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Abstract

The most important open problem in monotone operator theory concerns the maximal monotonicity
of the sum of two maximally monotone operators provided that the classical Rockafellar’s constraint
qualification holds. In this paper, we establish the maximal monotonicity of A + B provided that A and
B are maximally monotone operators such that star(dom A) N intdom B # @, and A is of type (FPV). We
show that when also dom A is convex, the sum operator A + B is also of type (FPV). Our result generalizes
and unifies several recent sum theorems.
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1. Introduction

Throughout this paper, we assume that X is a real Banach space with norm || - ||, that X*
is the continuous dual of X, and that X and X* are paired by (-,-). Let A: X =3 X" be a
set-valued operator (also known as a relation, point-to-set mapping or multifunction)
from X to X*, that is, for every x € X, Ax C X", and let graA := {(x,x*) € X X X* |
x* € Ax} be the graph of A. Recall that A is monotone if

(X=y,x"=y")>0, V(x,x")egraA, Y(y,y") € graA,

and maximally monotone if A is monotone and A has no proper monotone extension
(in the sense of graph inclusion). Let A : X = X* be monotone and (x, x*) € X X X*.
We say that (x, x*) is monotonically related to gra A if

(x=y, X" =y)=0, V(") e€graA.
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Let A : X 3 X* be maximally monotone. We say that A is of type (FPV) if for every
open convex set U C X such that U N dom A # @, the implication

x € U and (x, x*) is monotonically related to graA N (U x X*)

= (x,x") egraA

holds. We emphasize that it remains possible that all maximally monotone operators
are of type (FPV). Also every (FPV) operator has the closure of its domain convex.
See [11, 14, 30, 31] for this and more information on operators of type (FPV). We say
that A is a linear relation if gra A is a linear subspace.

Monotone operators have proven important in modern optimization and analysis;
see, for example, the books [4, 11, 17, 18, 23, 28, 30, 31, 44-46] and the references
therein. We adopt standard notation used in these books: thus, domA :={x € X |
Ax # @} is the domain of A. Given a subset C of X, int C is the interior of C, bdry C is
the boundary of C, aff C is the affine hull of C, C is the norm closure of C and span C
is the span (the set of all finite linear combinations) of C. The intrinsic core or relative
algebraic interior of C, 'C (see [44]), is defined by

iC:={aeC|V¥xeaff(C-C),36>0,Y1€[0,6]:a+ Ax e C).

We then define “C by
e o iC if aff Cis closed,
"l otherwise.

The indicator function of C, written as (¢, is defined at x € X by

0 ifxeC,
te(x) = i
co  otherwise.

fC,DCcX,weset C—D={x—y|xeC,ye D}. For every x € X, the normal cone
operator of C at x is defined by N¢(x) := {x* € X* | sup,c{c — x,x*) <0}, if x € C;
and N¢(x) = @, if x ¢ C. We define the support points of C, written as supp C, by
suppC :={c € C | N¢(c) # {0}}. For x,y € X, we set [x,y] :={tx+ (1 =)y |0<¢t< 1}.
We define the centre or star of C by star C :={x € C | [x,c] C C, forall ¢ € C} (see
[10]). Then C is convex if and only if star C = C.

Given f: X — ]—o0, +o0], we set dom f := f~'(R). We say that f is proper if
dom f # @. We also set Py : X X X* — X: (x,x") — x. Finally, the open unit ball
in X is denoted by Uy := {x € X | ||x|]| < 1}, the closed unit ball in X is denoted by
By :={xeX||lx[| <1}, and N :={1,2,3,...}. We denote by — and — = the norm
convergence and weak”® convergence of nets, respectively.

Let A and B be maximally monotone operators from X to X*. Clearly, the
sum operator A+ B: X 3 X": x> Ax+ Bx:={a"+b*|a" € Axand b* € Bx} is
monotone. Rockafellar established the following very important result in 1970.
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TraeorEM 1.1 (Rockafellar’s sum theorem, see [27, Theorem 1] or [11]). Suppose that
X is reflexive. Let A, B : X 3 X* be maximally monotone. Assume that A and B satisfy
the classical constraint qualification

domA Nintdom B # @.
Then A + B is maximally monotone.

Arguably, the most significant open problem in the theory concerns the maximal
monotonicity of the sum of two maximally monotone operators in general Banach
spaces; this is called the ‘sum problem’. In the reflexive setting, the sum problem
is solved but interesting stability results can be obtained (see [1, 3, 11, 31, 32]).
Some recent developments on the sum problem can be found in Simons’ monograph
[31] and [7-9, 11, 13, 15, 22, 35, 40-43], and [2] for the subdifferential operators.
It is known, among other things, that the sum theorem holds under Rockafellar’s
constraint qualification when both operators are of dense type or when each operator
has nonempty domain interior (see [11, Ch. 8] and [39]).

Here we focus on the case when A is of type (FPV), and B is maximally monotone
such that

star(dom A) Nintdom B # @.

(Implicitly this means that B is also of type (FPV).) In Theorem 3.3 we show that
A + Bis maximally monotone. As noted it seems possible that all maximally monotone
operators are of type (FPV).

The remainder of this paper is organized as follows. In Section 2, we collect
auxiliary results for future reference and for the reader’s convenience. In Section 3,
our main result (Theorem 3.3) is presented. In Section 4, we then provide various
corollaries and examples. We also pose several significant open questions on the sum
problem. We leave the details of the proof of Case 2 of Theorem 3.3 to Appendix A.

2. Auxiliary results
We first introduce one of Rockafellar’s results.

Fact 2.1 (Rockafellar, see [25, Theorem 1] or [31, Theorem 27.1 and Theorem 27.3]).
Let A : X 3 X* be maximally monotone with intdomA # @. Then intdomA =
intdom A and intdom A and dom A are both convex.

The Fitzpatrick function defined below has proven to be an important tool in
monotone operator theory.

Facr 2.2 (Fitzpatrick, see [20, Corollary 3.9]). Let A: X = X* be monotone, and set

Fy: Xx X" —]-00,+00]: (x,x") = sup (x,a")+(a,x")—(a,a")),
(a,a*)egraA
the Fitzpatrick function associated with A. Suppose also that A is maximally
monotone. Then for every (x,x") € X X X*, the inequality (x, x*) < Fa(x, x*) is true,
and the equality holds if and only if (x, x*) € graA.
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The next result is central to our arguments.

Fact 2.3 (See [37, Theorem 3.4 and Corollary 5.6], or [31, Theorem 24.1(b)]). Let
A, B : X 3 X* be maximally monotone operators. Assume that | J o A[Px(dom F4) —
Px(dom Fg)] is a closed subspace. If

FA+B 2 <" > on XXX*’
then A + B is maximally monotone.
We next cite several results regarding operators of type (FPV).

