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1. Introduction. During the last few years several articles on asymptotic martingales
(amarts) have appeared. The first unified treatment was given by Edgar and Sucheston in
[7], where further references can be found. The purpose of this paper is to add some
further results to the theory of amarts.

An important result is that an adapted sequence with an integrable supremum
(together with a suitable sequence of cr-algebras) is an amart if and only if it is almost
surely convergent, see [1, Corollary 1] and [7, Proposition 2.2]. This result is slightly
sharpened in §4 and as an application an amart related to the Marcinkiewicz law of large
numbers is obtained.

Stability problems, i.e. the question of when a function of an amart is an amart, have
been studied by Bellow (see [3], [4]). Some further results in this area are presented in §5.
The proofs make frequent use of the theorem of §4.

Finally, in §6, a Riesz decomposition theorem is given for the descending case.
Contrary to the ascending case (see [7, Theorem 3.2]) uniqueness does not necessarily
hold.

I wish to thank Peter Sjogren for valuable discussions.

2. Notations and definitions. We follow the notation of [7]. Let (fl, 3F, P) be a
probability space, put N = {1, 2 , . . . }, — N = {..., - 2 , -1} and let D denote either N or
-N. Further, let {^n}neD be an increasing family of sub-a-algebras of 2F, i.e. 3>n c $?m if

n<m, and set SF^=cr\ U &„ \ and ^_co= f] 3Fn. The set of all bounded stopping times

is denoted by T(TD, TN, T_N). With the definition T<<T<£>T(<O)<CT(W) for almost all
a) e fl, TN is filtering to the right and T_N is filtering to the left.

DEFINITION 2.1. The net (ar)TeT of real numbers converges to a if and only if for all
e > 0 there is T O GT D such that for all T G T N with T > T 0 (for all T G T _ N with T S T 0 ) we
have l a r - a ^ e .

REMARK 2.2. An equivalent definition, which is frequently used, is that the sequence
{^rJnsN converges for every increasing (decreasing) sequence, {rn}neN, Tn € T (see [2], [7],
and also [14, p. 96]).

A sequence {Xn}neD is adapted if Xn is ^-measurable for all neD. For TeT the
random variable X^ is defined by the relation (Xr)(co) = Xr(a))(co). If the sequence of
cr-algebras, {^,}neD> is n o t specified it is assumed that &n = a{Xk; ksn} for all neD.
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178 ALLAN GUT

DEFINITION 2.3. Let {Xn}nsO be an integrable family of random variables which is
adapted to {^n}neD. We call {Xn, &n}neD

(i) a martingale if EX, is constant for all T e T,
(ii) an asymptotic martingale (amart) if the net (EXT)TeT is convergent,
{Hi) a semiamart if the net (EX,.)TST is bounded.

REMARK 2.4. By choosing rx = n and T2 equals m on Ae2Fm and equals n on Ac,
where m £ n, it is easy to verify that a sequence satisfying (i) necessarily satisfies the
defining relation of a martingale. The converse follows from the optional sampling
theorem.

REMARK 2.5. Every martingale is trivially an amart and, by [7, Lemma 1.2], every
amart is a semiamart.

3. Some examples. This section contains some examples which will be of use later.
Throughout, (ft, SF, P) is the Lebesgue measure space on [0,1].

EXAMPLE 3.1. For p > l , let

X 2 n - 0 and X 2 l l + 1 M - | o .f w 6 [ r i l > 1 )

for n = 1, 2,
For p = 1, {Xj,0, ^ n } n e N is an a.s. convergent semiamart that fails to be an amart, see

[1, P- 19].
If p > l , then Esup|Xn| = Xk=i2"/p-2"(n+1)<oo. Since the sequence is a.s. con-

vergent, an application of [7, Proposition 2.2], shows that {X^\ ^if1},,,^ is an amart.

