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ABSTRACT: Background: Zonisamide (ZNS) is an antiepileptic drug developed in Japan. Various experimental studies have
investigated the effects of ZNS. However, the mechanism of action of ZNS against limbic seizures and secondary generalization is not
well-known. We studied ictal regional accumulation of ZNS in the rat brain during kainic acid (KA)-induced limbic status epilepticus.
Methods: Fourteen male Wistar rats underwent a stereotactic operation. For recording the electroencephalogram (EEG), electrodes were
placed in the left amygdala (LA), left dorsal hippocampus, and over the left sensorimotor cortex. For microinjection, a stainless steel
cannula was also inserted into the LA. Seven days after surgery, rats were anesthetized and a catheter was inserted into the femoral vein.
The animals were immobilized and allowed to recover from anesthesia for at least two hours. In eight rats, 1.0uL (1.0ng) of KA was
injected into the LA, and 1.0 uL of phosphate buffer solution was injected into the LA in six control rats. Sixty minutes after injection,
14C-ZNS was administered intravenously, and an autoradiographic study was done. Results: During limbic status epilepticus, only
seizures in the sensorimotor cortex were markedly attenuated a few minutes after '*C-ZNS administration. Additionally, high uptake of
14C-ZNS was noted ipsilaterally in the sensorimotor cortex, parietal cortex and thalamus (lateral portion). In control rats, no EEG change
was seen, and distribution of *C-ZNS was rather homogeneous. Conclusions: These results suggested that ZNS suppresses secondary
generalization of limbic seizures by a direct effect on the cerebral cortex.

RESUME: Accumulation régionale de zonisamide-C'* dans le cerveau de rat pendant des convulsions limbiques induites par I’acide kainique.
Introduction: Le zonisamide (ZNS) est un antiépileptique qui a été¢ développé au Japon. Plusieurs études expérimentales ont investigué les effets du
ZNS, mais le mécanisme d’action du ZNS contre les convulsions limbiques et la généralisation secondaire demeure mal connu. Nous avons étudié
I’accumulation ictale régionale de ZNS dans le cerveau de rats chez qui on a induit un status épilepticus au moyen de 1’acide kainique (AK). Méthodes:
Quatorze rats Wistar males ont subi une chirurgie stéréotaxique. Pour I’enregistrement électroencéphalographique (EEG), les électrodes ont été placées
dans I’amygdale gauche (AG), I’hippocampe dorsal gauche et le cortex sensitivomoteur gauche. Une canule d’acier inoxydable a été insérée dans I’AG.
Sept jours apres ’intervention, les rats ont été anesthésiés et un cathéter a été inséré dans la veine fémorale. Les animaux ont ét€¢ immobilisés et on les
a laissés se remettre de I’anesthésie pendant au moins deux heures. Chez huit rats, 1.0 uL (1.0 ug) d’AK a été injecté dans I’AG et 1.0 uL de solution
tampon au phosphate a été injecté dans 1’AG chez six rats contrdles. Soixante minutes apres ’injection, le ZNS-C!* a été administré par voie
intraveineuse et une étude autoradiographique a été effectuée. Résultats: Pendant le status épileptius limbique, seules les crises situées dans le cortex
sensitivomoteur ont été atténuées de fagon importante quelques minutes apres I’administration du ZNS-C'“. De plus, une captation élevée du ZNS-C'4
a été notée dans le cortex sensitivomoteur, le cortex pariétal et le thalamus (portion latérale) ipsilatéral. Chez les rats contrdles, aucun changement EEG
n’a été observé et la distribution du ZNS-C'* était plutdt homogene. Conclusions: Ces résultats suggerent que le ZNS supprime la généralisation
secondaire des crises convulsives limbiques par un effet direct sur le cortex cérébral.
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Zonisamide (ZNS; 3-sulfamoylmethyl-1, 2-benzisoxazole), METHODS AND MATERIALS
an antiepileptic drug developed in Japan, is used clinically to
treat partial as well as generalized seizures.!> While various
experimental studies have investigated the effects of ZNS in
animal models of epilepsy,®” the mechanism of action of ZNS
against limbic seizure and secondary generalization is not well-