Facrt 2.4 (Simons, see [31, Theorem 46.1]). Let A : X = X* be a maximally monotone
linear relation. Then A is of type (FPV).

The following result presents a sufficient condition for a maximally monotone
operator to be of type (FPV).

Fact 2.5 (Simons and Verona-Verona, see [31, Theorem 44.1], [33] or [8]). Let
A : X 3 X* be maximally monotone. Suppose that for every closed convex subset
C of X with dom A Nint C # @, the operator A + N¢ is maximally monotone. Then A
is of type (FPV).

Fact 2.6 (See [5, Lemma 2.5]). Let C be a nonempty closed convex subset of X such
that int C # @. Let ¢y € int C and suppose that z € X \ C. Then there exists 1 €10, 1[c
such that Acy + (1 — A)z € bdry C.

Fact 2.7 (Boundedness below, see [12, Fact 4.1]). Let A : X =3 X* be monotone and
x €intdomA. Then there exist 6 > 0 and M > 0 such that x + 6Bx C dom A and
SUP,c 468, 1Al < M. Assume that (z,z") is monotonically related to gra A. Then

(2= x,2°) 20|l = (llz = x|l + 5)M.

Fact 2.8 (Voisei and Zalinescu, see [40, Corollary 4]). Let A, B : X =3 X* be maximally
monotone. Assume that “(domA) # @, (dom B) # @ and 0 € [dom A — dom B]. Then
A + B is maximally monotone.

The proof of the next lemma follows closely the lines of that of [13, Lemma 2.10].
It generalizes both [13, Lemma 2.10] and [6, Lemma 2.10].

Lemma 2.9. Let A : X =3 X* be monotone, and let B : X =3 X* be a maximally monotone
operator. Suppose that star(dom A) N intdom B # @. Suppose also that (z,7") € X X X*
with z € dom A is monotonically related to gra(A + B). Then z € dom B.

Proor. We can and do suppose that (0,0) € graA NgraB and O € star(dom A) N
intdom B. Suppose to the contrary that z ¢ dom B. Then we have z # 0. We claim
that

Ny + B is maximally monotone. (2.1)
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Because z # 0, we have 1/2z € “(domNj_)). Clearly, “(dom B) # @ and 0 €
i“[dom Ny — dom B]. By Fact 2.8, Ny + B is maximally monotone and hence (2.1)
holds. Since (z,z*) ¢ gra(Njo; + B), there exist 4 € [0, 1] and x*,y* € X* such that
(Az, x*) € graNjo 4, (1z,¥") € gra B and

(z=Az,7" = x" —y*) <O. 2.2)
Now 4 < 1, since (Az,y*) € gra B and z ¢ dom B, by (2.2),
(2 =Xy +42,7 = y") =(5, 7" —x" - y") <0. (2.3)

Since (Az, x*) € gra Ny, we have (z — Az, x*) < 0. Then (z,—x*) > 0. Thus (2.3)
implies that

(z,Z" = y") <O. 2.4)

Since 0 € star(dom A) and z € dom A, Az € dom A. By the assumption on (z,z*), we
have

(z-Az,7" —a" —y*) >0, Va*eA(lz).
Thence, (z,z* —a* — y*) > 0 and hence
(z,7" =YY= {(z,a"), VYa' € A(z). (2.5)
Next we show that
(z,a"y >0, Ta* e A12). (2.6)
We consider two cases.
Case I: A =0. Then take a* = 0 to see that (2.6) holds.
Case 2: A1 #0. Let a* € A(Az). Since (Az,a*) € graA, (Az,a*) ={(1z-0,a* - 0) >0
and hence (z,a"*) > 0. Hence (2.6) holds.
Combining (2.5) and (2.6),
(z,z* —=y") >0, which contradicts (2.4).

Hence, z € dom B. O

The proof of Lemma 2.10 is modelled on that of [41, Proposition 3.1]. It is the first
in a sequence of lemmas we give that will allow us to apply Fact 2.3.

Lemwma 2.10. Let A : X =3 X* be monotone and let B : X = X* be maximally monotone.
Let (z,7") € X X X*. Suppose xy € dom A N intdom B and that there exists a sequence
(an, @)nen in graA N (dom B X X*) such that (a,)nen converges to a point in [xy, z|,
while

(z—ay,a,) — +oo. 2.7

Then Fy,p(z,7") = +c0.
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Prook. Since a, € dom B for every n € N, we may pick v, € B(a,). We again consider
two cases.

Case I: (V))nen is bounded.
Then we have

Faip(2,2°) > sup[{an, 2°) + {2 — ay, a,) + {2 — ap, ;)]
{neny}

> sup [=llaall - 1171l + (2 = an, a,) = llz = ayll - V1]
{neN}

=400 (by (2.7) and the boundedness of (v};)en)-

Hence Fa,p(z,7°) = +00.

Case 2: (V))uen is unbounded.
By assumption, there exists 0 < A < 1 such that

a, — xo + A(z — xp). (2.8)
We first show that
limsup (z — ay, v,) = +oo. (2.9)

Since (v} )qen is unbounded and, after passing to a subsequence if necessary, we may
assume that |[v;|| # 0, for all n € N and that ||[v}|| = +c0. By x € intdom B and Fact 2.7,
there exist 6o > 0 and K > 0 such that

(an = x0, V) = Solvyll = (llan — xoll + 60)Ko. (2.10)

Then we have

*

< v, > (llan = xoll + 60)Ko
n = X0, ) 200~ "

[yl (vl
By the Banach—Alaoglu theorem (see [29, Theorem 3.15]), there exist a weak*
convergent subnet (v;/ ||V$||)yer of (v;,/Iv;IDnen such that

, VneNl. (2.11)

%

1%

—L eV, EX (2.12)
vyl

Using (2.8) and taking the limit in (2.11) along the subnet, we obtain
(A(z = xp), Vi) = . (2.13)
Hence A is strictly positive and
13}
(2= X0, Vi) > 70 > 0. (2.14)
Now assume contrary to (2.9) that there exists M > 0 such that

lim sup(z — a,, v,y < M.

n—oo
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Then, for all n sufficiently large,
(Z—ap, vy <M+1,

and so

i, M+1
(= an i) < T (2.15)
sl v

Then by (2.8) and (2.12), taking the limit in (2.15) along the subnet again, we see that
(1 — Az = x0,v5) <0.

