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Abstract

The most important open problem in monotone operator theory concerns the maximal monotonicity
of the sum of two maximally monotone operators provided that the classical Rockafellar’s constraint
qualification holds. In this paper, we establish the maximal monotonicity of A + B provided that A and
B are maximally monotone operators such that star(dom A) ∩ int dom B , ∅, and A is of type (FPV). We
show that when also dom A is convex, the sum operator A + B is also of type (FPV). Our result generalizes
and unifies several recent sum theorems.
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1. Introduction

Throughout this paper, we assume that X is a real Banach space with norm ‖ · ‖, that X∗

is the continuous dual of X, and that X and X∗ are paired by 〈·, ·〉. Let A : X ⇒ X∗ be a
set-valued operator (also known as a relation, point-to-set mapping or multifunction)
from X to X∗, that is, for every x ∈ X, Ax ⊆ X∗, and let gra A := {(x, x∗) ∈ X × X∗ |
x∗ ∈ Ax} be the graph of A. Recall that A is monotone if

〈x − y, x∗ − y∗〉 ≥ 0, ∀(x, x∗) ∈ gra A, ∀(y, y∗) ∈ gra A,

and maximally monotone if A is monotone and A has no proper monotone extension
(in the sense of graph inclusion). Let A : X ⇒ X∗ be monotone and (x, x∗) ∈ X × X∗.
We say that (x, x∗) is monotonically related to gra A if

〈x − y, x∗ − y∗〉 ≥ 0, ∀(y, y∗) ∈ gra A.
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2 J. M. Borwein and L. Yao [2]

Let A : X ⇒ X∗ be maximally monotone. We say that A is of type (FPV) if for every
open convex set U ⊆ X such that U ∩ dom A , ∅, the implication

x ∈ U and (x, x∗) is monotonically related to gra A ∩ (U × X∗)

⇒ (x, x∗) ∈ gra A

holds. We emphasize that it remains possible that all maximally monotone operators
are of type (FPV). Also every (FPV) operator has the closure of its domain convex.
See [11, 14, 30, 31] for this and more information on operators of type (FPV). We say
that A is a linear relation if gra A is a linear subspace.

Monotone operators have proven important in modern optimization and analysis;
see, for example, the books [4, 11, 17, 18, 23, 28, 30, 31, 44–46] and the references
therein. We adopt standard notation used in these books: thus, dom A := {x ∈ X |
Ax , ∅} is the domain of A. Given a subset C of X, int C is the interior of C, bdry C is
the boundary of C, aff C is the affine hull of C, C is the norm closure of C and span C
is the span (the set of all finite linear combinations) of C. The intrinsic core or relative
algebraic interior of C, iC (see [44]), is defined by

iC := {a ∈ C | ∀x ∈ aff(C −C),∃δ > 0,∀λ ∈ [0, δ] : a + λx ∈ C}.

We then define icC by

icC :=

iC if aff C is closed,
∅ otherwise.

The indicator function of C, written as ιC , is defined at x ∈ X by

ιC(x) :=

0 if x ∈ C,
∞ otherwise.

If C,D ⊆ X, we set C − D = {x − y | x ∈ C, y ∈ D}. For every x ∈ X, the normal cone
operator of C at x is defined by NC(x) := {x∗ ∈ X∗ | supc∈C〈c − x, x∗〉 ≤ 0}, if x ∈ C;
and NC(x) = ∅, if x < C. We define the support points of C, written as supp C, by
supp C := {c ∈ C | NC(c) , {0}}. For x, y ∈ X, we set [x, y] := {tx + (1 − t)y | 0 ≤ t ≤ 1}.
We define the centre or star of C by star C := {x ∈ C | [x, c] ⊆ C, for all c ∈ C} (see
[10]). Then C is convex if and only if star C = C.

Given f : X → ]−∞, +∞], we set dom f := f −1(R). We say that f is proper if
dom f , ∅. We also set PX : X × X∗ → X : (x, x∗) 7→ x. Finally, the open unit ball
in X is denoted by UX := {x ∈ X | ‖x‖ < 1}, the closed unit ball in X is denoted by
BX := {x ∈ X | ‖x‖ ≤ 1}, and N := {1, 2, 3, . . .}. We denote by −→ and ⇁w* the norm
convergence and weak∗ convergence of nets, respectively.

Let A and B be maximally monotone operators from X to X∗. Clearly, the
sum operator A + B : X ⇒ X∗ : x 7→ Ax + Bx := {a∗ + b∗ | a∗ ∈ Ax and b∗ ∈ Bx} is
monotone. Rockafellar established the following very important result in 1970.
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Theorem 1.1 (Rockafellar’s sum theorem, see [27, Theorem 1] or [11]). Suppose that
X is reflexive. Let A, B : X⇒ X∗ be maximally monotone. Assume that A and B satisfy
the classical constraint qualification

dom A ∩ int dom B , ∅.

Then A + B is maximally monotone.

Arguably, the most significant open problem in the theory concerns the maximal
monotonicity of the sum of two maximally monotone operators in general Banach
spaces; this is called the ‘sum problem’. In the reflexive setting, the sum problem
is solved but interesting stability results can be obtained (see [1, 3, 11, 31, 32]).
Some recent developments on the sum problem can be found in Simons’ monograph
[31] and [7–9, 11, 13, 15, 22, 35, 40–43], and [2] for the subdifferential operators.
It is known, among other things, that the sum theorem holds under Rockafellar’s
constraint qualification when both operators are of dense type or when each operator
has nonempty domain interior (see [11, Ch. 8] and [39]).

Here we focus on the case when A is of type (FPV), and B is maximally monotone
such that

star(dom A) ∩ int dom B , ∅.

(Implicitly this means that B is also of type (FPV).) In Theorem 3.3 we show that
A + B is maximally monotone. As noted it seems possible that all maximally monotone
operators are of type (FPV).

The remainder of this paper is organized as follows. In Section 2, we collect
auxiliary results for future reference and for the reader’s convenience. In Section 3,
our main result (Theorem 3.3) is presented. In Section 4, we then provide various
corollaries and examples. We also pose several significant open questions on the sum
problem. We leave the details of the proof of Case 2 of Theorem 3.3 to Appendix A.

2. Auxiliary results

We first introduce one of Rockafellar’s results.

Fact 2.1 (Rockafellar, see [25, Theorem 1] or [31, Theorem 27.1 and Theorem 27.3]).
Let A : X ⇒ X∗ be maximally monotone with int dom A , ∅. Then int dom A =

int dom A and int dom A and dom A are both convex.

The Fitzpatrick function defined below has proven to be an important tool in
monotone operator theory.

Fact 2.2 (Fitzpatrick, see [20, Corollary 3.9]). Let A : X ⇒ X∗ be monotone, and set

FA : X × X∗ → ]−∞,+∞] : (x, x∗) 7→ sup
(a,a∗)∈gra A

(〈x, a∗〉 + 〈a, x∗〉 − 〈a, a∗〉),

the Fitzpatrick function associated with A. Suppose also that A is maximally
monotone. Then for every (x, x∗) ∈ X × X∗, the inequality 〈x, x∗〉 ≤ FA(x, x∗) is true,
and the equality holds if and only if (x, x∗) ∈ gra A.
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The next result is central to our arguments.

Fact 2.3 (See [37, Theorem 3.4 and Corollary 5.6], or [31, Theorem 24.1(b)]). Let
A, B : X ⇒ X∗ be maximally monotone operators. Assume that

⋃
λ>0 λ[PX(dom FA) −

PX(dom FB)] is a closed subspace. If

FA+B ≥ 〈·, ·〉 on X × X∗,

then A + B is maximally monotone.

We next cite several results regarding operators of type (FPV).

Fact 2.4 (Simons, see [31, Theorem 46.1]). Let A : X ⇒ X∗ be a maximally monotone
linear relation. Then A is of type (FPV).

The following result presents a sufficient condition for a maximally monotone
operator to be of type (FPV).

Fact 2.5 (Simons and Verona-Verona, see [31, Theorem 44.1], [33] or [8]). Let
A : X ⇒ X∗ be maximally monotone. Suppose that for every closed convex subset
C of X with dom A ∩ int C , ∅, the operator A + NC is maximally monotone. Then A
is of type (FPV).