Fourteen male Wistar rats (250 to 300 g) were prepared for
experiments by a stereotactic operation performed with
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intraperitoneal pentobarbital anesthesia (40 mg/kg). For
recording the electroencephalogram (EEG), a stainless steel
screw was placed in contact with the dura overlying the left
sensorimotor cortex (LCx). An additional screw was placed in
the frontal sinus as a reference electrode. Bipolar depth
electrodes were placed in the LA and the left dorsal hippocampus
(LH; coordinates A, 4.0; L, 2.0; and D, 2.5).">'® For
microinjection, a stainless steel cannula (outer diameter, 0.6 mm)
with an inner needle guide (diameter, 0.3 mm) was inserted into
the left basolateral nucleus of the amygdala (left amygdala (LA);
coordinates A, 5.0; L, 5.0; and D, -3.0). All electrodes as well as
the cannula were fixed in place with dental cement. Rats were
unrestrained during seven days of recovery from surgery, and
were allowed free access to food and water prior to experiments.

Seven days after the operation, rats were anesthetized with
1.5% halothane and a catheter was inserted into the femoral vein.
The rats were immobilized from the waist down by a loose-
fitting plaster cast and were allowed to recover from anesthesia
for at least two hours. The inner guide of the cannula was
replaced with an injection needle, and 1.0 g of KA (Sigma, St
Louis, MO) dissolved at a concentration of 1.0 pg/pL in
phosphate-buffered saline solution (PBS; 0.2 M at pH 7.4) was
injected into the LA in eight rats. The rate of injection was 1.0
pL/min. One microliter of PBS was injected into the LA in six
control rats. All procedures were performed under aseptic
conditions.

Limbic status epilepticus ensued in the KA-injected rats.
Sixty minutes after KA injection, while rats were exhibiting
limbic status epilepticus, “C-ZNS (6 mg/kg; specific activity,
334 pCi/mL) was administered via the femoral vein. Ten
minutes after '“C-ZNS administation, rats were decapitated.
Brains were removed immediately and frozen in liquid Freon
(-40°C). Consecutive 20 pm thick coronal sections were cut with
a cryostat, affixed to glass coverslips, and dried at 60°C.
Autoradiograms were prepared by exposing Kodak SB-5 film in
a radiographic cassette to dried sections for seven days.

Optical densities in autoradiograms were quantitated with a
Macintosh computer using the public domain National Institutes
of Health (NIH) Image program (written by Wayne Rasband at
the US NIH). Regional accumulation ratios were calculated as
optical density of the structure of interest/optical density of the
pineal body, which lies outside the blood-brain barrier (BBB).
Multiple comparisons for structures of interest were made
between ipsilateral side of the control and the others:
contralateral side of the control, ipsilateral and contralateral side
of KA-injected rats. Bonferroni/Dunn (Dunn’s procedure for
comparing a control to all other means) method was used for
statistical comparisons.

RESuULTS

On the EEG in KA-injected rats, multiple spike discharges
initially appeared in the LA 10 to 20 minutes after KA injection
(Figure la and b), and rapidly propagated to the LH. Sixty
minutes after KA injection, the seizure involved the LCx and
resulted in limbic status epilepticus (Figure 1c). Behaviorally,
the rats showed bilateral facial twitching, mastication, and
salivation. A few minutes after '“C-ZNS administration, the
seizures in the LCx were markedly attenuated (Figure 1d). In
addition, behavioral seizure manifestations such as facial
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Figure 1. Serial changes in the electroencephalogram (EEG) after

kainic acid injection into the left amygdala (LA).

(a) before injection. No abnormality is present.

(b) 15 min after injection. Multiple spike discharges appeared in the LA.

(c) 60 min after injection. Multiple spike discharges propagated to the
left dorsal hippocampus (LH) and left sensorimotor cortex (LCx).

(d) 65 min after injection (5 min after "*C-ZNS administration). In the
LCx, the multiple spike discharges disappeared.
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Figure 2: '“C-zonisamide (ZNS) autoradiograms in KA-injected rats.
High uptake of "*C-ZNS was seen ipsilaterally in the sensorimotor
cortex (arrowheads in A), parietal cortex (arrowheads in B), and
thalamus (lateral portion; filled arrow in A and B), while moderate
uptake was observed in the hippocampal CA3 region (open arrow in B).
In Figure 2C, distribution of '*C-ZNS in the brainstem and the
cerebellum was homogeneous except choroid plexus in the 4th ventricle.
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Figure 3: '“C-zonisamide (ZNS) autoradiograms in control rats.
Distribution of '*C-ZNS was rather homogeneous, with uptake in the
cortex and thalamus greater than that in white matter. Autoradiographic
figures demonstrated the regions lying outside the blood-brain barrier;
A. Pineal recess of third ventricle (arrow) and median eminence
(arrowhead), B. choroid plexus in the lateral ventricle (arrow), C.
Choroid plexus in the 4th ventricle (arrowhead).
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Table: Regional accumulation of *C-zonisamide in rat brain

