SEPARATION OF FUNCTIONS

BY
L. E. MAY

1. Introduction. Eames [2], and Jeffery [5], consider separation of sets in a measure space and show that, if A is separated from B, then

$$
m^{*}(A \cup B)=m^{*} A+m^{*} B
$$

where m^{*} denotes outer measure.
In this paper we consider the class, \mathscr{F}^{+}, of nonnegative bounded real-valued functions of a real variable. We define an outer integral of f over $E, I^{*}(f ; E)$, which satisfies

$$
I^{*}(f+g ; E) \leq I^{*}(f ; E)+I^{*}(g ; E)
$$

for all $f, g \in \mathscr{F}^{+}$. A definition of separation of functions is introduced, so that, if f is separated from g, then

$$
I^{*}(f+g ; E)=I^{*}(f ; E)+I^{*}(g ; E)
$$

for all $f, g \in \mathscr{F}+$ and $E \subseteq R$.
2. Preliminaries. The Lebesgue outer and inner linear measure of the linear set A is denoted by $m^{*} A$ and $m_{*} A$ respectively. We also denote the outer and inner planar Lebesgue measure of the planar set A by $m^{*} A$ and $m_{*} A$, respectively. It is understood from the context whether m^{*} denotes planar or linear outer Lebesgue measure.

The set M is a measurable cover of the set A if M is a measurable superset of A which satisfies $m_{*}(M-A)=0$. It is shown in [1] that if M is a measurable cover of A and E is measurable then $M \cap E$ is a measurable cover of $A \cap E$.

Let $f \in \mathscr{F}+$. We denote by \bar{f} the measurable cover function introduced in [3]. It is shown in [3] that f satisfies the following:
(i) \bar{f} is measurable and $\bar{f}(x) \geq f(x)$, for all x;
(ii) if $h(x)$ is measurable and $h(x) \geq f(x)$, for all x, then $h(x) \geq \tilde{f}(x)$, a.e. (thus if f is measurable, then $f(x)=\bar{f}(x)$, a.e.).

Let $\bar{D}(x, A)$ denote either the strong or symmetric Lebesgue upper density of the linear set A at the point x. The bounded function f is called measurable at the point x if

$$
\bar{D}(x,\{y: f(y) \neq \bar{f}(y)\})=0 .
$$

Received by the editors September 10, 1968 and, in revised form, March 9, 1971.

We then write $f \in C_{x}$. If f is measurable then it is measurable at every point, i.e. $C_{x}=\emptyset$.

It is shown in [3] that, for any bounded function f, the set $F=\left\{x: f \in C_{x}\right\}$ is measurable.

Theorem 1. If f is bounded, then the restriction of f to $F=\left\{x: f \in C_{x}\right\}$ is measurable.

Proof. We show that $f(x)=\bar{f}(x)$, for almost all $x \in F$, so that since F is a measurable set and \bar{f} is a measurable function, the result follows.

Suppose otherwise, then there is a subset A of F such that $m^{*} A>0$ and, if $y \in A$, then $f(y) \neq \bar{f}(y)$. By the Lebesgue density theorem, there exists $x \in A$ such that $\bar{D}(x, A)>0$. Thus $\bar{D}(x,\{y: f(y) \neq \bar{f}(y)\})>0$, so that $f \notin C_{x}$. Since $x \in F$, this is a contradiction.

Theorem 2. If f is measurable and g is any bounded function, then $\overline{f+g}=$ $\bar{f}+\bar{g}$, a.e.

Proof. By (i), $f+g \leq \bar{f}+\bar{g}$. Therefore, by (ii), $\overline{f+g} \leq \bar{f}+\bar{g}$, a.e. By (i) and the measurability of $f, f+g=\bar{f}+g \leq \overline{f+g}$. Thus $g \leq \overline{f+g}-\bar{f}$ and therefore, by (ii), $\bar{g} \leq \overline{f+g}-\bar{f}$. Thus $\overline{f+g}=\bar{f}+\bar{g}$, a.e.