Fact 2.6 (See [5, Lemma 2.5]). Let C be a nonempty closed convex subset of X such
that int C , ∅. Let c0 ∈ int C and suppose that z ∈ X rC. Then there exists λ ∈ ]0, 1[c
such that λc0 + (1 − λ)z ∈ bdry C.

Fact 2.7 (Boundedness below, see [12, Fact 4.1]). Let A : X ⇒ X∗ be monotone and
x ∈ int dom A. Then there exist δ > 0 and M > 0 such that x + δBX ⊆ dom A and
supa∈x+δBX

‖Aa‖ ≤ M. Assume that (z, z∗) is monotonically related to gra A. Then

〈z − x, z∗〉 ≥ δ‖z∗‖ − (‖z − x‖ + δ)M.

Fact 2.8 (Voisei and Zălinescu, see [40, Corollary 4]). Let A, B : X⇒ X∗ be maximally
monotone. Assume that ic(dom A) , ∅,ic (dom B) , ∅ and 0 ∈ic [dom A − dom B]. Then
A + B is maximally monotone.

The proof of the next lemma follows closely the lines of that of [13, Lemma 2.10].
It generalizes both [13, Lemma 2.10] and [6, Lemma 2.10].

Lemma 2.9. Let A : X⇒ X∗ be monotone, and let B : X⇒ X∗ be a maximally monotone
operator. Suppose that star(dom A) ∩ int dom B , ∅. Suppose also that (z, z∗) ∈ X × X∗

with z ∈ dom A is monotonically related to gra(A + B). Then z ∈ dom B.

Proof. We can and do suppose that (0, 0) ∈ gra A ∩ gra B and 0 ∈ star(dom A) ∩
int dom B. Suppose to the contrary that z < dom B. Then we have z , 0. We claim
that

N[0,z] + B is maximally monotone. (2.1)
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Because z , 0, we have 1/2z ∈ ic(dom N[0,z]). Clearly, ic(dom B) , ∅ and 0 ∈
ic[dom N[0,z] − dom B]. By Fact 2.8, N[0,z] + B is maximally monotone and hence (2.1)
holds. Since (z, z∗) < gra(N[0,z] + B), there exist λ ∈ [0, 1] and x∗, y∗ ∈ X∗ such that
(λz, x∗) ∈ gra N[0,z], (λz, y∗) ∈ gra B and

〈z − λz, z∗ − x∗ − y∗〉 < 0. (2.2)

Now λ < 1, since (λz, y∗) ∈ gra B and z < dom B, by (2.2),

〈z,−x∗〉 + 〈z, z∗ − y∗〉 = 〈z, z∗ − x∗ − y∗〉 < 0. (2.3)

Since (λz, x∗) ∈ gra N[0,z], we have 〈z − λz, x∗〉 ≤ 0. Then 〈z, −x∗〉 ≥ 0. Thus (2.3)
implies that

〈z, z∗ − y∗〉 < 0. (2.4)

Since 0 ∈ star(dom A) and z ∈ dom A, λz ∈ dom A. By the assumption on (z, z∗), we
have

〈z − λz, z∗ − a∗ − y∗〉 ≥ 0, ∀a∗ ∈ A(λz).

Thence, 〈z, z∗ − a∗ − y∗〉 ≥ 0 and hence

〈z, z∗ − y∗〉 ≥ 〈z, a∗〉, ∀a∗ ∈ A(λz). (2.5)

Next we show that

〈z, a∗〉 ≥ 0, ∃a∗ ∈ A(λz). (2.6)

We consider two cases.

Case 1: λ = 0. Then take a∗ = 0 to see that (2.6) holds.

Case 2: λ , 0. Let a∗ ∈ A(λz). Since (λz, a∗) ∈ gra A, 〈λz, a∗〉 = 〈λz − 0, a∗ − 0〉 ≥ 0
and hence 〈z, a∗〉 ≥ 0. Hence (2.6) holds.

Combining (2.5) and (2.6),

〈z, z∗ − y∗〉 ≥ 0, which contradicts (2.4).

Hence, z ∈ dom B. �

The proof of Lemma 2.10 is modelled on that of [41, Proposition 3.1]. It is the first
in a sequence of lemmas we give that will allow us to apply Fact 2.3.

Lemma 2.10. Let A : X⇒ X∗ be monotone and let B : X⇒ X∗ be maximally monotone.
Let (z, z∗) ∈ X × X∗. Suppose x0 ∈ dom A ∩ int dom B and that there exists a sequence
(an, a∗n)n∈N in gra A ∩ (dom B × X∗) such that (an)n∈N converges to a point in [x0, z[,
while

〈z − an, a∗n〉 −→ +∞. (2.7)

Then FA+B(z, z∗) = +∞.
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Proof. Since an ∈ dom B for every n ∈ N, we may pick v∗n ∈ B(an). We again consider
two cases.

Case 1: (v∗n)n∈N is bounded.
Then we have

FA+B(z, z∗) ≥ sup
{n∈N}

[〈an, z∗〉 + 〈z − an, a∗n〉 + 〈z − an, v∗n〉]

≥ sup
{n∈N}

[−‖an‖ · ‖z∗‖ + 〈z − an, a∗n〉 − ‖z − an‖ · ‖v∗n‖]

= +∞ (by (2.7) and the boundedness of (v∗n)n∈N).

Hence FA+B(z, z∗) = +∞.

Case 2: (v∗n)n∈N is unbounded.
By assumption, there exists 0 ≤ λ < 1 such that

an −→ x0 + λ(z − x0). (2.8)

We first show that

lim sup
n→∞

〈z − an, v∗n〉 = +∞. (2.9)

Since (v∗n)n∈N is unbounded and, after passing to a subsequence if necessary, we may
assume that ‖v∗n‖ , 0, for all n ∈ N and that ‖v∗n‖ → +∞. By x0 ∈ int dom B and Fact 2.7,
there exist δ0 > 0 and K0 > 0 such that

〈an − x0, v∗n〉 ≥ δ0‖v∗n‖ − (‖an − x0‖ + δ0)K0. (2.10)

Then we have 〈
an − x0,

v∗n
‖v∗n‖

〉
≥ δ0 −

(‖an − x0‖ + δ0)K0

‖v∗n‖
, ∀n ∈ N. (2.11)

By the Banach–Alaoglu theorem (see [29, Theorem 3.15]), there exist a weak*
convergent subnet (v∗γ/‖v

∗
γ‖)γ∈Γ of (v∗n/‖v

∗
n‖)n∈N such that

v∗γ
‖v∗γ‖

⇁w* v∗∞ ∈ X∗. (2.12)

Using (2.8) and taking the limit in (2.11) along the subnet, we obtain

〈λ(z − x0), v∗∞〉 ≥ δ0. (2.13)

Hence λ is strictly positive and

〈z − x0, v∗∞〉 ≥
δ0

λ
> 0. (2.14)

Now assume contrary to (2.9) that there exists M > 0 such that

lim sup
n→∞

〈z − an, v∗n〉 < M.
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Then, for all n sufficiently large,

〈z − an, v∗n〉 < M + 1,

and so 〈
z − an,

v∗n
‖v∗n‖

〉
<

M + 1
‖v∗n‖

. (2.15)

Then by (2.8) and (2.12), taking the limit in (2.15) along the subnet again, we see that

(1 − λ)〈z − x0, v∗∞〉 ≤ 0.

Since λ < 1, we see 〈z − x0, v∗∞〉 ≤ 0 contradicting (2.14), and (2.9) holds. By (2.7) and
(2.9),

FA+B(z, z∗) ≥ sup
n∈N

[〈an, z∗〉 + 〈z − an, an〉 + 〈z − an, v∗n〉] = +∞.

Hence

FA+B(z, z∗) = +∞,

as asserted. �

We also need the following two lemmas.