KA (n=8) Control (n=6)

Region left right left right
Cerebral cortex

Frontal 0.50+0.07 0.44+0.06 0.44+0.06 0.42+0.06

Sensorimotor 0.71+0.07** 0.43+0.05 0.41+0.07 0.40+0.06

Parietal 0.75+0.04%* 0.47+0.05 0.42+0.03 0.39+0.04

Occipital 0.53+0.05 0.47+0.04 0.44+0.05 0.46+0.04
Caudate 0.40+0.06 0.41+0.06 0.39+0.05 0.40+0.05
Substantia nigra 0.50+0.06 0.48+0.08 0.42+0.02 0.42+0.01
Amygdala 0.44+0.09 0.42+0.08 0.40+0.04 0.42+0.04
Hippocampus

CAl 0.42+0.08 0.40+0.08 0.38+0.05 0.36+0.04

CA3 0.62+0.07* 0.41+£0.07 0.42+0.08 0.37+0.06
Thalamus

medial portion 0.49+0.06 0.46+0.04 0.40+0.05 ().4020.06

lateral portion 0.74+0.07** 0.44+0.08 0.44+0.02 0.41+0.04
Hypothalamus 0.52+0.06 0.49+0.07 0.39+0.06 0.43+0.05
Reticular formation 0.44+0.09 0.44+0.09 0.39+0.05 0.39+0.03
Cerebellum

cortex 0.37+0.07 0.40+0.10 0.37+0.06 0.35+0.04

dentate nucleus 0.39+0.13 0.37£0.11 0.31+£0.05 0.30+0.04

Regional accumulation ratios were calculated as the optical density of each structure / optical density in the pineal body (outside the blood-brain barrier).
Values are mean+SE. **p<0.01, and *p< 0.05 for multiple comparisons between ipsilateral side of the control and the others: contrarateral side of the
control, ipsilateral and contralateral side of the KA-injected rats. Bonferroni / Dunn (Dunn’s Procedure for Comparing a Control to All other Means)

method was used for statistical comparisons.

twitching and mastication disappeared. In controls, no
behavioral or EEG changes were seen.

In autoradiograms of the two groups, distribution of *C-ZNS
in the cortex and thalamus was greater than that in white matter,
and high uptake of '“C-ZNS was seen in the regions outside the
BBB such as pineal body, choroid plexus, and median eminence.
In KA-injected rats, high uptake of '“C-ZNS was observed in the
ipsilateral sensorimotor cortex, parietal cortex, and thalamus
(lateral portion), while moderate uptake was seen in the
hippocampal CA3. (Figure 2A to C; Table, left columns). In
controls, distribution of '“C-ZNS was rather homogeneous.
(Figure 3A to C; Table, right columns). Significant differences
between the ipsilateral side of the control and the KA-injected
rats were found in the sensorimotor cortex (p<0.01), parietal
cortex (p<0.01), thalamus (lateral portion, p<0.01), and
hippocampal CA3 (p<0.05).

DiSCUSSION

In the reports by Matsumoto et al'” *C-ZNS readily crossed
the BBB and accumulated in the tissue of the brain. According to
these reports, it seems likely that distribution of '*C-ZNS in the
present study represents the accumulation of the tracer in the
tissue compartment, not in the vascular space. Tanaka et al!
demonstrated that local cerebral blood flow (LCBF) in the
cerebral cortex did not increase 1-2 hours after KA injection into
unilateral amygdala, whereas LCBF of the limbic system
increased remarkably. Considering this, if '*C-ZNS distribution
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was to represent tracer in the vascular space, high uptake should
be found in the limbic system rather than the cerebral cortex.
Therefore, it seems that '*C-ZNS distribution represents tracer
accumulation in the tissue compartment. In the kinetics of
distribution of *C-ZNS, Matsumoto et al'’ found that tissue
activity of "*C-ZNS in the rat brain disappeared by 96 hours.

