Canad. Math. Bull. Vol. 16 (2), 1973

SEPARATION OF FUNCTIONS

BY L. E. MAY

1. Introduction. Eames [2], and Jeffery [5], consider separation of sets in a measure space and show that, if A is separated from B, then

$$m^*(A \cup B) = m^*A + m^*B,$$

where m^* denotes outer measure.

In this paper we consider the class, \mathscr{F}^+ , of nonnegative bounded real-valued functions of a real variable. We define an outer integral of f over E, $I^*(f; E)$, which satisfies

$$I^*(f+g; E) \le I^*(f; E) + I^*(g; E),$$

for all $f, g \in \mathcal{F}^+$. A definition of separation of functions is introduced, so that, if f is separated from g, then

$$I^{*}(f+g; E) = I^{*}(f; E) + I^{*}(g; E),$$

for all $f, g \in \mathscr{F}^+$ and $E \subseteq R$.

2. **Preliminaries.** The Lebesgue outer and inner linear measure of the linear set A is denoted by m^*A and m_*A respectively. We also denote the outer and inner planar Lebesgue measure of the planar set A by m^*A and m_*A , respectively. It is understood from the context whether m^* denotes planar or linear outer Lebesgue measure.

The set M is a measurable cover of the set A if M is a measurable superset of A which satisfies $m_*(M-A)=0$. It is shown in [1] that if M is a measurable cover of A and E is measurable then $M \cap E$ is a measurable cover of $A \cap E$.

Let $f \in \mathcal{F}^+$. We denote by \tilde{f} the measurable cover function introduced in [3]. It is shown in [3] that \tilde{f} satisfies the following:

(i) \overline{f} is measurable and $\overline{f}(x) \ge f(x)$, for all x;

(ii) if h(x) is measurable and $h(x) \ge f(x)$, for all x, then $h(x) \ge \tilde{f}(x)$, a.e. (thus if f is measurable, then $f(x) = \tilde{f}(x)$, a.e.).

Let $\overline{D}(x, A)$ denote either the strong or symmetric Lebesgue upper density of the linear set A at the point x. The bounded function f is called measurable at the point x if

$$\overline{D}(x, \{y: f(y) \neq \overline{f}(y)\}) = 0.$$

Received by the editors September 10, 1968 and, in revised form, March 9, 1971.

We then write $f \in C_x$. If f is measurable then it is measurable at every point, i.e. $C_x = \emptyset$.

It is shown in [3] that, for any bounded function f, the set $F = \{x: f \in C_x\}$ is measurable.

THEOREM 1. If f is bounded, then the restriction of f to $F = \{x: f \in C_x\}$ is measurable.

Proof. We show that $f(x) = \overline{f}(x)$, for almost all $x \in F$, so that since F is a measurable set and \overline{f} is a measurable function, the result follows.

Suppose otherwise, then there is a subset A of F such that $m^*A > 0$ and, if $y \in A$, then $f(y) \neq \tilde{f}(y)$. By the Lebesgue density theorem, there exists $x \in A$ such that $\bar{D}(x, A) > 0$. Thus $\bar{D}(x, \{y:f(y) \neq \tilde{f}(y)\}) > 0$, so that $f \notin C_x$. Since $x \in F$, this is a contradiction.

THEOREM 2. If f is measurable and g is any bounded function, then $\overline{f+g} = \overline{f+g}$, a.e.

Proof. By (i), $f+g \le \overline{f}+\overline{g}$. Therefore, by (ii), $\overline{f+g} \le \overline{f}+\overline{g}$, a.e. By (i) and the measurability of $f, f+g=\overline{f}+g \le \overline{f+g}$. Thus $g \le \overline{f+g}-\overline{f}$ and therefore, by (ii), $\overline{g} \le \overline{f+g}-\overline{f}$. Thus $\overline{f+g}=\overline{f}+\overline{g}$, a.e.

Let $f \in \mathscr{F}^+$, and let E be a linear set. The inner ordinate set of f relative to E is defined to be

$$\{(x, y) : x \in E \text{ and } 0 < y < f(x)\},\$$

and is denoted by 0(f; E).

The outer integral of f over E is defined to be

 $m^*\{0(f; E)\},\$

and is denoted by $I^*(f; E)$. In case the set E and the function f are measurable, the above definition agrees with the usual definition of the Lebesgue integral of a nonnegative function (see, for example, [6]) and in this case we write $I^*(f; E) = I(f; E)$. Thus, if D and E are disjoint measurable sets and f and g are measurable functions, then

and

$$I(f; D \cup E) = I(f; D) + I(f; E).$$

I(f+g; E) = I(f; E) + I(g; E),

The following theorem is essential to the work of this paper. A proof may be found in [6].

THEOREM 3. Let A and E be linear sets and let χ_A be the characteristic function of A. Let a be any nonnegative real number. Then

$$I^*(a\chi_A; E) = aI^*(\chi_A; E) = am^*(A \cap E).$$

Also, $0(\chi_A; E)$ is a planar measurable set if and only if $A \cap E$ is a linear measurable set.