EXAMPLE 3.2. This example is related to that of Sudderth [15, p. 2145]. Let p > l / 2
and define

In n\
co €[ ( i - l)ln2, i/n2)

0 otherwise

for i = l,2,...,n and n = 1,2,... .
The sequence {X(

n
p)}neN is now defined as the sequence Y\, Y\,Y\,..., Y",

Y2, • • •, Yn, •. . . It is easily verified that

X(
n

p)->0 a.s. and in V as n-*co. (3.1)

Define {T,,}neN as follows:

= o for l<fc<

https://doi.org/10.1017/S001708950000495X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950000495X


ASYMPTOTIC MARTINGALES 179

Thus, Tn equals the index of the X which corresponds to the first Y among Y",..., Y",
that is non-zero and xn equals the index of the X that corresponds to the last Y among
Y",..., Y" if the latter are all zero. Clearly, rn e T and rn /*<» as n -»<». Furthermore,

^ . (3.2)

Let l / 2 < p < l . Then £Xtp)—»+°° as n—»°°, which together with (3.1) yields an example
of a uniformly integrable a.s. convergent sequence which fails to be a semiamart.

Next, let p = 1. Then EX^ = 1 and in view of (3.1) it follows that {Xj,0, ^ (
n

1 ) } n s N fails
to be an amart. Further, since X(

T^—*0 a.s. as n —»°°, it follows that {X^)}"=), and hence
that {Xtn}TeT, is not uniformly integrable.

Finally, let p > l . Then, since P(sup|X(
n
p)| = k1/p) = — — - it follows that

Esup|X(
n

p)|<oo, which together with (3.1) and [7, Proposition 2.2] shows that

;N is an amart.

EXAMPLE 3.3. Let p > l and define

X - M " l 0 if o,6[2-M)
for n = 1, 2 , . . . .

We first note that

X(
n

p)-»0 a.s. as n-^«> and that {X(
n
p)}ne_N is L'-bounded. (3.3)

Let p = 1 and introduce the (finite) stopping time r by
finf{ke-N;
1 - 1 if all X(

k
pV) = 0

and the sequence {T,,},,6N, T,, £ T_N by Tn = T v(-n) . A simple computation yields

'1 as n^™, (3.4)

which shows that {Xj,0, ^ (
B " } n 6 . N cannot be a semiamart.

If p > l , then £sup|X;,p)|<oo and so, by (3.3) and [7, Proposition 2.2], it follows that

{X<n
p\y(

n
p)}ns_Nisanamart.

REMARK 3.4. Note that if D = N and Xn is defined as X(_̂  of Example 3.3 and
8Fn = <r{Xk; 1 < k :£ n}, then {Xn,&n}neN is an a.s. convergent martingale which is not
uniformly integrable, see Doob [6, pp. 347-348]. The different behaviours for D = N and
D = —N seem to be due to the fact that it is possible to stop {X<^)}neD at sup Xj," (which is

n

not integrable) with a finite stopping time if D = —N (i.e. r in Example 3.3), something
that is not possible when D = N.
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180 ALLAN GUT

EXAMPLE 3.5. Let p> l /2 , define {Y"; l < i < n , n > l } as in Example 3.2, define
W U - N as . . . , Yn

n,..., Y'l Y"u ..., Y\, Y\, Y\ and let ®_n = a{Xk; k < -n} .
First, note that

X ^ - ^ 0 a.s. and in L1 as n -+ -°°. (3.5)

To continue the analogy with Example 3.2 define {rn}neN by letting rn equal the index
of the X which corresponds to the last Y among Y",..., Y" that is non-zero and let rn

equal the index of the X that corresponds to the first Y among Y", . . . , Y" if the latter
are all zero. Thus Tn e T_N, rn [ -°° and

E X y = n(1/p)-'. (3.6)

Just as above the case 1/2 < p < 1 yields an example of a uniformly integrable a.s.
convergent sequence which fails to be a semiamart, when p = 1 { X ^ } ^ . ^ is uniformly
integrable, while {X^}TsT is not and for p> 1 {X^\ S^p)}ns_N is an amart.