Accumulation patterns of various anticonvulsants have been
studied previously in normal animals.'8?! Geary et al'® found
14C-phenytoin to accumulate in the cerebral cortex, cerebellar
cortex, thalamus, and striatum. A report by Pantarotto et al?!
noted high levels of carbamazepine accumulation in the
hypothalamus, hippocampus, striatum, thalamus, and cerebral
hemispheres 60 minutes after a single injection. As for '“C-ZNS
accumulation in normal rat brain, Mimaki et al?® reported high
uptake in the cerebral cortex and inferior colliculus and moderate
uptake in the cerebellar cortex, thalamus, hypothalamus and
striatum. In the present study, a homogeneous distribution of '“C-
ZNS was observed in control animals. While this discrepancy is
difficult to explain, different methods of analysis or different
time points studied might be responsible (10 minutes in our study
vs. 5 minutes in that of Mimaki et al).

As for the effects of ZNS in experimental epilepsy models,
Masuda et al® studied the effect of ZNS on electric shock and
chemically induced seizures and speculated that ZNS, like
phenytoin and carbamazepine, exerted its anticonvulsant effect
mainly by inhibiting spread of seizures. Ito et al* reported that in
cats, ZNS given at doses ineffective against the thalamic and
hippocampal after discharges suppressed cortical focal seizures
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induced by electric stimulation, and that ZNS also suppressed
both interictal spikes and secondary generalized seizures induced
by cortical application of tungstic acid gel. These authors*
concluded that ZNS has a direct suppressive effect on the cortical
epileptogenic focus. In kindling models, Kamei et al® reported
that ZNS was effective against neocortical and hippocampal
kindling but not amygdalar kindling. However, Hamada et al’
reported that ZNS retarded the development of amygdalar
kindling. In KA-induced amygdalar seizures, Takano et al’
previously demonstrated that ZNS suppressed seizure
propagation but did not suppress the epileptic activity of the
amygdala. Thus, despite various studies of the effects of ZNS,
the mechanism of its anticonvulsive action is still unclear.

In the present experiments, we investigated regional
accumulation of ZNS in the rat brain by an autoradiographic
method, and assessed the effects of ZNS on KA-induced limbic
seizures”'* by EEG monitoring. In the present study, as soon as
the seizure attenuation was recognized by !'*C-ZNS
administration, *C-ZNS accumulation in the brain was studied.
14C-ZNS accumulated in the ipsilateral sensorimotor cortex and
parietal cortex, and focal suppression of epileptic discharges in
the sensorimotor cortex was seen a few minutes after intravenous
14C-ZNS administration. Regional *C-ZNS accumulation was
also observed in the ipsilateral thalamus (lateral portion) and
hippocampal CA3 region.

Blood-brain barrier function is important in interpreting drug
distribution findings. In KA-induced amygdalar seizures, '“C-
aminoisobutyric acid autoradiography revealed severe disruption
of BBB function only in the hippocampal CA3 region and slight
damage in the amygdala on the KA-injected side.'” Additionally,
Tanaka et al'! studied local cerebral glucose utilization (LCGU)
and LCBF autoradiographically using *C-2-deoxyglucose and
l4C-iodoantipyrine during KA-induced limbic status epilepticus,
demonstrating relative hypoxia due to a high degree of
uncoupling of LCGU and LCBF in several limbic structures,
especially CA3. However, such uncoupling was not seen in the
cerebral cortex. Considering these results,'" disruption of the
BBB is likely to have induced the moderate uptake of '“C-ZNS
in CA3 in our study, but the cortical accumulation was not
caused by BBB dysfunction. We speculated that extravascular
ZNS was promptly transferred to the secondarily excited zone in
the cortex, maintaining a favorable extravascular/intravascular
ZNS gradient for further ZNS transport from the intravascular to
the extravascular space.

Why ZNS accumulates in the thalamus remains obscure. In
KA-induced limbic status epilepticus, Tanaka et al'' reported
increases of LCGU and LCBF in the ventrobasal complex,
including the ventroposteromedial nucleus of the thalamus and
the ventroposterolateral nucleus of the thalamus, that most likely
reflected retrograde input from the sensorimotor cortex to the
ventrobasal complex. This mechanism might favor ZNS
accumulation in the lateral portion of the thalamus. Further
experiments will be required to elucidate this point.
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