Let $f \in \mathscr{F}+$, and let E be a linear set. The inner ordinate set of f relative to E is defined to be

$$
\{(x, y): x \in E \text { and } 0<y<f(x)\}
$$

and is denoted by $0(f ; E)$.
The outer integral of f over E is defined to be

$$
m^{*}\{0(f ; E)\}
$$

and is denoted by $I^{*}(f ; E)$. In case the set E and the function f are measurable, the above definition agrees with the usual definition of the Lebesgue integral of a nonnegative function (see, for example, [6]) and in this case we write $I^{*}(f ; E)=$ $I(f ; E)$. Thus, if D and E are disjoint measurable sets and f and g are measurable functions, then

$$
I(f+g ; E)=I(f ; E)+I(g ; E)
$$

and

$$
I(f ; D \cup E)=I(f ; D)+I(f ; E)
$$

The following theorem is essential to the work of this paper. A proof may be found in [6].

Theorem 3. Let A and E be linear sets and let χ_{A} be the characteristic function of A. Let a be any nonnegative real number. Then

$$
I^{*}\left(a \chi_{A} ; E\right)=a I^{*}\left(\chi_{A} ; E\right)=a m^{*}(A \cap E)
$$

Also, $0\left(\chi_{A} ; E\right)$ is a planar measurable set if and only if $A \cap E$ is a linear measurable set.

3. Properties of I^{*}.

Theorem 4. Let $f \in \mathscr{F}+$ and let E be a measurable linear set. Then $M=0(\bar{f} ; E)$ is a measurable cover of $A=0(f ; E)$ in the plane and

$$
I^{*}(f ; E)=I(\bar{f} ; E)
$$

Proof. It is clear that M is a superset of A. If M is not a measurable cover of A, then there is a measurable set $D \subseteq M-A$, with $m D>0$. For a planar set E we use the notation $E^{x}=\{x:(x, y) \in E$, for some $y\}$, and for a linear set F we write $c(F)=\{(x, y): x \in F \& y>0\}$.

Let K be a measurable kernel of D^{x}. Then $D=[D \cap c(K)] \cup\left[D \cap c\left(D^{x}-K\right)\right]$. We then have

$$
m D=m^{*}[D \cap c(K)]+m_{*}\left[D \cap c\left(D^{x}-K\right)\right]
$$

(see $[4, \mathrm{p} .61]$). Since $m_{*}\left(D^{x}-K\right)=0$, we have $m_{*}\left[D \cap c\left(D^{x}-K\right)\right]=0$. Also $D \cap c(K)$ is measurable and we therefore have

$$
m D=m[D \cap c(K)]
$$

Thus replacing D by $D \cap c(K)$, if necessary, we may assume that D^{x} is measurable.
Now let g_{n} be the measurable function defined by

$$
\begin{gathered}
g_{n}(x)=\max \left\{\bar{f}(x)-\frac{1}{n} ; 0\right\}, \quad \text { if } x \in D^{x} \\
g_{n}(x)=\bar{f}(x), \quad \text { if } x \in E-D^{x}
\end{gathered}
$$

Then $\left\{0\left(g_{n}, E\right)\right\}_{n}$ is an increasing sequence of sets with limit M. Hence

$$
\lim _{n} m\left[0\left(g_{n}, E\right) \cap D\right]=m D
$$

and therefore, for some $N, m\left[0\left(g_{N}, E\right) \cap D\right]>0$.
Let H be a measurable kernel of $\left\{x: g_{N}(x)>y\right.$ for some $\left.(x, y) \in D\right\}$. Then $m H>0$, and we note that for $x \in H, g_{N}(x)=\bar{f}(x)-1 / N$. Now we define

$$
\begin{gathered}
g(x)=\bar{f}(x), \quad \text { if } x \in E-H \\
g(x)=g_{N}(x)=\bar{f}(x)-\frac{1}{N}, \quad \text { if } x \in H
\end{gathered}
$$

Clearly $g(x) \leq \bar{f}(x)$ on E and $\{x: g(x)<\bar{f}(x)\}=H$ has positive measure. Also $g \geq f$ on E, since on $E-H, g=\bar{f} \geq f$ and for $x \in H$, we have $g(x)=g_{N}(x)>y$, for some (x, y) $\in D$ and $y>f(x)$. Hence the properties of g contradicts (i) and (ii) and therefore M is a measurable cover of A.

By the definition of I and I^{*} it follows that $I^{*}(f, E)=I(\bar{f}, E)$.