Lemma 2.11. Let A : X⇒ X∗ be monotone, and let B : X⇒ X∗ be maximally monotone.
Let (z, z∗) ∈ X × X∗. Suppose that x0 ∈ dom A ∩ int dom B and that there exists a
sequence (an)n∈N in dom A ∩ dom B such that (an)n∈N converges to a point in [x0, z[,
and that

an ∈ bdry dom B, ∀n ∈ N.

Then FA+B(z, z∗) = +∞.

Proof. Suppose to the contrary that

(z, z∗) ∈ dom FA+B.

By the assumption, there exists 0 ≤ λ < 1 such that

an −→ x0 + λ(z − x0). (2.16)

By the separation theorem and Fact 2.1, there exists (y∗n)n∈N in X∗ such that ‖y∗n‖ = 1
and y∗n ∈ Ndom B(an). Thus, ky∗n ∈ Ndom B(an), for all k > 0. Since x0 ∈ int dom B, there
exists δ > 0 such that x0 + δBX ⊆ dom B. Thus,

〈y∗n, an〉 ≥ sup〈y∗n, x0 + δBX〉 ≥ 〈y∗n, x0〉 + sup〈y∗n, δBX〉 = 〈y∗n, x0〉 + δ‖y∗n‖
= 〈y∗n, x0〉 + δ.

Hence

〈y∗n, an − x0〉 ≥ δ. (2.17)
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By the Banach–Alaoglu theorem (see [29, Theorem 3.15]), there exists a weak∗

convergent and bounded subnet (y∗i )i∈O such that

y∗i ⇁w* y∗∞ ∈ X∗. (2.18)

Then (2.17) and (2.16) imply that

〈y∗∞, λ(z − x0)〉 ≥ δ.

Thus, as before, λ > 0 and

〈y∗∞, z − x0〉 ≥
δ

λ
> 0. (2.19)

Since B is maximally monotone, B = B + Ndom B. As an ∈ dom A ∩ dom B, we have
(for all n ∈ N and all k > 0)

FA+B(z, z∗) ≥ sup[〈z − an, A(an)〉 + 〈z − an, B(an) + ky∗n〉 + 〈z
∗, an〉].

Thus, for all n ∈ N and all k > 0,

FA+B(z, z∗)
k

≥ sup
[〈

z − an,
A(an)

k

〉
+

〈
z − an,

B(an)
k

+ y∗n
〉

+
〈z∗, an〉

k

]
.

Since (z, z∗) ∈ dom FA+B by the assumption, on letting k −→ +∞ we obtain

0 ≥ 〈z − an, y∗n〉, ∀n ∈ N.

Combining with (2.18), (2.16) and taking the limit along the bounded subnet in the
above inequality, we have

0 ≥ 〈(1 − λ)(z − x0), y∗∞〉.

Since λ < 1,

〈z − x0, y∗∞〉 ≤ 0,

which contradicts (2.19).
Hence FA+B(z, z∗) = +∞. �

Lemma 2.12. Let A : X⇒ X∗ be of type (FPV). Suppose x0 ∈ dom A but that z < dom A.
Then there is a sequence (an, a∗n)n∈N in gra A so that (an)n∈N converges to a point in
[x0, z[ and

〈z − an, a∗n〉 −→ +∞.

Proof. Since z < dom A, z , x0. Thence there exist α > 0 and y∗0 ∈ X∗ such that
〈y∗0, z − x0〉 ≥ α. Set

Un := [x0, z] +
1
n

UX , ∀n ∈ N.
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Since x0 ∈ dom A, Un ∩ dom A , ∅. Now (z, ny∗0) < gra A and z ∈ Un. As A is of type
(FPV), there exist (an, a∗n)n∈N in gra A with an ∈ Un such that

〈z − an, a∗n〉 > 〈z − an, ny∗0〉. (2.20)

As an ∈ Un, (an)n∈N has a subsequence convergent to an element in [x0, z]. We can
assume that

an −→ x0 + λ(z − x0), where 0 ≤ λ ≤ 1, (2.21)

and since z < dom A, we have λ < 1. Thus, x0 + λ(z − x0) ∈ [x0, z[.
Thus by (2.21) and 〈z − x0, y∗0〉 ≥ α > 0,

〈z − an, y∗0〉 −→ (1 − λ)〈z − x0, y∗0〉 ≥ (1 − λ)α > 0.

Hence there exists N0 ∈ N such that for every n ≥ N0

〈z − an, y∗0〉 ≥
(1 − λ)α

2
> 0.

Appealing to (2.20), we have

〈z − an, a∗n〉 >
(1 − λ)α

2
n > 0, ∀n ≥ N0,

and so 〈z − an, a∗n〉 −→ +∞. This completes the proof. �

3. Our main result

Before we come to our main result, we need the following two technical results
which let us place points in the closures of the domains of A and B. The proof of
Proposition 3.1 follows in part that of [41, Theorem 3.4].

Proposition 3.1. Let A : X ⇒ X∗ be of type (FPV), and let B : X ⇒ X∗ be maximally
monotone. Suppose that dom A ∩ int dom B , ∅. Let (z, z∗) ∈ X × X∗ with z ∈ dom B.
Then

FA+B(z, z∗) ≥ 〈z, z∗〉.

Proof. Clearly, FA+B(z, z∗) ≥ 〈z, z∗〉 if (z, z∗) < dom FA+B. Now suppose that (z, z∗) ∈
dom FA+B. We can suppose that 0 ∈ dom A ∩ int dom B and (0, 0) ∈ gra A ∩ gra B.
Next, we show that

FA+B(tz, tz∗) ≥ t2〈z, z∗〉 and tz ∈ int dom B, ∀t ∈ ]0, 1[. (3.1)

Fix t ∈ ]0, 1[. As 0 ∈ int dom B, z ∈ dom B, Fact 2.1 and [44, Theorem 1.1.2(ii)] imply

tz ∈ int dom B,

and Fact 2.1 strengthens this to

tz ∈ int dom B.
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We again consider two cases.

Case 1: tz ∈ dom A.
On selecting a∗ ∈ A(tz), b∗ ∈ B(tz), the definition of the Fitzpatrick function Fact 2.2

shows
FA+B(tz, tz∗) ≥ 〈tz∗, tz〉 + 〈tz, a∗ + b∗〉 − 〈tz, a∗ + b∗〉 = 〈tz, tz∗〉.

Hence (3.1) holds.

Case 2: tz < dom A.
If 〈z, z∗〉 ≤ 0, then FA+B(tz, tz∗) ≥ 0 ≥ 〈tz, tz∗〉 because (0, 0) ∈ gra A ∩ gra B. So we

assume that
〈z, z∗〉 > 0. (3.2)

We first show that
tz ∈ dom A. (3.3)

Set

Un := [0, tz] +
1
n

UX , ∀n ∈ N.

Since 0 ∈ dom A, Un ∩ dom A , ∅. Since (tz, nz∗) < gra A and tz ∈ Un, while A is of
type (FPV), there is (an, a∗n)n∈N in gra A with an ∈ Un such that

〈tz, a∗n〉 > n〈tz − an, z∗〉 + 〈an, a∗n〉. (3.4)
As an ∈ Un, (an)n∈N has a subsequence convergent to an element in [0, tz]. We can
assume that

an −→ λz, where 0 ≤ λ ≤ t. (3.5)
As tz ∈ int dom B also λz ∈ int dom B, and so appealing to Fact 2.7, there exist N ∈ N
and K > 0 such that

an ∈ int dom B and sup
v∗∈B(an)

‖v∗‖ ≤ K, ∀n ≥ N. (3.6)

We claim that
λ = t.

