstruction of the signal
using mean absolute Pearson correlation (MAP®) and the Precision (Pr™) and Recall (Re™) of the
estimated Causal Graph G. Each boxplot is generated from 100 repetitions.

modes interact may not capture the complex dependencies of real-world teleconnections, but it can serve
as a first-order approximation that can also be extended.

This simple model formulation allows for an analytical treatment (see also Appendices A—C in the
Supplementary Material) and yields ground truth data with a well-defined causal interpretation. The
structure of the SAVAR model with its underlying linear VAR model is quite flexible. For example, the
aggregation part can be extended toward more complex mapping functions and the underlying depend-
ency model can be extended to nonlinear AR models, albeit an analysis is more challenging in this case.
Another extension of particular interest is to accommodate phenomena like the MJO, where the mode’s
position and shape (periodically) change over time. To represent this, one could make the weight vectors
W as a function of time. However, this will certainly make their identifiability from data much more
challenging.
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Our exemplary benchmark analysis only covered a small part of the challenges that can be studied. By
adapting the SAVAR parameters and properties (e.g., sample size and missing values) of the generated
time series, one can test causal discovery methods for a wide range of challenges. For example, one could
investigate overlapping modes, more complex temporal dynamics of modes where the model becomes
time-dependent (which will require different PCMCI approaches like Regime-PCMCI; Saggioro et al.,
2020), contemporaneous links that require PCMCI"™ (Runge, 2022), or latent processes that require
LPCMCI (Gerhardus and Runge, 2020), and many more. The SAVAR experiments can be tailored to
capture the challenges of a particular research question. Each challenge might yield a different method that
is best suited.

Furthermore, the choice of evaluation metrics can also be adjusted to the task. Climate scientists can
modify the SAVAR model to represent the particular challenges of their hypothesis under study. This
allows to investigate whether a causal discovery approach is feasible given the sample size and other
characteristics of the problem under study. On the other hand, such benchmark analyses allow method
developers to evaluate the relative strengths and weaknesses of their methods. Here, we illustrate this by
using data generated by SAVAR from a reanalysis dataset of surface pressure to evaluate Mapped-
PCMCL

While our experiments showed that Varimax works better than PCA, we do not claim that Varimax is a
valid estimator of the SAVAR model weights. Since the mode definition in SAVAR comes from the
distinction between fast dynamics encoded in X, in model (16) and time-delayed teleconnections encoded
in @, another dimension-reduction method that takes into account not just the zero-lag covariance matrix,
but also lagged covariances, might be even better suited. Our definition of modes (more spatially
concentrated) entails that Varimax performs better than PCA in our experiments, but different definitions
of modes might lead to PCA performing better. To evaluate these cases, again the SAVAR model could
be used.

Other studies have evaluated the efficiency of dimensionality reduction methods for extracting
modes from data. In Fulton and Hegerl (2021), additive space—time models are generated using a
Monte Carlo-based method and used as ground truth to evaluate mode extraction. In their study, the
results also point to a lower performance of PCA than the alternatives studied, namely Dynamical
Mode Decomposition and Slow Feature Extraction. In addition, they observe how PCA frequently
mixes independent spatial modes into global modes, extracting monopoles often as dipoles. In the
experiments performed here, PCA also appears to be less suitable. Moreover, we show how telecon-
nections between two different localized modes can lead to PCA extracting a dipole instead of a
monopole (Figure 4).

Our second contribution, Mapped-PCMCI, follows the spirit of causal discovery methods to use
particular assumptions to arrive at efficient algorithms. Here, this is the assumption of a mode
structure, as modeled in the SAVAR model, to drastically improve grid-level causal discovery. If
the dimension-reduction method correctly infers the underlying weights (up to a re-scaling), then the
SAVAR model is identifiable and the mapped graph is correct. We wish to emphasize that such an
assumption has to be carefully justified in each application. The SAVAR model was inspired by
Frankignoul and Hasselmann’s stochastic climate model, but often modes and their causal relations
may exhibit much more complex relationships, as the MJO example mentioned above illustrates.
A direct application of PCMCI at the grid level, on the other hand, entails a different set of
assumptions as discussed in Section 2.3. The latter attempts to account for the effect of every other
grid point time series as a potential confounder, while Mapped-PCMCI only treats other modes as
confounders. Deciding which method is best suited will be different for different research questions
and assumptions.

It is also relevant to highlight the assumptions underlying a causal interpretation of the output of causal
discovery methods in general (Runge et al., 2019b). Next to the Causal Markov condition and Faithful-
ness, the most relevant assumption that many methods make is the Causal Sufficiency, which means that
all confounders are observed, while other approaches do not require this strong assumption, such as the
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FCI algorithm (Spirtes et al., 2000; Gerhardus and Runge, 2020), but their output may often be less
informative. Stricter assumptions can typically be exploited for causal discovery.

6. Conclusions and Use Cases

We have shown that the SAVAR model and our exemplary evaluation are useful for climate scientists to
better understand how different properties of teleconnections in the climate system impact an analysis of
their causal interdependencies, both among modes estimated through dimension-reduction methods or at
the grid level. Our novel Mapped-PCMCI method can be used to estimate grid-level networks and causal
effects with higher accuracy.

The paper is also targeted to method developers from different fields that may use the SAVAR
model to generate ground truth benchmark datasets. Some of the synthetic datasets presented here will
be included in the benchmarking platform http://www.causeme.net to facilitate further method
development.

This work provides a benchmark model to help improve causal discovery methods for spatiotem-
poral climate data. There are several use cases for methods improved in such way: (a) causal
hypothesis testing of teleconnections, (b) spatiotemporal forecasts (Kretschmer et al., 2017),
(c) causal model evaluation (see, e.g., Nowack et al. (2020)), and (d) complex network analysis
(Runge et al., 2015).

Next to these main use cases, we also see SAVAR as a useful simple climate model that may help in
other machine-learning-oriented climate science problems. One may use the estimated modes and causal
network to predict the effect of targeted model experiments, for example, that of fixing aerosol levels in
the atmosphere to investigate its spatiotemporal effect on temperatures. Of course, for such a task to work
the causal network needs to be estimated among all relevant climate variables. Furthermore, such an
approach assumes a degree of stationarity of the system under such perturbations. Nevertheless, such
analyses might be good first-order approximations. Another application is anomaly detection. The
researchers can develop methods based on causal discovery to detect anomalies, either the modes’ shape
or position or the SCM can be time-dependent to simulate such anomalies.

Improved analysis tools for spatiotemporal climate data are important to advance process-based
understanding and can be used as a key component of climate model evaluation to guide model
improvements and ultimately better climate projections.
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