Since 1 < 1, we see (z — xp, vi,) < 0 contradicting (2.14), and (2.9) holds. By (2.7) and
(2.9),

Fap(z,2°) =2 sup[{ay, 2°) + (2 — an, an) + {2 — an, v;)] = +00.
neN

Hence
Fasp(z,2) = +o0,
as asserted. O
We also need the following two lemmas.

Lemma 2.11. Let A : X =3 X* be monotone, and let B : X = X* be maximally monotone.
Let (z,7°) € X X X*. Suppose that xo € dom A N intdom B and that there exists a
sequence (ap)nen in dom A N dom B such that (a,)en converges to a point in [xy, z[,
and that

a, € bdrydomB, VneN.
Then F,p(z,7") = +oo.
Proor. Suppose to the contrary that
(z,7") € dom F 4. p.
By the assumption, there exists 0 < A < 1 such that
a, — xo + Az — xp). (2.16)

By the separation theorem and Fact 2.1, there exists (y};),ery in X* such that |[y;]| =1
and y, € Ny——5(a,). Thus, ky, € Ny—=(a,), for all k > 0. Since xq € intdom B, there
exists & > 0 such that xy + 6By € dom B. Thus,

(Vs @) = sup{yy, Xo + 0Bx) > (¥, Xo) + sup(yy, 6Bx) = (¥, Xo) + S|[y,|l
= <y:’ .X()> + 0.

Hence

Vi an — Xo) > 6. (2.17)
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By the Banach—Alaoglu theorem (see [29, Theorem 3.15]), there exists a weak”
convergent and bounded subnet (y?);co such that

Vi 7w Yoo €X7 (2.18)
Then (2.17) and (2.16) imply that
(Voos Az = x0)) > 6.
Thus, as before, 1 > 0 and

. 0
(Voor 2 — X0) 2 7> 0. (2.19)
Since B is maximally monotone, B = B + Nj—%. As a, € dom A N dom B, we have

(for all n € N and all £ > 0)
Fasp(z, Z*) = SUP[<Z — dy, A(an» + <Z - ay, B(a,) + ky;:) + <Z*, an>]-
Thus, for all n € N and all £ > 0,

FA+BIEZ, ) f% o (e an B(Zn) i) <z*,k an>]_

Since (z,7") € dom F4.p by the assumption, on letting k — +oco we obtain

> SUP[<Z — dp,

0>(z—apy,), VYneNlN.

Combining with (2.18), (2.16) and taking the limit along the bounded subnet in the
above inequality, we have

02 ((1 =Dz~ x0), Yao)-
Since 1 < 1,
<Z - XO,J’;) < 0,

which contradicts (2.19).
Hence F4,p5(z,7") = +oo0. O

Lemma 2.12. Let A : X 3 X* be of type (FPV). Suppose xy € dom A but that z ¢ dom A.
Then there is a sequence (ay, a,)nen in graA so that (a,)neny converges to a point in
[x0, z[ and

(z—ay,a,) — +oo.

Proor. Since z ¢ domA, z # xo. Thence there exist @ >0 and y; € X* such that
(Vp»2 — Xo) = . Set

1
U, :=1[xp,z2]+-Ux, VneN.
n
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Since xp € domA, U, NdomA # @. Now (z,ny;) ¢ graA and z € U,. As A is of type
(FPV), there exist (a,, a ),en in graA with a, € U, such that

(2= an, ay) > (2 — an, ny,). (2.20)

As a, € U,, (ay)qen has a subsequence convergent to an element in [xg, z]. We can
assume that

a, — xo+ Az—x9), where 0<A<1, (2.21)

and since z ¢ dom A, we have A < 1. Thus, x¢ + A(z — x9) € [x0, z[.
Thus by (2.21) and (z — xo, y;) = a > 0,

(2= ap, y5) — (1 = Dz — x0,¥0) = (1 = Ha > 0.

Hence there exists Ny € N such that for every n > N
1= Da

2= anyp) = —5—>0.
Appealing to (2.20), we have
1-2
(z—and)> %n >0, VYn> N,
and so (z — a,, a,) — +oo. This completes the proof. O

3. Our main result

Before we come to our main result, we need the following two technical results
which let us place points in the closures of the domains of A and B. The proof of
Proposition 3.1 follows in part that of [41, Theorem 3.4].

ProposiTioN 3.1. Let A : X =3 X* be of type (FPV), and let B : X = X* be maximally
monotone. Suppose that dom A Nintdom B # @. Let (z,7*) € X X X* with z € dom B.
Then

Fap(z,7") = (2, 7).

Proor. Clearly, Fa,p(z,7") > (z,7") if (z,Z") ¢ dom F4,.5. Now suppose that (z,z*) €
dom F4.5. We can suppose that 0 € dom A N intdom B and (0,0) € graA N gra B.
Next, we show that

Faop(tz,17) > 2(z,7") and rzeintdomB, Vrel0,1[. (3.1)
Fixt€]0,1[. AsO€intdomB, z € dom B, Fact 2.1 and [44, Theorem 1.1.2(ii)] imply
1z € int m,

and Fact 2.1 strengthens this to

tz € intdom B.

https://doi.org/10.1017/51446788714000056 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788714000056

10 J. M. Borwein and L. Yao [10]

We again consider two cases.

Case 1. tz € domA.
On selecting a* € A(tz), b* € B(tz), the definition of the Fitzpatrick function Fact 2.2
shows
Faup(tz, 177) 2t tz) + (tz,a" + b*) = (tz,a" + b") = (tz,1z").
Hence (3.1) holds.

Case 2: tz ¢ domA.
If (z,7") <0, then Fa,p(tz,tz") > 0 > {tz,t7*) because (0,0) € graA N gra B. So we
assume that
(z,2") > 0. (3.2)
We first show that

tz € domA. 3.3)
Set
1
U,:=10,tz] + =Ux, VYneN.
n
Since 0 € dom A, U, Ndom A # @. Since (tz, nz*) ¢ graA and 1z € U,,, while A is of
type (FPV), there is (a,, a},)nen in gra A with a,, € U, such that
(tz,ay) > n{tz — a,, 2°) + {an, ay,). (3.4

As a, € U, (a,)qen has a subsequence convergent to an element in [0, rz]. We can
assume that

a, — Az, where0 <A<t 3.5

As tz € intdom B also Az € intdom B, and so appealing to Fact 2.7, there exist N € N
and K > 0 such that

a, €intdomB and sup |V||<K, VYnx=N. (3.6)
veB(ay,)
We claim that
A=t
Suppose to the contrary that 0 < A <t. As (a,,a;) € graA and (3.6) holds, for every
n>N
Fip(z,2)
> sup [<Cln, Z*> + <Z9 a:> - (an9a:> + <Z — Ay, V*>]
{v:eB(an)}
> sup [{an,2") +(z,a,) = {an. a,) — K|z - a,l]
{v*eB(an)}

> (an, 2") + (2, ay) — {an, a,) — K||z — ay||

1 1
> (an, 27) + Sz = an,2°) + ;(amaD —(an,a,) — Kllz = ayll  (by (3.4))

1
> (an,7°) + ;n<tz —an,2") = Kllz = a,|

since {a,,a,) >0by (0,0) e graAandr < 1.
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Divide by n on both sides of the above inequality and take the limit with respect
to n. Since (3.5) and F4,5(z, ) < +00, we obtain

(1 - /%)(z,z*) = <Z - /71272*> <0.