4. A convergence theorem. The following result strengthens Proposition 2.2 of [7],
(for D = N see also [1, Corollary 1]).

THEOREM 4.1. Let {Xn}neD be adapted to {^n}neD and such that {Xr}reT is uniformly
integrable. The following assertions are equivalent:

(i) Xn converges a.e.
(ii) {X,,, ^ , , } n e D is an amart.

For a related result for the case D = N, continuous time and finite stopping times, see
[12, T i l . Corollaire].

Since the above uniform integrability condition is satisfied for every semiamart if
D = —N (see [7, Theorem 2.9]) the following corollary is immediate.

COROLLARY 4.2. Let {Xn, &n}ne-N be an a.s. convergent semiamart. Then
{Xn, ^ n } n e _ N is an amart.

REMARK 4.3. There exist a.s. convergent semiamarts that are not amarts if D = N.
See [1, p. 19] (Example 3.1 above with p = 1).

REMARK 4.4. Since |X,.|<sup|Xj for all T G T it is clear that Esup|Xj<°o implies
n n

that {X,.}TeT is uniformly integrable. Further, according to Blackwell and Dubins [5,
Theorem 2], there are a.s. convergent martingales (and hence amarts), {Xn, SFn}neD, which
are uniformly integrable, and thus such that {X,.}TeT is uniformly integrable (see Meyer
[13, p. 126]), for which E sup|Xn| is not finite. For D = -N see also Remark 4.7 below.

n

REMARK 4.5. The examples of Section 3 show that Theorem 4.1 and Corollary 4.2
cannot be (essentially) improved.

Proof of Theorem 4.1 (i)=>(ii). The case D = N. Let {Tn}neN, be an increasing
sequence of bounded stopping times. Since Xn -» X, say, a.s. as n—>°° it follows that
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ASYMPTOTIC MARTINGALES 181

XTn —»X a.s. as n—»co and since, in particular, {X,.n}~=1 is uniformly integrable we
conclude that EX^ —> EX as n —»°°, which in view of [14, p. 96] (see also Remark 2.2
above) implies that {X,,, 2Fn}nlsN is an amart.

The proof for the case D = —N is the same.
(ii) ^ ( i ) The uniform integrability implies in particular that {Xn},16D is L1-bounded

and thus a.s. convergent (see e.g. [7, Theorem 2.3]).
As an application an amart related to the Marcinkiewicz strong law of large numbers

(see [11, pp. 242-243]) is presented. Recall that the sequence of arithmetic means
constitutes a reversed martingale in the case of the classical Kolmogorov strong law of
large numbers.

EXAMPLE 4.6. Let {£„}"=! be independent, identically distributed (i.i.d.) random
variables. Suppose that E | | i | r<°° for 0 < r < 2 and further that E£, =0 if K r < 2 . Put

n~Ur. Z & 'f l ^ r < 2
X . „ = •

Z& if 0 < r < l

and &_„ = <r{Xk; k<-n}, for n = 1,2, . . . . Then {Xn, f n } n 6 _ N is an amart.

Proof. Let r = 1. Since {Xn, &n}ne-N is a martingale and since martingales are amarts
we are done.

Let K r < 2 . Then E sup|Xj<°° by [9, p. 904]. The Marcinkiewicz law implies that
n

Xn —» 0 a.s. as n—»— °° and so an application of [7, Proposition 2.2] yields the desired
conclusion.

Now, let 0 < r < l . Set Y_n = n"1 . BUi |&|r and Z_n =E(| | , | r | ̂ _ J , where n =
1,2, . . . .

Since X_n = n"'. E = 1 &| r <n- ' . I 2 - , |&|r = Y_n and since {Xn}ns_N is adapted it
follows (recalling interchangeability) that

X_B=E^X.B=sE*-"Y_n = Z_B.
Thus,

X n < Z n for n = . . . , - 3 , - 2 , - l . (4.1)

Now, {Zn, $\,}nG_N is a martingale and thus uniformly integrable. It therefore follows
from martingale theory that {ZT}TST is uniformly integrable (see [13, p. 126]). Finally,
(4.1) implies that {X,.}TST is uniformly integrable from which the amart property follows by
Theorem 4.1.