Suppose to the contrary that 0 ≤ λ < t. As (an, a∗n) ∈ gra A and (3.6) holds, for every
n ≥ N

FA+B(z, z∗)
≥ sup
{v∗∈B(an)}

[〈an, z∗〉 + 〈z, a∗n〉 − 〈an, a∗n〉 + 〈z − an, v∗〉]

≥ sup
{v∗∈B(an)}

[〈an, z∗〉 + 〈z, a∗n〉 − 〈an, a∗n〉 − K‖z − an‖]

≥ 〈an, z∗〉 + 〈z, a∗n〉 − 〈an, a∗n〉 − K‖z − an‖

> 〈an, z∗〉 +
1
t

n〈tz − an, z∗〉 +
1
t
〈an, a∗n〉 − 〈an, a∗n〉 − K‖z − an‖ (by (3.4))

≥ 〈an, z∗〉 +
1
t

n〈tz − an, z∗〉 − K‖z − an‖

since 〈an, a∗n〉 ≥ 0 by (0, 0) ∈ gra A and t ≤ 1.
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[11] Sum theorems for maximally monotone operators of type (FPV) 11

Divide by n on both sides of the above inequality and take the limit with respect
to n. Since (3.5) and FA+B(z, z∗) < +∞, we obtain(

1 −
λ

t

)
〈z, z∗〉 =

〈
z −

λ

t
z, z∗

〉
≤ 0.

Since 0 ≤ λ < t, we obtain 〈z, z∗〉 ≤ 0, which contradicts (3.2). Hence, λ = t and by
(3.5) tz ∈ dom A so that (3.3) holds.

We next show that

FA+B(tz, tz∗) ≥ t2〈z, z∗〉. (3.7)

Set

Hn := tz +
1
n

UX , ∀n ∈ N.

Note that Hn ∩ dom A , ∅, since tz ∈ dom A\dom A by (3.3).
Because (tz, tz∗) < gra A and tz ∈ Hn, and A is of type (FPV), there exists (bn, b∗n)n∈N

in gra A such that bn ∈ Hn and

〈tz, b∗n〉 + 〈bn, tz∗〉 − 〈bn, b∗n〉 > t2〈z, z∗〉, ∀n ∈ N. (3.8)

As tz ∈ int dom B and bn −→ tz, by Fact 2.7, there exist N1 ∈ N and M > 0 such that

bn ∈ int dom B and sup
v∗∈B(bn)

‖v∗‖ ≤ M, ∀n ≥ N1. (3.9)

We now compute

FA+B(tz, tz∗)
≥ sup
{c∗∈B(bn)}

[〈bn, tz∗〉 + 〈tz, b∗n〉 − 〈bn, b∗n〉 + 〈tz − bn, c∗〉], ∀n ≥ N1

≥ sup
{c∗∈B(bn)}

[t2〈z, z∗〉 + 〈tz − bn, c∗〉], ∀n ≥ N1 (by (3.8))

≥ sup[t2〈z, z∗〉 − M‖tz − bn‖], ∀n ≥ N1 (by (3.9)).

Thus,
FA+B(tz, tz∗) ≥ t2〈z, z∗〉

because bn −→ tz. Hence, FA+B(tz, tz∗) ≥ t2〈z, z∗〉. Thus (3.7) holds.
Combining the above cases, we see that (3.1) holds. Since (0, 0) ∈ gra(A + B) and

A + B is monotone, we have FA+B(0, 0) = 〈0, 0〉 = 0. Since FA+B is convex, (3.1)
implies that (for every t ∈ ]0, 1[)

tFA+B(z, z∗) = tFA+B(z, z∗) + (1 − t)FA+B(0, 0) ≥ FA+B(tz, tz∗) ≥ t2〈z, z∗〉.

Letting t −→ 1− in the above inequality, we obtain FA+B(z, z∗) ≥ 〈z, z∗〉. �

We have one more block to put in place.
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12 J. M. Borwein and L. Yao [12]

Proposition 3.2. Let A : X ⇒ X∗ be of type (FPV), and let B : X ⇒ X∗ be maximally
monotone. Suppose star(dom A) ∩ int dom B , ∅, and (z, z∗) ∈ dom FA+B. Then
z ∈ dom A.

Proof. We can and do suppose that 0 ∈ star(dom A) ∩ int dom B and (0, 0) ∈ gra A ∩
gra B. As before, we suppose to the contrary that

z < dom A.

Then z , 0. By the assumption that z < dom A, Lemma 2.12 implies that there exist
(an, a∗n)n∈N in gra A and 0 ≤ λ < 1 such that

〈z − an, a∗n〉 −→ +∞ and an −→ λz. (3.10)

We yet again consider two cases.

Case 1: There exists a subsequence of (an)n∈N in dom B.
We can suppose that an ∈ dom B for every n ∈ N. Thus by (3.10) and Lemma 2.10,

we have FA+B(z, z∗) = +∞, which contradicts our original assumption that (z, z∗) ∈
dom FA+B.

Case 2: There exists N1 ∈ N such that an < dom B for every n ≥ N1.
Now we can suppose that an < dom B for every n ∈ N. Since an < dom B, Facts 2.1

and 2.6 show that there exists λn ∈ [0, 1] such that

λnan ∈ bdry dom B. (3.11)

By (3.10), we can suppose that

λnan −→ λ∞z. (3.12)

Since 0 ∈ star(dom A) and an ∈ dom A, λnan ∈ dom A. Then (3.10) implies that

λ∞ < 1. (3.13)

We further split Case 2 into two subcases.

Subcase 2.1: There exists a subsequence of (λnan)n∈N in dom B. We may again
suppose λnan ∈ dom B for every n ∈ N. Since 0 ∈ star(dom A) and an ∈ dom A,
λnan ∈ dom A. Then by (3.11) and (3.12), (3.13) and Lemma 2.11, FA+B(z, z∗) = +∞,
which contradicts the hypothesis that (z, z∗) ∈ dom FA+B.

Subcase 2.2: There exists N2 ∈ N such that λnan < dom B for every n ≥ N2. We can
now assume that λnan < dom B for every n ∈ N. Thus an , 0 for every n ∈ N. Since
0 ∈ int dom B, (3.11) and (3.12) imply that 0 < λ∞ and then by (3.13)

0 < λ∞ < 1. (3.14)

Since 0 ∈ int dom B, (3.11) implies that λn > 0 for every n ∈ N. By (3.10), ‖an − z‖9 0.
Then we can and do suppose that ‖an − z‖ , 0 for every n ∈ N. Fix n ∈ N. Since
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0 ∈ int dom B, there exists 0 < ρ0 ≤ 1 such that ρ0BX ⊆ dom B. As 0 ∈ star(dom A) and
an ∈ dom A, λnan ∈ dom A. Set

bn := λnan and take b∗n ∈ A(λnan). (3.15)

Next we show that there exists εn ∈ ] 0, 1/n[ such that with Hn := (1 − εn)bn + εnρ0UX

and
τ0 :=

1
λn

[
2‖z‖ + 2‖an‖ + 2 + (‖an‖ + 1)

2λn‖z − an‖

ρ0

]
,

we have Hn ⊆ dom B and

inf ‖B(Hn)‖ ≥ n(1 + τ0‖b∗n‖), while εn max{‖an‖, 1} < 1
2‖z − an‖λn. (3.16)

For every s ∈ ]0, 1[, (3.11) and Fact 2.1 imply that (1 − s)bn + sρ0BX ⊆ dom B. By
Fact 2.1 again, (1 − s)bn + sρ0UX ⊆ int dom B = int dom B.

Now we show the second assertion of (3.16). Let k ∈ N and (sk)k∈N be a positive
sequence such that sk −→ 0 when k −→ ∞. It suffices to show

lim
k→∞

inf ‖B((1 − sk)bn + skρ0UX)‖ = +∞. (3.17)

Suppose to the contrary there exist a sequence (ck, c∗k)k∈N in gra B ∩ [((1 − sk)bn +

skρ0UX) × X∗] and L > 0 such that supk∈N ‖c
∗
k‖ ≤ L. Then ck −→ bn = λnan. By

the Banach–Alaoglu theorem (again see [29, Theorem 3.15]), there exist a weak∗

convergent subnet, (c∗β)β∈J of (c∗k)k∈N such that c∗β⇁w* c∗∞ ∈ X∗. Borwein and Yao
[12, Corollary 4.1] showed that (λnan, c∗∞) ∈ gra B, which contradicts our assumption
that λnan < dom B. Hence (3.17) holds and so does (3.16).