Theorem 5. Let $f \in \mathscr{F}+$ and let $f(x)=0$ for $x \notin E$. Let M be a measurable cover of E. Then

$$
I^{*}(f ; E)=I^{*}(f ; M)=I(\bar{f} ; M)
$$

Hence $0(\bar{f} ; M)$ is a measurable cover of $0(f, E)$.
Proof. Since $f(x)=0$, if $x \notin E$, we have $0(f ; E)=0(f ; M)$, so that $I^{*}(f ; E)=$ $I^{*}(f ; M)$. By the previous theorem, the result follows.

Theorem 6. If E is measurable, then, for all $A \subseteq R$ and $f \in \mathscr{F}+$,

$$
I^{*}(f ; A)=I^{*}(f ; A \cap E)+I^{*}(f ; A-E)
$$

Proof. The theorem follows easily from the measurability of $c(E)$.
Theorem 7. Let $f, g \in \mathscr{F}+$ and let $E \subseteq R$. Then

$$
I^{*}(f+g ; E) \leq I^{*}(f ; E)+I^{*}(g ; E)
$$

Proof. Let $E_{1}=\{x: f(x)>0\}$ and $E_{2}=\{x: g(x)>0\}$, and let M_{1} and M_{2} be measurable covers of E_{1} and E_{2}, respectively. Then $M_{1} \cup M_{2}$ is a measurable cover of $E_{1} \cup E_{2}=\{x: f(x)+g(x)>0\}$.

Using Theorems 4 and 5 and the fact that $\overline{f+g} \leq \bar{f}+\bar{g}$, we have

$$
\begin{aligned}
I^{*}(f+g ; E) & =I^{*}\left(f+g ; E_{1} \cup E_{2}\right) \\
& =I\left(\overline{f+g} ; M_{1} \cup M_{2}\right) \\
& \leq I\left(\bar{f}+\bar{g} ; M_{1} \cup M_{2}\right)
\end{aligned}
$$

Since $I\left(\bar{f}+\bar{g} ; M_{1} \cup M_{2}\right)$ is a Lebesgue integral it follows that $I^{*}(f+g ; E) \leq$ $I\left(\bar{f} ; M_{1}\right)+I\left(\bar{g} ; M_{2}\right)+I\left(\bar{f} ; M_{2}-M_{1}\right)+I\left(\bar{g} ; M_{1}-M_{2}\right)$. The function f is bounded and there is therefore a constant c such that $0 \leq f \leq c \chi_{m_{1}}$. Hence, by (ii), $0 \leq \bar{f} \leq$ $c \chi_{m_{1}}$, a.e. Thus $\bar{f}(x)=0$ for almost all $x \notin M_{1}$. Thus $I\left(\bar{f} ; M_{2}-M_{1}\right)=0$, and similarly $I\left(\bar{g} ; M_{1}-M_{2}\right)=0$. Also, by Theorem $5, I\left(\bar{f} ; M_{1}\right)=I^{*}\left(f ; E_{1}\right)$ and $I\left(\bar{g} ; M_{2}\right)=I^{*}\left(g ; E_{2}\right)$. It follows that

$$
\begin{aligned}
I^{*}(f+g ; E) & \leq I^{*}\left(f ; E_{1}\right)+I^{*}\left(g ; E_{2}\right) \\
& =I^{*}(f ; E)+I^{*}(g ; E) .
\end{aligned}
$$

4. Separation of functions.

Definition. Let $f, g \in \mathscr{F}+$. Let $F=\left\{x: f \notin C_{x}\right\}$ and let $G=\left\{x: g \notin C_{x}\right\}$. The function f is separated from the function g if $m(F \cap G)=0$.