3. Properties of I*.

THEOREM 4. Let $f \in \mathcal{F}^+$ and let E be a measurable linear set. Then $M=0(\tilde{f}; E)$ is a measurable cover of A=0(f; E) in the plane and

$$I^*(f; E) = I(\bar{f}; E).$$

Proof. It is clear that M is a superset of A. If M is not a measurable cover of A, then there is a measurable set $D \subseteq M-A$, with mD>0. For a planar set E we use the notation $E^x = \{x: (x, y) \in E, \text{ for some } y\}$, and for a linear set F we write $c(F) = \{(x, y): x \in F \& y > 0\}$.

Let K be a measurable kernel of D^x . Then $D = [D \cap c(K)] \cup [D \cap c(D^x - K)]$. We then have

$$mD = m^*[D \cap c(K)] + m_*[D \cap c(D^x - K)],$$

(see [4, p. 61]). Since $m_*(D^x-K)=0$, we have $m_*[D \cap c(D^x-K)]=0$. Also $D \cap c(K)$ is measurable and we therefore have

$$mD = m[D \cap c(K)].$$

Thus replacing D by $D \cap c(K)$, if necessary, we may assume that D^x is measurable.

Now let g_n be the measurable function defined by

$$g_n(x) = \max\left\{\bar{f}(x) - \frac{1}{n}; 0\right\}, \quad \text{if } x \in D^x;$$
$$g_n(x) = \bar{f}(x), \quad \text{if } x \in E - D^x.$$

Then $\{0(g_n, E)\}_n$ is an increasing sequence of sets with limit M. Hence

$$\lim_{n} m[0(g_n, E) \cap D] = mD,$$

and therefore, for some N, $m[0(g_N, E) \cap D] > 0$.

Let *H* be a measurable kernel of $\{x:g_N(x) > y \text{ for some } (x, y) \in D\}$. Then mH > 0, and we note that for $x \in H$, $g_N(x) = \overline{f}(x) - 1/N$. Now we define

$$g(x) = \bar{f}(x), \text{ if } x \in E - H;$$

$$g(x) = g_N(x) = \bar{f}(x) - \frac{1}{N}, \text{ if } x \in H$$

Clearly $g(x) \le \tilde{f}(x)$ on E and $\{x:g(x) < \tilde{f}(x)\} = H$ has positive measure. Also $g \ge f$ on E, since on E - H, $g = \tilde{f} \ge f$ and for $x \in H$, we have $g(x) = g_N(x) > y$, for some $(x, y) \in D$ and y > f(x). Hence the properties of g contradicts (i) and (ii) and therefore M is a measurable cover of A.

By the definition of I and I^{*} it follows that $I^*(f, E) = I(\bar{f}, E)$.

THEOREM 5. Let $f \in \mathcal{F}^+$ and let f(x)=0 for $x \notin E$. Let M be a measurable cover of E. Then

$$I^*(f; E) = I^*(f; M) = I(f; M).$$

Hence 0(f; M) is a measurable cover of 0(f, E).

Proof. Since f(x)=0, if $x \notin E$, we have 0(f; E)=0(f; M), so that $I^*(f; E)=I^*(f; M)$. By the previous theorem, the result follows.

THEOREM 6. If E is measurable, then, for all $A \subseteq R$ and $f \in \mathcal{F}^+$,

$$I^{*}(f; A) = I^{*}(f; A \cap E) + I^{*}(f; A - E).$$

Proof. The theorem follows easily from the measurability of c(E).

THEOREM 7. Let
$$f, g \in \mathscr{F}^+$$
 and let $E \subseteq R$. Then
 $I^*(f+g; E) \leq I^*(f; E) + I^*(g; E).$

Proof. Let $E_1 = \{x: f(x) > 0\}$ and $E_2 = \{x: g(x) > 0\}$, and let M_1 and M_2 be measurable covers of E_1 and E_2 , respectively. Then $M_1 \cup M_2$ is a measurable cover of $E_1 \cup E_2 = \{x: f(x) + g(x) > 0\}$.

Using Theorems 4 and 5 and the fact that $\overline{f+g} \leq \overline{f}+\overline{g}$, we have

$$I^{*}(f+g; E) = I^{*}(f+g; E_{1} \cup E_{2})$$

= $I(\overline{f+g}; M_{1} \cup M_{2})$
 $\leq I(\overline{f+g}; M_{1} \cup M_{2}).$