REMARK 4.7. In Example 4.6 we used [7, Proposition 2.2] for the case K r < 2 . This
was possible because E sup|n~1/r.SJ=i &l<co- F°r the case 0 < r < l the same proposition

n

is not applicable because E sup n"1. |Z£=i &|r<°° if and only if E |^ | r . log+|£t| <°° (see [8,
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182 ALLAN GUT

Theorem 3.2]) and the latter condition was not assumed. We thus have obtained an
example (for D = —N), where Theorem 4.1 applies and where [7, Proposition 2.2] does
not.

5. Stability. This section deals with the following problem: Given an amart
{Xn, 8Fn}neD and a function cp : R —» R, when is {<p(Xn), 3'n}nsD an amart?

The first result of this kind is that the conclusion holds for <p(x) = |x|, x+ (= max{0, x})
and x~ ( = -min{0, x}), provided {Xn}nsD is L'-bounded when D = N, see [1, Lemma 2]
for D = N and [7, Corollary 1.4]. For the case D = N, Bellow [3], [4] gives necessary and
sufficient conditions on <p for the conclusion to hold.

The present paper also covers the case D = —N. We also investigate which further
assumptions must be made on the amart for the conclusion to remain valid when the
necessary conditions on <p no longer are satisfied.

Following Bellow [3], [4] such problems are called stability problems.

THEOREM 5.1. Let {Xn, 3Fn}neD be an amart. If D = N, assume in addition that
{Xn},,eN is L*-bounded. Let <p: K - > R 6 e a function such that

(i) cp is continuous and

(n) lim and hm exist and are finite.

Then, {(p(Xn), 8Fn}neD is an L1 -bounded amart.

REMARK 5.2. The cases <p(x) = |x | ,x+ and x~ mentioned above are obviously in-
cluded. For D = N, Bellow [4, Theorem 2] shows that (i) and (li) are necessary and
sufficient for to(Xn),3Fn}neN to be an L'-bounded amart.

Proof. The proof differs from that given in [4] in that it makes use of Theorem 4.1
and Corollary 4.2. However, just as in [4] it suffices to prove the theorem for the case

X,t > 0, <p(0) = 0 and lim — = 0.
X^«> X

By the amart convergence theorem ([7, Theorem 2.3]) we know that Xn converges
a.s. as n -><» (n —» -oo) and thus, by (i), also that

<p(Xn) converges a.s. as n —* °o (n —» —«) (5.1)

By invoking the results of Section 4 it therefore remains to show that

{<p(XJ, ^ n } n G _ J V is a semiamart for the case D = -N, and (5.2)

{(p(A^.)}T6T'is uniformly integrable for the case D = N. (5.3)

We first consider the L'-boundedness of {cpiX,)},.^. By assumption, x"1 . |<p(x)|<e if
x>M and |(p(x)|<<p0, say, if 0 < x < M Thus,

E \<p(XT)\ = E\cp(XT)\. /{A; < M } + E M X , ) ! . I{XT>M}

< <p0 . P(Xr<M) + eEXr. /{X, > M}^cpo + e sup EX,
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ASYMPTOTIC MARTINGALES 183

since amarts are semiamarts. Thus, {<p(Xn), ^ n } n e D is a semiamart and, in particular, if
D = — N the proof is complete.

Now, let D = N. A similar argument together with the maximal lemma (see e.g. [7,
Lemma 1.1]) yields

E|<p(Xr)|./{|<p(Xr)|>A}

= E MX,)!. I{|cp(Xr)|> A, X, <M} + E MX,)!. I{W(Xr)\>A,XT>M}

< <p0 . PCMXJI > A) + eEX, < <p0 . A"1 . sup E M - M + e sup EX, <«>.