Since 0 < A < t, we obtain (z, z*) < 0, which contradicts (3.2). Hence, 4 =t and by
(3.5) tz € dom A so that (3.3) holds.
We next show that

Faip(tz, 12%) > 152, 2°). 3.7)

Set

1
H,:=tz+ -Ux, VYneN.
n

Note that H, N dom A # @, since tz € dom A\dom A by (3.3).
Because (1z,1z") ¢ graA and tz € H,, and A is of type (FPV), there exists (b,, b} )nen
in gra A such that b, € H, and

12,03y + (by, t7°) = (by, b}y > 1(2,2"), VneN. (3.8)
As tz € intdom B and b, — tz, by Fact 2.7, there exist N; € N and M > 0 such that

b, € intdom B and sup VIS M, Vnz=Ni. (3.9)
v eB(by)

We now compute

Fap(tz, 12")

> sup [, 17"y +tz, b}y — (bu, b}y + (tz — by, )], Yn>N;
{c*€B(b,)}

> sup [fAz,2°) + (tz—by,c™], Yn>=N; (by(3.8)
{c*e€B(b,)}

> sup[*(z,2") = Mlltz = b,lll, Yn>N; (by (3.9)).
Thus,
Farp(tz,17%) = 13z, 7°)

because b, —> tz. Hence, Fy.p(tz, t7*) > t>(z,z*). Thus (3.7) holds.

Combining the above cases, we see that (3.1) holds. Since (0, 0) € gra(A + B) and
A + B is monotone, we have F4,5(0,0) =(0,0) =0. Since F4,p is convex, (3.1)
implies that (for every 7 € ]0, 1])

tFa45(2,2") = tF a5z, 2°) + (1 = )Fa45(0,0) 2 Fasp(tz, 12°) > £*(2,2°).

Letting r — 17 in the above inequality, we obtain Fa,5(z,z") > (z,7"). O

We have one more block to put in place.
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ProrosiTion 3.2. Let A : X =3 X* be of type (FPV), and let B : X 3 X* be maximally
monotone. Suppose star(dom A) Nintdom B # @, and (z,7") € dom F4,5. Then
z € domA.

Proor. We can and do suppose that 0 € star(dom A) N intdom B and (0,0) € graA N
gra B. As before, we suppose to the contrary that

z¢ domA.

Then z # 0. By the assumption that z ¢ dom A, Lemma 2.12 implies that there exist
(an, a;)nery in graA and 0 < A < 1 such that

(z—ap,a,) — +oo and a, — Az. (3.10)
We yet again consider two cases.
Case I: There exists a subsequence of (a,),en in dom B.
We can suppose that a,, € dom B for every n € N. Thus by (3.10) and Lemma 2.10,

we have Fa.p(z,z") = 400, which contradicts our original assumption that (z,z") €
dom FA+B-

Case 2: There exists Ny € N such that a,, ¢ dom B for every n > Nj.
Now we can suppose that a, ¢ dom B for every n € N. Since a, ¢ dom B, Facts 2.1
and 2.6 show that there exists A, € [0, 1] such that

A,a, € bdry dom B. (3.11)
By (3.10), we can suppose that
An@y — Aoz (3.12)
Since 0 € star(dom A) and a, € dom A, A,a, € dom A. Then (3.10) implies that
Ao < 1. (3.13)
We further split Case 2 into two subcases.

Subcase 2.1: There exists a subsequence of (A4,a,),ey in dom B. We may again
suppose A,a, € dom B for every n € N. Since 0 € star(dom A) and a, € dom A,
Anan, € dom A. Then by (3.11) and (3.12), (3.13) and Lemma 2.11, F4.5(z,7") = +00,
which contradicts the hypothesis that (z, z*) € dom F4.p.

Subcase 2.2: There exists N € N such that A,a, ¢ dom B for every n > N,. We can
now assume that A,a, ¢ dom B for every n € N. Thus a, # 0 for every n € N. Since
0 € intdom B, (3.11) and (3.12) imply that O < A, and then by (3.13)

0< A, < 1. 3.14)

Since 0 € intdom B, (3.11) implies that 2, > 0 for every n € N. By (3.10), ||la, — z|| =» 0.
Then we can and do suppose that ||a, — z|| # O for every n € N. Fix n € N. Since
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0 € intdom B, there exists 0 < pg < 1 such that pyBy € dom B. As 0 € star(dom A) and
a, € domA, A,a, € domA. Set

b, = A,a, and take b, € A(A,a,). (3.15)

Next we show that there exists g, €10, 1/n[ such that with H,, := (1 — &,)b,, + €,00Ux
and

| 22,2 =
0= 20l + 2l + 2.+ (lanll + HZEAE
n po

we have H, € dom B and
inf [|B(H,)Il > n(1 + 7ollb;[l),  while &, max{llall, 1} < 3llz — axll 4. (3.16)

For every s €]0, 1[, (3.11) and Fact 2.1 imply that (1 — )b, + spoBx € dom B. By
Fact 2.1 again, (1 — s)b, + spoUx C intdom B = intdom B.

Now we show the second assertion of (3.16). Let k € N and (sy)rey be a positive
sequence such that s; — 0 when k — co. It suffices to show

klim inf [|B((1 = sp)by, + sxooUx)|| = +00. 3.17)

Suppose to the contrary there exist a sequence (¢k, ¢p)ken 1n gra BN [((1 — sp)b, +
sipoUx) X X*] and L > 0 such that sup,oy llc;ll < L. Then ¢, — b, = A,a,. By
the Banach—Alaoglu theorem (again see [29, Theorem 3.15]), there exist a weak”
convergent subnet, (c;)ﬁE 7 of (¢)rew such that c; —w Coy € X*. Borwein and Yao
[12, Corollary 4.1] showed that (1,a,, c%) € gra B, which contradicts our assumption
that 1,4, ¢ dom B. Hence (3.17) holds and so does (3.16).