Since $I(f+\bar{g}; M_1 \cup M_2)$ is a Lebesgue integral it follows that $I^*(f+g; E) \leq I(\bar{f}; M_1) + I(\bar{g}; M_2) + I(\bar{f}; M_2 - M_1) + I(\bar{g}; M_1 - M_2)$. The function f is bounded and there is therefore a constant c such that $0 \leq f \leq c\chi_{m_1}$. Hence, by (ii), $0 \leq \bar{f} \leq c\chi_{m_1}$, a.e. Thus f(x)=0 for almost all $x \notin M_1$. Thus $I(\bar{f}; M_2 - M_1)=0$, and similarly $I(\bar{g}; M_1 - M_2)=0$. Also, by Theorem 5, $I(\bar{f}; M_1)=I^*(f; E_1)$ and $I(\bar{g}; M_2)=I^*(g; E_2)$. It follows that

$$I^{*}(f+g; E) \leq I^{*}(f; E_{1}) + I^{*}(g; E_{2})$$

= $I^{*}(f; E) + I^{*}(g; E).$

4. Separation of functions.

DEFINITION. Let $f, g \in \mathcal{F}^+$. Let $F = \{x: f \notin C_x\}$ and let $G = \{x: g \notin C_x\}$. The function f is separated from the function g if $m(F \cap G) = 0$.

THEOREM 8. Let $f, g \in \mathscr{F}^+$ and $E \subseteq R$. Then, if f is separated from g,

$$I^*(f+g; E) = I^*(f; E) + I^*(g; E).$$

Proof. We first prove the theorem under the assumption that g is measurable, (so that certainly f is separated from g, since $G=\emptyset$).

Let $f_E = f \chi_E$. Then, if M is a measurable cover of E, by Theorem 5, we have

$$I^{*}(f; E) + I^{*}(g; E) = I^{*}(f_{E}; E) + I^{*}(g; E)$$

= $I(f_{E}; M) + I(g; M).$

Now, using Theorem 2, and the fact that the terms on the right-hand side of the above equation are Lebesgue integrals, we have,

$$I^*(f; E) + I^*(g; E) = I(\overline{f_E + g}; M)$$

= $I^*(f_E + g_E; E)$

where $g_E = g\chi_E$, and we have used Theorem 5. Since $0(f_E + g_E; E) = 0(f + g; E)$, the result follows in the case when g is measurable. We note that, if the restriction of g to a measurable superset A of E is measurable, then the result also holds by replacing g by $g\chi_A$.

In the general case, by Theorem 1, f and g are measurable on the complements of the measurable sets F and G, respectively. Since $m(F \cap G)=0$, the restriction of g to F is measurable. Using the first part of this theorem and using Theorem 6, it therefore follows that

$$I^{*}(f; E) + I^{*}(g; E) = I^{*}(f; E \cap F) + I^{*}(f; E - F) + I^{*}(g; E \cap F) + I^{*}(g; E - F)$$

= $I^{*}(f+g; E \cap F) + I^{*}(f+g; E - F)$
= $I^{*}(f+g; E).$

THEOREM 9. Let A and B be linear sets which satisfy $m(A \cap B)=0$. Let M and N be measurable covers of A and B respectively. Then the characteristic functions of A and B are separated if and only if $m(M \cap N)=0$.

Proof. We note that $\chi_{A\cup B} = \chi_A + \chi_B$ a.e., since $m(A \cap B) = 0$. We therefore have, by the previous theorem, that if χ_A is separated from χ_B , then

$$I^{*}(\chi_{A \cup B}; E) = I^{*}(\chi_{A}; E) + I^{*}(\chi_{B}; E),$$

for all $E \subseteq R$. Thus, by Theorem 3,

$$m^*((A \cup B) \cap E) = m^*(A \cap E) + m^*(B \cap E)$$

Now, if $m^*(A \cup B)$ is finite, we put $E = A \cup B$. We have

$$m^*(A \cup B) = m^*A + m^*B$$

= $mM + mN$
= $m(M \cup N) + m(M \cap N)$
 $\geq m^*(A \cup B),$

1973]

so that $m(M \cap N) = 0$. If $m^*(A \cup B)$ is not finite, we put $E_n = (A \cup B) \cap (-n, n)$ and we conclude that $m(M \cap N \cap (-n, n)) = 0$, for all natural numbers n, so that $m(M \cap N) = 0$.

Now suppose that $m(M \cap N)=0$, then we show that χ_A is separated from χ_B . By Theorems 1 and 2, $\chi_A = \overline{\chi}_A$, a.e. on the *M* complement of $\{x: \chi_A \notin C_x\} = F \subset M$. Similarly, $\{x: \chi_B \notin C_x\} = G \subset M$. Therefore $m(F \cap G)=0$, so that χ_A is separated. from χ_B .

The above theorem shows that the characteristic functions of sets are separated if and only if the sets are separated in the sense of the definition given in [2].

References

1. S. K. Berberian, Measure and integration, New York, 1965.

2. W. Eames, A local property of measurable sets, Canad. J. Math. 12 (1960), 632-640.

3. W. Eames and L. E. May, Measurable cover functions, Canad. Math. Bull. (4) 10 (1967), 519-523.

4. P. R. Halmos, Measure theory, Princeton, 1950.

5. R. L. Jeffery, Sets of k-extent in n-dimensional space, Trans. Amer. Math. Soc. 35 (1933), 629-647.

6. H. Kestelman, Modern theories of integration, Dover, New York, 1960.

CARLETON UNIVERSITY, OTTAWA, ONTARIO

250