Consequently,

lim sup E MX,)!. KMX,)! > A} < e sup EX,
A -»» T

and (5.3) follows since e may be chosen arbitrarily small. The proof is terminated.

Now, suppose that <p: R-* R is a function for which Theorem 5.1 (i) does not hold.
As pointed out in [4, p. 286] one can always find a sequence of real numbers {an}, which is
amart and such that {<p(a,,)} is not. We therefore turn to the problem of finding what
additional assumptions on the amart are needed (together with (i)) for the conclusion of
Theorem 5.1 to remain valid when (ii) no longer holds.

THEOREM 5.3. Let {Xn, 3Pn}neD be an amart and <p: R - » R a continuous function such

that lim s-i-i and lim ^ ^ do not exist (finitely).

(a) If D = N assume in addition that {Xn}nsN is V-bounded and that {<p(X,.)}TeT is
uniformly integrable. Then {cp(Xn), 2Fn}nsN is an V-bounded amart.

(b) If D = -N assume further that {<p(Xn), ^ n } n e _ N is a semiamart. Then
{<p(Xn), ^ n } n e _ N is an amart.

Proof. The amart convergence theorem and the continuity of <p together imply that
<p(Xn) converges a.s. as n—*°° (n—*— °°). The amart property now follows immediately
from Theorem 4.1 and Corollary 4.2.

REMARK 5.4. After reduction to the case Xn>0, cp(O) = O and lim x"1 .<p(x) = 0 the
X-»+co .

proof of Theorem 5.1 consisted of showing the validity of (5.2) and (5.3) above. In the
present theorem the corresponding properties are supposed to hold. However, following
these remarks, some examples are presented to show that the theorem is (essentially) the
best possible.

REMARK 5.5. D = N. It is easily seen by an estimate related to those used to show
(5.2) and (5.3) that the assumption that {Xn}neN is L'-bounded can be dropped if
a, = lim inf |x~'. <p(x)| and a2 = lim inf |x~' . <p(x)| both are positive, because the L1-

x—»+•»
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boundedness then follows from the uniform integrability of {ip(XT)}TST. However, if
a, = a 2 = 0 this cannot be done as is seen by the following example.

Let {i;n}neN be a sequence of i.i.d. random variables such that P(£n=ir) =
P(L = -*) - 1/2. Pu t X n = X k = i & and 2Fn = a{Xk; k < n}, n = l,2 Then
{Xn, &n}neN is a martingale (and hence an amart), E |Xrl |~7(2n) as n-*•«,, i.e. {Xn},ieN is
not L'-bounded. Now, choose (p(x) = |x. sin x|, (for which a , = a 2 = 0 and
limsup|x~' . <p(x)| = l). Clearly <p(XJ = 0 for all n, in particular, {<p(X,.)}TeT is uniformly

integrable.

REMARK 5.6. If one of the limits lim x~' . <p(x) and lim x~' . <p(x) exists, finite and

the other does not, then, by considering the positive and negative parts separately (cf. [4])
the assumptions on {(p(XT)\eT and {<p(XJ}n6_N, for D = N and D = -N, respectively, can
be reduced to assumptions on one part only, by applying Theorem 5.1 to the other part.
Similarly, if for example al>0 and a2 = 0, where a, and a2 are defined as in Remark 5.5.
As an example, consider

fx2 if x&O

W\x\ if x < 0 .

Then, for D = N, if {Xn,S'n}neN is an amart, {<p(Xn), ^ n } , , s N is an L'-bounded amart,
provided {X~}nGN is L'-bounded and {(X+)2}TST is uniformly integrable.

In the remainder of this section we use the examples from Section 3 to produce the
examples that were promised at the end of Remark 5.4.