Set t, := £,00/24,||z — a,|| and thus 0 < ¢, < 1/4. Now we show

tadnz + (1 —t,)(1 — &,)b, € H,. (3.18)
Since 0 < 4, < 1, we have

”tn/lnz + (1 - tn)(l - Sn)bn - (1 - Sn)bn“ = “tn/lnz - tn(l - Sn)bn“
= ||ty dnz — t.(1 = g)Ananll = 1, A0llz — an + £,a,l|

EnPo
=0 lz-a,+
2l — gl I el
EnP0
< ———(llz = aull + llesanll)
2||z — ayll
EnPo ( 1 )
— |z =a,ll+ =|lz—a by (3.16
e —all I all 2|| all]  (by (3.16))
< &nPo-

Hence (3.18) holds.
Next we show that there exists (@, @, )nen in graA N (H, X X*) such that

(z—ap.ay") = —70lI;|I. (3.19)
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‘We consider two further subcases.

Subcase 2.2a: We have (t,4,z + (1 — 1,)(1 — &,)b,, (1 + 1,)b%) € graA. Set (a,,a,”) :=
tynz + (1 = t,)(1 = £,)by, (1 + t,)b}). Since (0,0) € gra A, (b,, b}) > 0.
Then we have
<tn/lnz - (Z,, [i;z*> = <tn/lnz - tn/lnz - (1 - tn)(l - gn)bm (1 + tn)b;>
= (—(1 = t,)(1 = &by, (1 + 1,)b}) = (1 = 1)(1 — )by, b}y (3.20)
> —(by, b},).
On the other hand, (3.15) and the monotonicity of A imply that

<tn/lnZ + (1 - [n)(l - Sn)bn - bna tnb;;>
= <tn/1nz + -2 - Sn)bn - bm 1+ trz)b; - b:l> > 0.

Thus
(tadnz = [1 = (1 = 1,)(1 = &,)]by, b,) > 0. (3.21)

Since 1 = (1 = #,)(1 = &,) > 0 and (b, b;) = (b, = 0, b, = 0) 2 0, (3.21) implies that
(tadyz,by) > 0 and thus

(z,b;) = 0.
Then by a,” = (1 + 1,)b}, and 1,4, < 1, (3.20) implies that
(2= Gny @y ) 2 ~(bn, by = =Bl - D11 = =llanll - B,]] = =7ollbyl-
Hence (3.19) holds.

Subcase 2.2b: We have (t,4,z+ (1 —t,)(1 —&,)b,, (1 + 1,)b},) ¢ graA. By 0¢€
star(dom A) and a,, € dom A, we have (1 — g,)4,a, € dom A, hence domA N H, # @.
Since t,A,z + (1 = 1,)(1 — €,)b, € H, by (3.18), (tyA,2+ (1 — t,)(1 — &,)b,,, (1 + 1,)D};) ¢
graA and A is of type (FPV), there exists (a,,a,") € graA such that a, € H,, and
(tadnz+ (1 = t,)(1 = &)by — @y, @ = (1 + 1,)b,) >0
= (tadnz = [1 = (1 = 1,)(1 = &))@, + (1 = 1,)(1 = &,)(by — @), @ — by)
>t dnz + (1 = 12)(1 = €0)bn — an, 1ab7)
> (tyAn2 = @y, 1,b},)  (since (b, by) > 0)
= (tudnz — [1 = (1 = t,)(1 = &))ay, a,” - by)
> (1 = t,)(1 = &,)(by = Gpn), by, = @y") + {tydnZ = Gy, 1,D},)
= (tadnz = [1 = (1 = )1 = &)y, a,” = by,) > {tydu7 = Gy, 1,D},)
= (tadnz = [ty + &1 — ta&x)an, ")
>t AnZ = An, 1nb}) + (tnAnZ = [tn + &n — tnEnlan, by).
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Since <5;n 5;1*> = <ﬁ;1 -0, 5;1* - O> >0 and 1, + &, — 1,8, 2 1, 2 tpdy, ([tn +é&p —
ta€nlln, @y’ ) > tyAy{an, a,"). Thus
<tn/lnz - tn/lngi;z, d:l*>
> (tyAnz — &713 tnb:D + Ay — [ty + €0 — tngn]a;za b;)

<tn/lnz - tn/ln(’lvn ~*>
=2\ Gy
Anlty

1 tadnz — [ty + &0 — ti&nlan
> (t, Az — ,—b*>+<" z ,b*>
<" ne ™ 9 On Aut n

. — 1, o | B
=>{z—ap, a, ) > <tn/1nz — ay, /l_nbn> + <Z - [1 + Z - 8n]/l—na,,, bn>
2/ln||z_an”))

1, . 1
> ——|1b, ll(llzll + lla,ll + 1) — Ilbnll(llzll + —(llanll + 1)(1 +
A, An £0

= <Z_Ei;l9 a;l)ﬁ>

—Tollb} .

w1 2|1z — ayll
> —IIbnll/l— 2llzll + 2flanll + 2 + (llanll + 1)u] =
n PO

Finally, combining all of the subcases, we deduce that (3.19) holds.
Since ¢, < 1/n and a, € H,, (3.12) shows that
ay — Al (3.22)
Take w};, € B(a,) by (3.16). Then by (3.16) again,
Iw,ll = n(1 + 7ollbzl),  ¥n€N. (3.23)
Then by (3.19),
—~TlB3l1 + (2 = Gy W) + (2, @) < (2= @) + §2 = Gy W) + (2, )
< Fayp(z,20).

Thus

7ollby |l < — W, > < z ~> Fuip(z,2")
=)t ) S ——————.
[lwl [l (w5l (Wl
By the Banach—Alaoglu theorem (see [29, Theorem 3.15]), there exist a weak”
convergent subnet, (W} /|[w}|)ic; of wy,/|lw; || such that

(3.24)

w
— W € X", (3.25)
[lw?]|

Combine (3.22), (3.23) and (3.25), by Fa4+5(z,2") < +00, and take the limit along the
subnet in (3.24) to obtain

(z = Aoz, Wiy < 0.
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Then (3.14) shows that
(z,w) < 0. (3.26)

On the other hand, since O € intdom B, Fact 2.7 implies that there exists p; > 0 and
M > 0 such that

(@n, wp) 2 pilw,ll = (lall + p1)M.
Thus

(@ W, Vo (@l + pr)M
il lIw;

Use (3.22), (3.23) and (3.25), and take the limit along the subnet in the above inequality
to obtain

</looz, W;) > P1.

Hence
. P1
TWeo) 2 — >0,
(z, W) 1

()

which contradicts (3.26).
Combining all of the above cases, we have arrived at z € dom A. O

We are finally ready to prove our main result. The special case in which B is the
normal cone operator of a nonempty closed convex set was first established by Voisei
in [38].