Theorem 8. Let $f, g \in \mathscr{F}+$ and $E \subseteq R$. Then, iff is separated from g,

$$
I^{*}(f+g ; E)=I^{*}(f ; E)+I^{*}(g ; E)
$$

Proof. We first prove the theorem under the assumption that g is measurable, (so that certainly f is separated from g, since $G=\emptyset$).
Let $f_{E}=f \chi_{E}$. Then, if M is a measurable cover of E, by Theorem 5 , we have

$$
\begin{aligned}
I^{*}(f ; E)+I^{*}(g ; E) & =I^{*}\left(f_{E} ; E\right)+I^{*}(g ; E) \\
& =I\left(\overline{f_{E}} ; M\right)+I(g ; M) .
\end{aligned}
$$

Now, using Theorem 2, and the fact that the terms on the right-hand side of the above equation are Lebesgue integrals, we have,

$$
\begin{aligned}
I^{*}(f ; E)+I^{*}(g ; E) & =I\left(\overline{f_{E}+g} ; M\right) \\
& =I^{*}\left(f_{E}+g_{E} ; E\right)
\end{aligned}
$$

where $g_{E}=g \chi_{E}$, and we have used Theorem 5. Since $0\left(f_{E}+g_{E} ; E\right)=0(f+g ; E)$, the result follows in the case when g is measurable. We note that, if the restriction of g to a measurable superset A of E is measurable, then the result also holds by replacing g by $g \chi_{A}$.

In the general case, by Theorem $1, f$ and g are measurable on the complements of the measurable sets F and G, respectively. Since $m(F \cap G)=0$, the restriction of g to F is measurable. Using the first part of this theorem and using Theorem 6, it therefore follows that

$$
\begin{aligned}
I^{*}(f ; E)+I^{*}(g ; E) & =I^{*}(f ; E \cap F)+I^{*}(f ; E-F)+I^{*}(g ; E \cap F)+I^{*}(g ; E-F) \\
& =I^{*}(f+g ; E \cap F)+I^{*}(f+g ; E-F) \\
& =I^{*}(f+g ; E)
\end{aligned}
$$

Theorem 9. Let A and B be linear sets which satisfy $m(A \cap B)=0$. Let M and N be measurable covers of A and B respectively. Then the characteristic functions of A and B are separated if and only if $m(M \cap N)=0$.

Proof. We note that $\chi_{A \cup B}=\chi_{A}+\chi_{B}$ a.e., since $m(A \cap B)=0$. We therefore have, by the previous theorem, that if χ_{A} is separated from χ_{B}, then

$$
I^{*}\left(\chi_{A \cup B} ; E\right)=I^{*}\left(\chi_{A} ; E\right)+I^{*}\left(\chi_{B} ; E\right)
$$

for all $E \subseteq R$. Thus, by Theorem 3,

$$
m^{*}((A \cup B) \cap E)=m^{*}(A \cap E)+m^{*}(B \cap E)
$$

Now, if $m^{*}(A \cup B)$ is finite, we put $E=A \cup B$. We have

$$
\begin{aligned}
m^{*}(A \cup B) & =m^{*} A+m^{*} B \\
& =m M+m N \\
& =m(M \cup N)+m(M \cap N) \\
& \geq m^{*}(A \cup B),
\end{aligned}
$$

so that $m(M \cap N)=0$. If $m^{*}(A \cup B)$ is not finite, we put $E_{n}=(A \cup B) \cap(-n, n)$ and we conclude that $m(M \cap N \cap(-n, n))=0$, for all natural numbers n, so that $m(M \cap N)=0$.

Now suppose that $m(M \cap N)=0$, then we show that χ_{A} is separated from χ_{B}. By Theorems 1 and 2, $\chi_{A}=\bar{\chi}_{A}$, a.e. on the M complement of $\left\{x: \chi_{A} \notin C_{x}\right\}=F \subset M$. Similarly, $\left\{x: \chi_{B} \notin C_{x}\right\}=G \subset M$. Therefore $m(F \cap G)=0$, so that χ_{A} is separated. from χ_{B}.

The above theorem shows that the characteristic functions of sets are separated if and only if the sets are separated in the sense of the definition given in [2].

References

1. S. K. Berberian, Measure and integration, New York, 1965.
2. W. Eames, A local property of measurable sets, Canad. J. Math. 12 (1960), 632-640.
3. W. Eames and L. E. May, Measurable cover functions, Canad. Math. Bull. (4) 10 (1967), 519-523.
4. P. R. Halmos, Measure theory, Princeton, 1950.
5. R. L. Jeffery, Sets of k-extent in n-dimensional space, Trans. Amer. Math. Soc. 35 (1933), 629-647.
6. H. Kestelman, Modern theories of integration, Dover, New York, 1960.

Carleton University, Ottawa, Ontario