Set tn := εnρ0/2λn‖z − an‖ and thus 0 < tn < 1/4. Now we show

tnλnz + (1 − tn)(1 − εn)bn ∈ Hn. (3.18)

Since 0 < λn ≤ 1, we have

‖tnλnz + (1 − tn)(1 − εn)bn − (1 − εn)bn‖ = ‖tnλnz − tn(1 − εn)bn‖

= ‖tnλnz − tn(1 − εn)λnan‖ = tnλn‖z − an + εnan‖

=
εnρ0

2λn‖z − an‖
λn‖z − an + εnan‖

≤
εnρ0

2‖z − an‖
(‖z − an‖ + ‖εnan‖)

<
εnρ0

2‖z − an‖

(
‖z − an‖ +

1
2
‖z − an‖

)
(by (3.16))

< εnρ0.

Hence (3.18) holds.
Next we show that there exists (ãn, ãn

∗)n∈N in gra A ∩ (Hn × X∗) such that

〈z − ãn, ãn
∗
〉 ≥ −τ0‖b∗n‖. (3.19)
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14 J. M. Borwein and L. Yao [14]

We consider two further subcases.

Subcase 2.2a: We have (tnλnz + (1 − tn)(1 − εn)bn, (1 + tn)b∗n) ∈ gra A. Set (ãn, ãn
∗) :=

(tnλnz + (1 − tn)(1 − εn)bn, (1 + tn)b∗n). Since (0, 0) ∈ gra A, 〈bn, b∗n〉 ≥ 0.
Then we have

〈tnλnz − ãn, ãn
∗
〉 = 〈tnλnz − tnλnz − (1 − tn)(1 − εn)bn, (1 + tn)b∗n〉

= 〈−(1 − tn)(1 − εn)bn, (1 + tn)b∗n〉 = −〈(1 − t2
n)(1 − εn)bn, b∗n〉

≥ −〈bn, b∗n〉.

(3.20)

On the other hand, (3.15) and the monotonicity of A imply that

〈tnλnz + (1 − tn)(1 − εn)bn − bn, tnb∗n〉

= 〈tnλnz + (1 − tn)(1 − εn)bn − bn, (1 + tn)b∗n − b∗n〉 ≥ 0.

Thus

〈tnλnz − [1 − (1 − tn)(1 − εn)]bn, b∗n〉 ≥ 0. (3.21)

Since 1 − (1 − tn)(1 − εn) > 0 and 〈bn, b∗n〉 = 〈bn − 0, b∗n − 0〉 ≥ 0, (3.21) implies that
〈tnλnz, b∗n〉 ≥ 0 and thus

〈z, b∗n〉 ≥ 0.

Then by ãn
∗

= (1 + tn)b∗n and tnλn ≤ 1, (3.20) implies that

〈z − ãn, ãn
∗
〉 ≥ −〈bn, b∗n〉 ≥ −‖bn‖ · ‖b∗n‖ ≥ −‖an‖ · ‖b∗n‖ ≥ −τ0‖b∗n‖.

Hence (3.19) holds.

Subcase 2.2b: We have (tnλnz + (1 − tn)(1 − εn)bn, (1 + tn)b∗n) < gra A. By 0 ∈
star(dom A) and an ∈ dom A, we have (1 − εn)λnan ∈ dom A, hence dom A ∩ Hn , ∅.
Since tnλnz + (1 − tn)(1 − εn)bn ∈ Hn by (3.18), (tnλnz + (1 − tn)(1 − εn)bn, (1 + tn)b∗n) <
gra A and A is of type (FPV), there exists (ãn, ãn

∗) ∈ gra A such that ãn ∈ Hn and

〈tnλnz + (1 − tn)(1 − εn)bn − ãn, ãn
∗
− (1 + tn)b∗n〉 > 0

⇒ 〈tnλnz − [1 − (1 − tn)(1 − εn)]ãn + (1 − tn)(1 − εn)(bn − ãn), ãn
∗
− b∗n〉

> 〈tnλnz + (1 − tn)(1 − εn)bn − ãn, tnb∗n〉

≥ 〈tnλnz − ãn, tnb∗n〉 (since 〈bn, b∗n〉 ≥ 0)
⇒ 〈tnλnz − [1 − (1 − tn)(1 − εn)]ãn, ãn

∗
− b∗n〉

> 〈(1 − tn)(1 − εn)(bn − ãn), b∗n − ãn
∗
〉 + 〈tnλnz − ãn, tnb∗n〉

⇒ 〈tnλnz − [1 − (1 − tn)(1 − εn)]ãn, ãn
∗
− b∗n〉 > 〈tnλnz − ãn, tnb∗n〉

⇒ 〈tnλnz − [tn + εn − tnεn]ãn, ãn
∗
〉

> 〈tnλnz − ãn, tnb∗n〉 + 〈tnλnz − [tn + εn − tnεn]ãn, b∗n〉.
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Since 〈ãn, ãn
∗
〉 = 〈ãn − 0, ãn

∗
− 0〉 ≥ 0 and tn + εn − tnεn ≥ tn ≥ tnλn, 〈[tn + εn −

tnεn]ãn, ãn
∗
〉 ≥ tnλn〈ãn, ãn

∗
〉. Thus

〈tnλnz − tnλnãn, ãn
∗
〉

> 〈tnλnz − ãn, tnb∗n〉 + 〈tnλnz − [tn + εn − tnεn]ãn, b∗n〉

⇒

〈 tnλnz − tnλnãn

λntn
, ãn

∗
〉

>
〈
tnλnz − ãn,

1
λn

b∗n
〉

+

〈 tnλnz − [tn + εn − tnεn]ãn

λntn
, b∗n

〉
⇒ 〈z − ãn, ãn

∗
〉 >

〈
tnλnz − ãn,

1
λn

b∗n
〉

+

〈
z −

[
1 +

εn

tn
− εn

] 1
λn

ãn, b∗n
〉

⇒ 〈z − ãn, ãn
∗
〉

> −
1
λn
‖b∗n‖(‖z‖ + ‖an‖ + 1) − ‖b∗n‖

(
‖z‖ +

1
λn

(‖an‖ + 1)
(
1 +

2λn‖z − an‖

ρ0

))
⇒ 〈z − ãn, ãn

∗
〉

> −‖b∗n‖
1
λn

[
2‖z‖ + 2‖an‖ + 2 + (‖an‖ + 1)

2λn‖z − an‖

ρ0

]
= −τ0‖b∗n‖.

Finally, combining all of the subcases, we deduce that (3.19) holds.
Since εn < 1/n and ãn ∈ Hn, (3.12) shows that

ãn −→ λ∞z. (3.22)

Take w∗n ∈ B(ãn) by (3.16). Then by (3.16) again,

‖w∗n‖ ≥ n(1 + τ0‖b∗n‖), ∀n ∈ N. (3.23)

Then by (3.19),

−τ0‖b∗n‖ + 〈z − ãn,w∗n〉 + 〈z
∗, ãn〉 ≤ 〈z − ãn, ãn

∗
〉 + 〈z − ãn,w∗n〉 + 〈z

∗, ãn〉

≤ FA+B(z, z∗).

Thus

−
τ0‖b∗n‖
‖w∗n‖

+

〈
z − ãn,

w∗n
‖w∗n‖

〉
+

〈 z∗

‖w∗n‖
, ãn

〉
≤

FA+B(z, z∗)
‖w∗n‖

. (3.24)

By the Banach–Alaoglu theorem (see [29, Theorem 3.15]), there exist a weak∗

convergent subnet, (w∗i /‖w
∗
i ‖)i∈I of w∗n/‖w

∗
n‖ such that

w∗i
‖w∗i ‖

⇁w* w∗∞ ∈ X∗. (3.25)

Combine (3.22), (3.23) and (3.25), by FA+B(z, z∗) < +∞, and take the limit along the
subnet in (3.24) to obtain

〈z − λ∞z,w∗∞〉 ≤ 0.

https://doi.org/10.1017/S1446788714000056 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788714000056


16 J. M. Borwein and L. Yao [16]

Then (3.14) shows that

〈z,w∗∞〉 ≤ 0. (3.26)

On the other hand, since 0 ∈ int dom B, Fact 2.7 implies that there exists ρ1 > 0 and
M > 0 such that

〈ãn,w∗n〉 ≥ ρ1‖w∗n‖ − (‖ãn‖ + ρ1)M.