TueorEM 3.3 ((FPV) sum theorem). Let A, B : X 3 X* be maximally monotone with
star(dom A) Nintdom B # @. Assume that A is of type (FPV). Then A + B is maximally
monotone.

Proor. After translating the graphs if necessary, we can and do assume that O €
star(dom A) N int dom B and that (0,0) € graA NgraB. By Fact 2.2, domA C
Px(dom F4) and dom B C Px(dom F'g). Hence,

U A(Px(dom F) — Px(dom Fg)) = X.
>0

Thus, by Fact 2.3, it suffices to show that
Fap(z,7) 2427, V(zz)eXxX".
Take (z,z") € X X X*. Then

Faip(z,2) = sup [(x,2") + (2= x,X") + (2= X, ¥") = Loraa(, X*) = tgrap(x, y)].

{x,x*,y*}

Suppose to the contrary that there exists 7 > 0 such that
Fup(z,2") + 1 <2, 2), (3.27)
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so that
(z,7") is monotonically related to gra(A + B). (3.28)
Then by Propositions 3.1 and 3.2,
z € dom A\dom B. (3.29)
Now by Lemma 2.9,
z ¢ domA. (3.30)

Indeed, if z € dom A, Lemma 2.9 and (3.28) show that z € dom B. Thus, z € domA N
dom B and hence Fa,p(z,7") > (z,7") which contradicts (3.27). Thence we have
established (3.30).

Thus (3.29) implies that there exists (a,, @, )sen in gra A such that

ap — 2. (3.31)
By (3.29), a, ¢ dom B for all but finitely many terms a,. We can suppose that

a, ¢ dom B for all n € N. Facts 2.1 and 2.6 show that there exists A, €0, 1[ such
that

A,a, € bdry dom B. (3.32)
By (3.31), we can assume that
A, — A €[0,1] andthus A,a, — Awz. (3.33)
Then by (3.32) and (3.29)
Ao < 1. (3.34)
We consider two cases.
Case I: There exists a subsequence of (1,a,),en in dom B.
We can suppose that 1,,a,, € dom B for every n € N. Since 0 € star(dom A) and a,, €

dom A, A,a, € domA. Then by (3.32), (3.33), (3.34) and Lemma 2.11, Fa,5(z,z*) =
+00, which contradicts (3.27) that (z,z*) € dom F4,p.

Case 2: There exists N € N such that A,a, ¢ dom B for every n > N.
We can suppose that 4,a, ¢ dom B for every n € N. Thus a, # 0 for every n € N.
Following the pattern of Subcase 2.2 in the proof of Proposition 3.2!, we obtain a

contradiction.
Combing all of the above cases, we have Fa,5(z,7") > (z,7") for all (z,z*) € X X X*.
Hence A + B is maximally monotone. O

Remark 3.4. In Case 2 in the proof of Theorem 3.3 (see Appendix A below), we
use Lemma 2.9 to deduce that ||a, — z|| # 0. Without the help of Lemma 2.9, we
may still can obtain (A6) as follows. For the case of a, =z, consider whether
(A —-&)by,0) = ((1 —&,)2,2,0) € H, X X* is in gra A or not. We can deduce that there

I'We banish the details to Appendix A to spare the readers.
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eXiSts (ay, dy Ynew in graA N (H, x X*) such that
(2= ap,a, ) 2 0.

Hence (A6) holds, and the proof of Theorem 3.3 can be achieved without Lemma 2.9.

4. Examples and consequences

We start by illustrating that the starshaped hypothesis catches operators whose
domain may be nonconvex and have no algebraic interior.

ExampLE 4.1 (Operators with starshaped domains). We illustrate that there are many
choices of maximally monotone operator A of type (FPV) with nonconvex domain
such that “dom A = intdom A = @ and star(dom A) # @. Let f : R> — ]—c0, +0] be
defined by

X,y) .
) otherwise.

max{l — /x, [y]} ifx>0,
+00

Consider an infinite-dimensional Banach space X containing a nonempty closed and
convex set C such that “C = @. It is not known whether all spaces have this property
but all separable or reflexive spaces certainly do [11]. Define A : (R? X X) =3 (R? x X*)
by

v, w) 3 (Af (), dc(w)) = OF (v, w),

where F := f @ (c. Define || - || on R? x X by [[(v, w)| := VIl + [[wl.

Then f is proper convex and lowers semicontinuous and so, therefore, is F. Indeed,
[26, Example before Theorem 23.5, page 218] shows that dom df is not convex and
consequently dom A is not convex. (Many other candidates for f are given in [11,
Ch. 7].) Clearly, A = 9F is maximally monotone. Let wy € C and vy = (2, 0). Consider
(vo, wo) € R? x X. Since vy = (2,0) € intdom df, vy € star(dom df) since dom f is
convex. Thus (vg, wy) € star(dom A). Since “C = @ and so int C = @, it follows that
“domA = intdom A = @. Simons [31, Theorem 48.4(d)] showed that A = JF is of
type (FPV).

The next example gives all of the details of how to associate the support points
of a convex set to a subgradient. In [16, 21] and [11, Exercise 8.4.1, page 401]
the construction is used to build empty subgradients in various Fréchet spaces and
incomplete normed spaces.

ExampLE 4.2 (Support points). Suppose that X is separable. We can always find a
compact convex set C C X such that span C # X and spanC = X (see [11]). Take
Xxo ¢ span C. Define f : X — ]—o0, +00] by

f(x):=min{teR|x+txp€C}, VYxeX.
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By direct computation f is proper lower semicontinuous and convex, see [21]. By the
definition of f, dom f = C + Rxy. Let f € R and ¢ € C. We shall establish that

Ne(e)Nn{y e X* | (", xp) =1} if ce C,
Of(ta+ &) = { c© N X107 x) = ~1}if ¢ € supp @
%) otherwise.
Thence, also dom df = Rxg + supp C.
First we show that the implication
txo+c=sxo+d, wheret,seR, c,deC = t=sandc=d “4.2)

holds. Lett,s e R and ¢,d € C. We have (t — s)xg =d — ¢ € span C — span C = span C.
Since x ¢ span C, t = s and then ¢ = d. Hence we obtain (4.2).
By (4.2), we have

fxo+c)=—-t, VteR, YceC. 4.3)

We next show that (4.1) holds.
Since dom f = C + Rxp, by (4.3), we have

X" €df(txg + ¢)

(X sxg+d—(txg+ ) < f(sxg+d)— f(txo+c)=-s+t, VYseR,VdeC
S (s=Dxg+(d-c))y<—s+t, VseR, VdeC

X, sxp+(d-c))y<-s, VseR, VdeC

S (X", sx)<—s and (x",d-c)<0, VseR, VdeC

e (X", sxg)<—-s and x*€Nc(c),x*#0, VYseR

o (X, x0y=-1, x*€N¢(c) and cesuppC.