First, let D = N. Suppose that the assumption that {<p(XT)}TsT is uniformly integrable
is replaced by the assumption that {(p(Xn)}neN is uniformly integrable and consider
Example 3.2 together with the function <p(x) = |x|p, p > 1. Then, {Xj,"', ^ p ) } n s N (with
p > 1) is an L'-bounded amart. Further, since cp(X(

n
p)) = Xj,1' it follows that {<p(Xip))}nsN is

uniformly integrable and that {<p(X(
rt
p)), ^ p ) } n s N fails to be an amart. The condition that

{(f>(Xn)}neN is uniformly integrable is thus not sufficient for Theorem 5.3 to hold in general
(if D = N).

Next, consider a possible replacement with the assumption that {<p(Xn), ̂ ,,},,s)v is an
L'-bounded semiamart (or, equivalently, that {^(X,.)},.^ is L'-bounded) and apply
Example 3.1 together with the function cp(x) = |x|p, p > l . Then, {X%\ f(

n
p)},,eN ( p > l ) is

an L'-bounded amart and {<p(Xj,p>), ^ p ) } n s N ' s a n L'-bounded semiamart but not an
amart.

Note that, since none of the conditions "{(p(Xn)}neN is uniformly integrable" and
"{^(X^^eT is L'-bounded" imply each other (combine Example 3.2 with l / 2 < p < l and
Remark 3.4), both conditions had to be investigated.

Now, let D = —JV. Suppose that the assumption that {<p(Xn), ̂ j,},,e-N is a semiamart is
weakened to the assumption that {cp(Xrt)}ne_N is uniformly integrable and consider
Example 3.5 together with the function <p(x) = |x|p, p > l . Then, {X^p), S^p)}ne_N, where
p > l , is an amart, {<p(Xj,p))}nG_N is uniformly integrable but {<p(X[,p)), ^ , p ) } n e _ N is not an
amart.
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6. On the Riesz decomposition when D = -N. The Riesz decomposition theorem
for amarts has been proved in [7, Theorem 3.2] for the case D = N. The case D = —N has
been touched upon in [10, p. 216] and this section contains some further facts.

Let {X,lf ^,},ie_N be an amart. It is well known from martingale theory that
{£^"X_1; ^ , , } n e _ N is a uniformly integrable martingale that converges a.s. and in L' as
n —» -oo. Also, from amart theory we know that Xn converges a.s. and in L1 to X_oo, say,
as n —* -oo.

Set, for ne-N,
-E*-X_ 1 , and (6.1)

Zn=Xn~Yn. (6.2)

Now, since X.^ and E^~X_, are ^Loo-measurable, i.e. ^-measurable for all n e—N,
Yn can also be written as

-E^-X_,) - (6.3)

It follows that {Yn, SFn}ns-N is a martingale and that {Zm &n}ne-N is an amart. Also,
{Zr}reT is uniformly integrable, since D = —N, and Zn—»0 a.s. and in L1 as n-»-oo. The
details are omitted. The following theorem is thus obtained.

THEOREM 6.1. Suppose D = -N. Let {Xn, ^ n } n s _ N be an amart. Then Xn can be written
as Xn = Yn + Zn, where {Yn,2Fn}ne_N is a martingale and {Zn, &n}nBs is an amart such
that Zn —* 0 a.s. and in L1 as n —» -°° and (automatically) such that {Zr}TST is uniformly
integrable.

The proof of the uniqueness when D = N is essentially based upon the fact that there
are no non-trivial martingales that converge to 0 in L1. When D = —N this is no longer
the case and the following example shows that there need not be uniqueness.

EXAMPLE 6.2. Consider Example 4.6 with 1< r < 2. The following decompositions are
possible:

?
Since {Xn, ̂ n}ne-N is an amart that satisfies the properties of the potential part, the first
decomposition is obvious. For the second one, set Y_n = n"1. X2=i 4- Then {Yn, ^ n } n e _ N

is a uniformly integrable martingale, Yn—*0 a.s. and in L1 as n - * - * and X_M - Y_n is an
amart that has the properties of the potential part as described in the theorem.
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