Thus 〈
ãn,

w∗n
‖w∗n‖

〉
≥ ρ1 −

(‖ãn‖ + ρ1)M
‖w∗n‖

.

Use (3.22), (3.23) and (3.25), and take the limit along the subnet in the above inequality
to obtain

〈λ∞z,w∗∞〉 ≥ ρ1.

Hence

〈z,w∗∞〉 ≥
ρ1

λ∞
> 0,

which contradicts (3.26).
Combining all of the above cases, we have arrived at z ∈ dom A. �

We are finally ready to prove our main result. The special case in which B is the
normal cone operator of a nonempty closed convex set was first established by Voisei
in [38].

Theorem 3.3 ((FPV) sum theorem). Let A, B : X ⇒ X∗ be maximally monotone with
star(dom A) ∩ int dom B , ∅. Assume that A is of type (FPV). Then A + B is maximally
monotone.

Proof. After translating the graphs if necessary, we can and do assume that 0 ∈
star(dom A) ∩ int dom B and that (0, 0) ∈ gra A ∩ gra B. By Fact 2.2, dom A ⊆
PX(dom FA) and dom B ⊆ PX(dom FB). Hence,⋃

λ>0

λ(PX(dom FA) − PX(dom FB)) = X.

Thus, by Fact 2.3, it suffices to show that

FA+B(z, z∗) ≥ 〈z, z∗〉, ∀(z, z∗) ∈ X × X∗.

Take (z, z∗) ∈ X × X∗. Then

FA+B(z, z∗) = sup
{x,x∗,y∗}

[〈x, z∗〉 + 〈z − x, x∗〉 + 〈z − x, y∗〉 − ιgra A(x, x∗) − ιgra B(x, y∗)].

Suppose to the contrary that there exists η > 0 such that

FA+B(z, z∗) + η < 〈z, z∗〉, (3.27)
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so that

(z, z∗) is monotonically related to gra(A + B). (3.28)

Then by Propositions 3.1 and 3.2,

z ∈ dom A\dom B. (3.29)

Now by Lemma 2.9,

z < dom A. (3.30)

Indeed, if z ∈ dom A, Lemma 2.9 and (3.28) show that z ∈ dom B. Thus, z ∈ dom A ∩
dom B and hence FA+B(z, z∗) ≥ 〈z, z∗〉 which contradicts (3.27). Thence we have
established (3.30).

Thus (3.29) implies that there exists (an, a∗n)n∈N in gra A such that

an −→ z. (3.31)

By (3.29), an < dom B for all but finitely many terms an. We can suppose that
an < dom B for all n ∈ N. Facts 2.1 and 2.6 show that there exists λn ∈ ]0, 1[ such
that

λnan ∈ bdry dom B. (3.32)

By (3.31), we can assume that

λn −→ λ∞ ∈ [0, 1] and thus λnan −→ λ∞z. (3.33)

Then by (3.32) and (3.29)

λ∞ < 1. (3.34)

We consider two cases.

Case 1: There exists a subsequence of (λnan)n∈N in dom B.
We can suppose that λnan ∈ dom B for every n ∈ N. Since 0 ∈ star(dom A) and an ∈

dom A, λnan ∈ dom A. Then by (3.32), (3.33), (3.34) and Lemma 2.11, FA+B(z, z∗) =

+∞, which contradicts (3.27) that (z, z∗) ∈ dom FA+B.

Case 2: There exists N ∈ N such that λnan < dom B for every n ≥ N.
We can suppose that λnan < dom B for every n ∈ N. Thus an , 0 for every n ∈ N.

Following the pattern of Subcase 2.2 in the proof of Proposition 3.21, we obtain a
contradiction.

Combing all of the above cases, we have FA+B(z, z∗) ≥ 〈z, z∗〉 for all (z, z∗) ∈ X × X∗.
Hence A + B is maximally monotone. �

Remark 3.4. In Case 2 in the proof of Theorem 3.3 (see Appendix A below), we
use Lemma 2.9 to deduce that ‖an − z‖ , 0. Without the help of Lemma 2.9, we
may still can obtain (A6) as follows. For the case of an = z, consider whether
((1 − εn)bn, 0) = ((1 − εn)λnz, 0) ∈ Hn × X∗ is in gra A or not. We can deduce that there

1We banish the details to Appendix A to spare the readers.
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exists (ãn, ãn
∗)n∈N in gra A ∩ (Hn × X∗) such that

〈z − ãn, ãn
∗
〉 ≥ 0.

Hence (A6) holds, and the proof of Theorem 3.3 can be achieved without Lemma 2.9.

4. Examples and consequences

We start by illustrating that the starshaped hypothesis catches operators whose
domain may be nonconvex and have no algebraic interior.

Example 4.1 (Operators with starshaped domains). We illustrate that there are many
choices of maximally monotone operator A of type (FPV) with nonconvex domain
such that ic dom A = int dom A = ∅ and star(dom A) , ∅. Let f : R2 → ]−∞,+∞] be
defined by

(x, y) 7→

max{1 −
√

x, |y|} if x ≥ 0,
+∞ otherwise.

Consider an infinite-dimensional Banach space X containing a nonempty closed and
convex set C such that icC = ∅. It is not known whether all spaces have this property
but all separable or reflexive spaces certainly do [11]. Define A : (R2 × X)⇒ (R2 × X∗)
by

(v,w)⇒ (∂ f (v), ∂ιC(w)) = ∂F(v,w),

where F := f ⊕ ιC . Define ‖ · ‖ on R2 × X by ‖(v,w)‖ := ‖v‖ + ‖w‖.
Then f is proper convex and lowers semicontinuous and so, therefore, is F. Indeed,

[26, Example before Theorem 23.5, page 218] shows that dom ∂ f is not convex and
consequently dom A is not convex. (Many other candidates for f are given in [11,
Ch. 7].) Clearly, A = ∂F is maximally monotone. Let w0 ∈ C and v0 = (2, 0). Consider
(v0,w0) ∈ R2 × X. Since v0 = (2, 0) ∈ int dom ∂ f , v0 ∈ star(dom ∂ f ) since dom f is
convex. Thus (v0,w0) ∈ star(dom A). Since icC = ∅ and so int C = ∅, it follows that
ic dom A = int dom A = ∅. Simons [31, Theorem 48.4(d)] showed that A = ∂F is of
type (FPV).

The next example gives all of the details of how to associate the support points
of a convex set to a subgradient. In [16, 21] and [11, Exercise 8.4.1, page 401]
the construction is used to build empty subgradients in various Fréchet spaces and
incomplete normed spaces.

Example 4.2 (Support points). Suppose that X is separable. We can always find a
compact convex set C ⊆ X such that span C , X and span C = X (see [11]). Take
x0 < span C. Define f : X → ]−∞,+∞] by

f (x) := min{t ∈ R | x + tx0 ∈ C}, ∀x ∈ X.
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By direct computation f is proper lower semicontinuous and convex, see [21]. By the
definition of f , dom f = C + Rx0. Let t ∈ R and c ∈ C. We shall establish that

∂ f (tx0 + c) =

NC(c) ∩ {y∗ ∈ X∗ | 〈y∗, x0〉 = −1} if c ∈ supp C,
∅ otherwise.

(4.1)

Thence, also dom ∂ f = Rx0 + supp C.
First we show that the implication

tx0 + c = sx0 + d, where t, s ∈ R, c, d ∈ C ⇒ t = s and c = d (4.2)

holds. Let t, s ∈ R and c, d ∈ C. We have (t − s)x0 = d − c ∈ span C − span C = span C.
Since x0 < span C, t = s and then c = d. Hence we obtain (4.2).