Hence (4.1) holds.

As a concrete example of C consider, for 1 < p < oo, any order interval C := {x €
{P(N): a < x < B} where a < 8 € {P(N). The example extends to all weakly compactly
generated (WCGQG) spaces [1 1] with a weakly compact convex set in the role of C.

We gave the last example in part as it allows one to better understand what the
domain of a maximally monotone operator with empty interior can look like. While
the star may be empty, it has been recently proven [36], see also [19], that for a
closed convex function f the domain of df is always pathwise and locally pathwise
connected.

An immediate corollary of Theorem 3.3 is the following which generalizes
[41, Corollary 3.9].

CororLARY 4.3 (Convex domain). Let A, B: X =3 X* be maximally monotone with
domA Nintdom B # @. Assume that A is of type (FPV) with convex domain. Then
A + B is maximally monotone.

An only slightly less immediate corollary is given next.
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CoroLLARY 4.4 (Nonempty interior, see [8, Theorem 9(i)] or Fact 2.8). Let A,B: X 3
X* be maximally monotone with intdom A N intdom B # @. Then A + B is maximally
monotone.

Proor. By the assumption, there exists xy € intdom A N intdom B. We first show that
A is of type (FPV). Let C be a nonempty closed convex subset of X, and suppose
that dom A NintC # @. Let x; € dom A NintC. Fact 2.1 and [44, Theorem 1.1.2(ii)]
imply that [xg, x;[C intdom A = intdom A. Since x; € int C, there exists 0 <9 < 1
such that x; + 6(xp — x;) € intdom A N int C. Then N¢ + A is maximally monotone by
Corollary 4.3 and [31, Theorem 48.4(d)]. Hence by Fact 2.5, A is of type (FPV), see
also [8].

Since xp € intdom A, Fact 2.1 and [44, Theorem 1.1.2(ii)] imply that x; €
star(dom A) and hence we have x; € star(dom A) N intdom B. Then by Theorem 3.3,
we deduce that A + B is maximally monotone. O

CoroLLARY 4.5 (Linear relation see [13, Theorem 3.1]). Let A : X = X* be a maximally
monotone linear relation, and let B : X =3 X* be maximally monotone. Suppose that
domA Nintdom B # @. Then A + B is maximally monotone.

Proor. Apply Fact 2.5 and Corollary 4.3 directly. O

The proof of our final Corollary 4.6 is adapted from that of [41, Corollary 2.10]
and [13, Corollary 3.3]. Moreover, it generalizes both [41, Corollary 2.10] and
[13, Corollary 3.3].

CoroLLARY 4.6 (FPV property of the sum). Let A, B : X =3 X* be maximally monotone
with dom A Nintdom B # @. Assume that A is of type (FPV) with convex domain.
Then A + B is of type (FPV).

Proor. By Corollary 4.3, A + B is maximally monotone. Let C be a nonempty closed
convex subset of X, and suppose that dom(A + B)NintC # @. Let x; e domA N
intdom B and x, € dom(A + B) NintC. Then x{, x» € dom A, x; € intdom B and x; €
dom B NintC. Hence Ax; + (1 — A)x; € intdom B for every A € [0, 1] by Fact 2.1 and
[44, Theorem 1.1.2(ii)] and so there exists ¢ €]0, 1] such that Ax; + (1 — )x; € intC
for every 4 € [0, 6].

Thus, dx; + (1 — 6)x, € domA Nintdom BN intC. By Corollary 4.4, B + N¢ is
maximally monotone. Then, by Corollary 4.3 (applied A and B + N¢ to A and B),
A+ B+ Nc =A+ (B+ N¢) is maximally monotone. By Fact 2.5, A + B is of type
(FPV). O

We have been unable to relax the convexity hypothesis in Corollary 4.6.
We finish by listing some related interesting, at least to the current authors,
questions regarding the sum problem.

Oren ProBrLEm 4.7. Let A : X =3 X* be maximally monotone with convex domain. Is
A necessarily of type (FPV)?

Let us recall a problem posed by Simons in [30, Problem 41.2].
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Oren ProBrLEm 4.8. Let A : X =3 X* be of type (FPV), let C be a nonempty closed
convex subset of X, and suppose that dom A NintC # @. Is A + N¢ necessarily
maximally monotone?

More generally, can we relax or indeed entirely drop the starshaped hypothesis on
dom A in Theorem 3.3?

Open ProBrEm 4.9. Let A, B: X =3 X* be maximally monotone with domA N
intdom B # @. Assume that A is of type (FPV). Is A + B necessarily maximally
monotone?

If all maximally monotone operators are type (FPV) this is no easier than the full
sum problem. Can the results of [36] help here?
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Appendix A. Proof of Case 2 in the proof of Theorem 3.3

Proor. Case 2: There exists N € N such that 4,4, ¢ dom B for every n > N.

We can and do suppose that A,a, ¢ dom B for every n € N. Thus a, # 0 for every
neN.,

Since 0 € intdom B, (3.33) and (3.32) imply that 0 < A, and hence by (3.34)

0< Ao < 1. (A1)

By (3.30), |la, — z|| # O for every n € N.
Fix n € N. Since 0 € intdom B, there exists 0 < py < 1 such that poBy C dom B.
Since 0 € star(dom A) and a,, € dom A, A,a, € dom A. Set

b, = A,a, and take b, € A(A,a,). (A2)
Next we show that there exists &, €]0, 1/n[ such that H, C dom B and
inf || BAH)| = n(1 + 7ollbyl), & max{lla,ll, 1} < 3llz = aulld,. (A3)

where H, := (1 = &,)by + €,00Ux and 7o := (1/4,)[2llzll + 2llanll + 2 + (lla,ll + 1)
(2Alz = anll/po)]-

For every € € 10, 1[, by (3.32) and Fact 2.1, (1 — €)b,, + gpgBx € dom B. By Fact 2.1
again, (1 — )b, + gpgUx C intdom B = intdom B.

Now we show the second part of (A3). Let k € N and (s;)reyy be a positive sequence
such that s; — 0 when k — oo. It suffices to show

lim inf IB((1 = 50)by + sypoUn)l| = +oo. (A4)
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Suppose to the contrary that there exist a sequence (ck, ¢;)ken in gra B N [((1 — s¢)
by + sipoUx) X X*] and L > 0 such that sup;qy llcill < L. Then ¢ — b, = A,a,.
By the Banach—Alaoglu theorem (see [29, Theorem 3.15]), there exist a weak”
convergent subnet, (c;)/;e 7 of (¢)ren such that c;; —wt Coy € X*. Borwein and Yao
[12, Corollary 4.1] showed that (1,a,, c%,) € gra B, which contradicts our assumption
that A,,a,, ¢ dom B.

Hence (A4) holds and so does (A3).

Set t,, := £,00/2A4llz — ay|| and thus 0 < 7, < ;. Thus

tydnz + (1 —t,)(1 — &,)b, € H,. (AS)
Next we show there exists (a,, @, )nen in graA N (H, X X*) such that
(2= an, ") 2 =7olIby |l (A6)
We consider two subcases.

Subcase 2.1: We have (t,4,z + (1 — t,)(1 — &,)b,,, (1 + 1,)b};) € graA.
Then set (ay, a,”) := (4,2 + (1 — £,)(1 = €,)by, (1 + 1,)b%). Since (0,0) € gra A,
(by, b}y 2 0. Then we have

(tadnz = ny @3) = (tadnz = 1y Anz = (1 = 1,)(1 = €2)bn, (1 + 1,)b})
= (=1 = 1)1 = &b, (1 + 1,)b) = ~((1 = £)(1 = )by, by (A7)
> —(by, b},).
On the other hand, (A2) and the monotonicity of A imply that

<tn/lnz + (1 - tn)(l - Sn)bn - bn’ tnb;>
=ty dnz + (1 = 1,)(1 = €,)by — by, (1 + 1,)b,, — b)) = 0.

Thus
(tadnz = [1 = (1 = 1,)(1 = &,)]b,, by,) > 0. (A8)

Since 1 — (1 —1,)(1 —&,) > 0 and (b,, b)) = (b, — 0,b} — 0) > 0, (A8) implies that
(tnAnz, by > 0 and thus

(z,b)) = 0.
Then by a,” = (1 + ,,)b}, and 1,4, < 1, (A7) implies that
(2= n» @) 2 —(by, b} = =|Iball - 131l = =llaall - 116}1] = =7ol1b].
Hence (A6) holds.

Subcase 2.2: We have (t,4,z + (1 — t,)(1 — €,)b,, (1 + 1,)b}) ¢ graA.

Since 0 € star(dom A) and a, € dom A, we have (1 — g,)1,,a, € dom A, hence
domANH, #@. Since t,4,z+ (1 — t,)(1 — &,)b, € H, by (AS), (tpAuz+ (1 — 1)
(1 — &,)by, (1 + 1,)b}) ¢ graA and A is of type (FPV), there exists (a,,a,") € graA such
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that a, € H, and
<tn/lnz + (1 - tn)(l - gn)bn - ﬁ;l’ Ei;z* - (1 + tn)b;> >0
= (tadnz = [1 = (1 = t,)(1 = &p)lay + (1 = t,)(1 = &,)(by — an), an” = by)
>ty dpz + (1 = 1,)(1 = &,)b, — Qn, tnb;k,>
> (tydnz — Gy t,07)  (since (by, bY) > 0)
= <tn/1nz - [1 - (1 - tn)(l - 811)]5;” a;l* - b:>
> <(1 - tn)(l - gn)(bn - Zl-n)a b:; - &71*> + <tn)~nz - CT,,, tnb:>
= <tn/1nz - [1 - (] - tn)(l - sn)]a;u 5;1* - b:> > <tn/an - 5;1’ tnb;;>
= <tn/lnz - [tn +é&p — tngn]a;z, [i;l*>
> <tn/1nz - Ei;l’ tnbf,> + <tn/lnz - [tn + En — tngn]a;l, b:>
Since <CTn’ CTn*> = <Zl-n - 0» CTn* - 0> = 0 and Iy + & — In&y = Iy = tn/lna ([tn + & —
1a€n)dn, Gn") 2 tyAy{@n, @y ). Thus
<tn/lnz - tnﬂna;h a;z*> > <tn/1nz - a;n tnb:;> + <t;1/an - [tn t+&n— tngn]a;n b;:)

N <tn/1nz - tn/ln&; , ~;l*>
Anty

thdnz = [t, + &0 — tnen]&‘;t b*>
> Un

— 1
> <t,,/lnz—an, —b*> +< 3
ntn

A, "
~ o~ — 1 * En 1 _ ®
=>({z—ay,, a, y> <tn/1nz - ay, —bn> + <z - [1 + — - s,,]—a,,, bn>
/ln t"l /ln
= <Z - ﬁ;l’ Zi;l*>

L . 1 20,z — al
> —— B + llagll + 1) - ||bn||(||z|| + —(llanl + 1)(1 ¥ —))
/ln /ln PO

— o L 22|z = ayll .
=z —ap, a, ) > —IIanI—[ZIIZII + 2/lanll + 2 + (llanll + 1)#] = =70llb,I-
An Lo
Hence combining all of the subcases, then (A6) holds.
Since ¢, < 1/n and a, € H,, (3.33) shows that
A — Aoo?. (A9)
Take w}; € B(a,) by (A3). Then by (A3) again,
Wil = n(l + 1ollbyll), VYneN. (A10)

Then by (A6),
—Tollbyll + {2 = @, W) + (", @) < (2= Gy Gy ) + {2 = Gy W) + (27, @)
< Fayp(z,2°).

Thus

b* * k *
7ol ,,II+<Z_a~ W, >+< 4 CT><FA+B(Z,Z)‘ (Al

n ) . 2% =
lwyll Cliwl lwll’ lwyl

https://doi.org/10.1017/51446788714000056 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788714000056

24 J. M. Borwein and L. Yao [24]

By the Banach—Alaoglu theorem (see [29, Theorem 3.15]), there exist a weak”
convergent subnet, (W} /|[w}|)ic; of w;,/|lw; || such that
Wy
Wl
Combining (A9), (A10) and (A12), by Fa,p(z,z") < +0co, take the limit along the
subnet in (A11) to obtain

W € X" (A12)

Then (A1) shows that
(z, W) <0. (A13)

On the other hand, since 0 € intdom B, Fact 2.7 implies that there exists p; > 0 and
M > 0 such that

(@, W) 2 p1lw, |l = (@l + p1)M.
Thus

(.25 ) > (Il + pM

ns 2P
w3l lw3l

Combining (A9), (A10) and (A12), take the limit along the subnet in the above

inequality to obtain

</100Z’ W;) > P1.
Hence

(z,wi) > 5—1 >0,

00

which contradicts (A13). O
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