By (4.2), we have

f (tx0 + c) = −t, ∀t ∈ R, ∀c ∈ C. (4.3)

We next show that (4.1) holds.
Since dom f = C + Rx0, by (4.3), we have

x∗ ∈ ∂ f (tx0 + c)
⇔ 〈x∗, sx0 + d − (tx0 + c)〉 ≤ f (sx0 + d) − f (tx0 + c) = −s + t, ∀s ∈ R, ∀d ∈ C
⇔ 〈x∗, (s − t)x0 + (d − c)〉 ≤ −s + t, ∀s ∈ R, ∀d ∈ C
⇔ 〈x∗, sx0 + (d − c)〉 ≤ −s, ∀s ∈ R, ∀d ∈ C
⇔ 〈x∗, sx0〉 ≤ −s and 〈x∗, d − c〉 ≤ 0, ∀s ∈ R, ∀d ∈ C
⇔ 〈x∗, sx0〉 ≤ −s and x∗ ∈ NC(c), x∗ , 0, ∀s ∈ R
⇔ 〈x∗, x0〉 = −1, x∗ ∈ NC(c) and c ∈ supp C.

Hence (4.1) holds.
As a concrete example of C consider, for 1 ≤ p < ∞, any order interval C := {x ∈

`p(N) : α ≤ x ≤ β} where α < β ∈ `p(N). The example extends to all weakly compactly
generated (WCG) spaces [11] with a weakly compact convex set in the role of C.

We gave the last example in part as it allows one to better understand what the
domain of a maximally monotone operator with empty interior can look like. While
the star may be empty, it has been recently proven [36], see also [19], that for a
closed convex function f the domain of ∂ f is always pathwise and locally pathwise
connected.

An immediate corollary of Theorem 3.3 is the following which generalizes
[41, Corollary 3.9].

Corollary 4.3 (Convex domain). Let A, B : X ⇒ X∗ be maximally monotone with
dom A ∩ int dom B , ∅. Assume that A is of type (FPV) with convex domain. Then
A + B is maximally monotone.

An only slightly less immediate corollary is given next.
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Corollary 4.4 (Nonempty interior, see [8, Theorem 9(i)] or Fact 2.8). Let A, B : X ⇒
X∗ be maximally monotone with int dom A ∩ int dom B , ∅. Then A + B is maximally
monotone.

Proof. By the assumption, there exists x0 ∈ int dom A ∩ int dom B. We first show that
A is of type (FPV). Let C be a nonempty closed convex subset of X, and suppose
that dom A ∩ int C , ∅. Let x1 ∈ dom A ∩ int C. Fact 2.1 and [44, Theorem 1.1.2(ii)]
imply that [x0, x1[⊆ int dom A = int dom A. Since x1 ∈ int C, there exists 0 < δ < 1
such that x1 + δ(x0 − x1) ∈ int dom A ∩ int C. Then NC + A is maximally monotone by
Corollary 4.3 and [31, Theorem 48.4(d)]. Hence by Fact 2.5, A is of type (FPV), see
also [8].

Since x0 ∈ int dom A, Fact 2.1 and [44, Theorem 1.1.2(ii)] imply that x0 ∈

star(dom A) and hence we have x0 ∈ star(dom A) ∩ int dom B. Then by Theorem 3.3,
we deduce that A + B is maximally monotone. �

Corollary 4.5 (Linear relation see [13, Theorem 3.1]). Let A : X⇒ X∗ be a maximally
monotone linear relation, and let B : X ⇒ X∗ be maximally monotone. Suppose that
dom A ∩ int dom B , ∅. Then A + B is maximally monotone.

Proof. Apply Fact 2.5 and Corollary 4.3 directly. �

The proof of our final Corollary 4.6 is adapted from that of [41, Corollary 2.10]
and [13, Corollary 3.3]. Moreover, it generalizes both [41, Corollary 2.10] and
[13, Corollary 3.3].

Corollary 4.6 (FPV property of the sum). Let A, B : X ⇒ X∗ be maximally monotone
with dom A ∩ int dom B , ∅. Assume that A is of type (FPV) with convex domain.
Then A + B is of type (FPV).

Proof. By Corollary 4.3, A + B is maximally monotone. Let C be a nonempty closed
convex subset of X, and suppose that dom(A + B) ∩ int C , ∅. Let x1 ∈ dom A ∩
int dom B and x2 ∈ dom(A + B) ∩ int C. Then x1, x2 ∈ dom A, x1 ∈ int dom B and x2 ∈

dom B ∩ int C. Hence λx1 + (1 − λ)x2 ∈ int dom B for every λ ∈ [0, 1] by Fact 2.1 and
[44, Theorem 1.1.2(ii)] and so there exists δ ∈]0, 1] such that λx1 + (1 − λ)x2 ∈ int C
for every λ ∈ [0, δ].

Thus, δx1 + (1 − δ)x2 ∈ dom A ∩ int dom B ∩ int C. By Corollary 4.4, B + NC is
maximally monotone. Then, by Corollary 4.3 (applied A and B + NC to A and B),
A + B + NC = A + (B + NC) is maximally monotone. By Fact 2.5, A + B is of type
(FPV). �

We have been unable to relax the convexity hypothesis in Corollary 4.6.
We finish by listing some related interesting, at least to the current authors,

questions regarding the sum problem.

Open Problem 4.7. Let A : X ⇒ X∗ be maximally monotone with convex domain. Is
A necessarily of type (FPV)?

Let us recall a problem posed by Simons in [30, Problem 41.2].
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Open Problem 4.8. Let A : X ⇒ X∗ be of type (FPV), let C be a nonempty closed
convex subset of X, and suppose that dom A ∩ int C , ∅. Is A + NC necessarily
maximally monotone?

More generally, can we relax or indeed entirely drop the starshaped hypothesis on
dom A in Theorem 3.3?

Open Problem 4.9. Let A, B : X ⇒ X∗ be maximally monotone with dom A ∩
int dom B , ∅. Assume that A is of type (FPV). Is A + B necessarily maximally
monotone?

If all maximally monotone operators are type (FPV) this is no easier than the full
sum problem. Can the results of [36] help here?
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Appendix A. Proof of Case 2 in the proof of Theorem 3.3

Proof. Case 2: There exists N ∈ N such that λnan < dom B for every n ≥ N.
We can and do suppose that λnan < dom B for every n ∈ N. Thus an , 0 for every

n ∈ N.
Since 0 ∈ int dom B, (3.33) and (3.32) imply that 0 < λ∞ and hence by (3.34)

0 < λ∞ < 1. (A1)

By (3.30), ‖an − z‖ , 0 for every n ∈ N.
Fix n ∈ N. Since 0 ∈ int dom B, there exists 0 < ρ0 ≤ 1 such that ρ0BX ⊆ dom B.

Since 0 ∈ star(dom A) and an ∈ dom A, λnan ∈ dom A. Set

bn := λnan and take b∗n ∈ A(λnan). (A2)

Next we show that there exists εn ∈]0, 1/n[ such that Hn ⊆ dom B and

inf ‖B(Hn)‖ ≥ n(1 + τ0‖b∗n‖), εn max{‖an‖, 1} < 1
2‖z − an‖λn. (A3)

where Hn := (1 − εn)bn + εnρ0UX and τ0 := (1/λn)[2‖z‖ + 2‖an‖ + 2 + (‖an‖ + 1)
(2λn‖z − an‖/ρ0)].

For every ε ∈ ]0,1[, by (3.32) and Fact 2.1, (1 − ε)bn + ερ0BX ⊆ dom B. By Fact 2.1
again, (1 − ε)bn + ερ0UX ⊆ int dom B = int dom B.

Now we show the second part of (A3). Let k ∈ N and (sk)k∈N be a positive sequence
such that sk −→ 0 when k −→ ∞. It suffices to show

lim
k→∞

inf ‖B((1 − sk)bn + skρ0UX)‖ = +∞. (A4)
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Suppose to the contrary that there exist a sequence (ck, c∗k)k∈N in gra B ∩ [((1 − sk)
bn + skρ0UX) × X∗] and L > 0 such that supk∈N ‖c

∗
k‖ ≤ L. Then ck −→ bn = λnan.

By the Banach–Alaoglu theorem (see [29, Theorem 3.15]), there exist a weak∗

convergent subnet, (c∗β)β∈J of (c∗k)k∈N such that c∗β⇁w* c∗∞ ∈ X∗. Borwein and Yao
[12, Corollary 4.1] showed that (λnan, c∗∞) ∈ gra B, which contradicts our assumption
that λnan < dom B.

Hence (A4) holds and so does (A3).
Set tn := εnρ0/2λn‖z − an‖ and thus 0 < tn < 1

4 . Thus

tnλnz + (1 − tn)(1 − εn)bn ∈ Hn. (A5)

Next we show there exists (ãn, ãn
∗)n∈N in gra A ∩ (Hn × X∗) such that

〈z − ãn, ãn
∗
〉 ≥ −τ0‖b∗n‖. (A6)

We consider two subcases.

Subcase 2.1: We have (tnλnz + (1 − tn)(1 − εn)bn, (1 + tn)b∗n) ∈ gra A.
Then set (ãn, ãn

∗) := (tnλnz + (1 − tn)(1 − εn)bn, (1 + tn)b∗n). Since (0, 0) ∈ gra A,
〈bn, b∗n〉 ≥ 0. Then we have

〈tnλnz − ãn, ã∗n〉 = 〈tnλnz − tnλnz − (1 − tn)(1 − εn)bn, (1 + tn)b∗n〉

= 〈−(1 − tn)(1 − εn)bn, (1 + tn)b∗n〉 = −〈(1 − t2
n)(1 − εn)bn, b∗n〉

≥ −〈bn, b∗n〉.

(A7)

On the other hand, (A2) and the monotonicity of A imply that

〈tnλnz + (1 − tn)(1 − εn)bn − bn, tnb∗n〉
= 〈tnλnz + (1 − tn)(1 − εn)bn − bn, (1 + tn)b∗n − b∗n〉 ≥ 0.

Thus

〈tnλnz − [1 − (1 − tn)(1 − εn)]bn, b∗n〉 ≥ 0. (A8)

Since 1 − (1 − tn)(1 − εn) > 0 and 〈bn, b∗n〉 = 〈bn − 0, b∗n − 0〉 ≥ 0, (A8) implies that
〈tnλnz, b∗n〉 ≥ 0 and thus

〈z, b∗n〉 ≥ 0.

Then by ãn
∗

= (1 + tn)b∗n and tnλn ≤ 1, (A7) implies that

〈z − ãn, ã∗n〉 ≥ −〈bn, b∗n〉 ≥ −‖bn‖ · ‖b∗n‖ ≥ −‖an‖ · ‖b∗n‖ ≥ −τ0‖b∗n‖.

Hence (A6) holds.

Subcase 2.2: We have (tnλnz + (1 − tn)(1 − εn)bn, (1 + tn)b∗n) < gra A.
Since 0 ∈ star(dom A) and an ∈ dom A, we have (1 − εn)λnan ∈ dom A, hence

dom A ∩ Hn , ∅. Since tnλnz + (1 − tn)(1 − εn)bn ∈ Hn by (A5), (tnλnz + (1 − tn)
(1 − εn)bn, (1 + tn)b∗n) < gra A and A is of type (FPV), there exists (ãn, ãn

∗) ∈ gra A such
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that ãn ∈ Hn and

〈tnλnz + (1 − tn)(1 − εn)bn − ãn, ãn
∗
− (1 + tn)b∗n〉 > 0

⇒ 〈tnλnz − [1 − (1 − tn)(1 − εn)]ãn + (1 − tn)(1 − εn)(bn − ãn), ãn
∗
− b∗n〉

> 〈tnλnz + (1 − tn)(1 − εn)bn − ãn, tnb∗n〉
≥ 〈tnλnz − ãn, tnb∗n〉 (since 〈bn, b∗n〉 ≥ 0)

⇒ 〈tnλnz − [1 − (1 − tn)(1 − εn)]ãn, ãn
∗
− b∗n〉

> 〈(1 − tn)(1 − εn)(bn − ãn), b∗n − ãn
∗
〉 + 〈tnλnz − ãn, tnb∗n〉

⇒ 〈tnλnz − [1 − (1 − tn)(1 − εn)]ãn, ãn
∗
− b∗n〉 > 〈tnλnz − ãn, tnb∗n〉

⇒ 〈tnλnz − [tn + εn − tnεn]ãn, ãn
∗
〉

> 〈tnλnz − ãn, tnb∗n〉 + 〈tnλnz − [tn + εn − tnεn]ãn, b∗n〉.

Since 〈ãn, ãn
∗
〉 = 〈ãn − 0, ãn

∗
− 0〉 ≥ 0 and tn + εn − tnεn ≥ tn ≥ tnλn, 〈[tn + εn −

tnεn]ãn, ãn
∗
〉 ≥ tnλn〈ãn, ãn

∗
〉. Thus

〈tnλnz − tnλnãn, ãn
∗
〉 > 〈tnλnz − ãn, tnb∗n〉 + 〈tnλnz − [tn + εn − tnεn]ãn, b∗n〉

⇒

〈 tnλnz − tnλnãn

λntn
, ãn

∗
〉

>
〈
tnλnz − ãn,

1
λn

b∗n
〉

+

〈 tnλnz − [tn + εn − tnεn]ãn

λntn
, b∗n

〉
⇒ 〈z − ãn, ãn

∗
〉 >

〈
tnλnz − ãn,

1
λn

b∗n
〉

+

〈
z −

[
1 +

εn

tn
− εn

] 1
λn

ãn, b∗n
〉

⇒ 〈z − ãn, ãn
∗
〉

> −
1
λn
‖b∗n‖(‖z‖ + ‖an‖ + 1) − ‖b∗n‖

(
‖z‖ +

1
λn

(‖an‖ + 1)
(
1 +

2λn‖z − an‖

ρ0

))
⇒ 〈z − ãn, ãn

∗
〉 > −‖b∗n‖

1
λn

[
2‖z‖ + 2‖an‖ + 2 + (‖an‖ + 1)

2λn‖z − an‖

ρ0

]
= −τ0‖b∗n‖.

Hence combining all of the subcases, then (A6) holds.
Since εn < 1/n and ãn ∈ Hn, (3.33) shows that

ãn −→ λ∞z. (A9)

Take w∗n ∈ B(ãn) by (A3). Then by (A3) again,

‖w∗n‖ ≥ n(1 + τ0‖b∗n‖), ∀n ∈ N. (A10)

Then by (A6),

−τ0‖b∗n‖ + 〈z − ãn,w∗n〉 + 〈z
∗, ãn〉 ≤ 〈z − ãn, ãn

∗
〉 + 〈z − ãn,w∗n〉 + 〈z

∗, ãn〉

≤ FA+B(z, z∗).

Thus

−
τ0‖b∗n‖
‖w∗n‖

+

〈
z − ãn,

w∗n
‖w∗n‖

〉
+

〈 z∗

‖w∗n‖
, ãn

〉
≤

FA+B(z, z∗)
‖w∗n‖

. (A11)
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By the Banach–Alaoglu theorem (see [29, Theorem 3.15]), there exist a weak∗

convergent subnet, (w∗i /‖w
∗
i ‖)i∈I of w∗n/‖w

∗
n‖ such that

w∗i
‖w∗i ‖

⇁w* w∗∞ ∈ X∗. (A12)

Combining (A9), (A10) and (A12), by FA+B(z, z∗) < +∞, take the limit along the
subnet in (A11) to obtain

〈z − λ∞z,w∗∞〉 ≤ 0.

Then (A1) shows that

〈z,w∗∞〉 ≤ 0. (A13)

On the other hand, since 0 ∈ int dom B, Fact 2.7 implies that there exists ρ1 > 0 and
M > 0 such that

〈ãn,w∗n〉 ≥ ρ1‖w∗n‖ − (‖ãn‖ + ρ1)M.

Thus 〈
ãn,

w∗n
‖w∗n‖

〉
≥ ρ1 −

(‖ãn‖ + ρ1)M
‖w∗n‖

.

Combining (A9), (A10) and (A12), take the limit along the subnet in the above
inequality to obtain

〈λ∞z,w∗∞〉 ≥ ρ1.

Hence

〈z,w∗∞〉 ≥
ρ1

λ∞
> 0,

which contradicts (A13). �
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