CORRIGENDUM

A spectral refinement of the Bergelson-Host-Kra decomposition and new multiple ergodic theorems - CORRIGENDUM

JOEL MOREIRA and FLORIAN K. RICHTER
(Received 28 June 2023 and accepted in revised form 19 July 2023)
doi:10.1017/etds.2017.61, Published by Cambridge University Press, 7 September 2017

Abstract

This is a corrigendum to the paper 'A spectral refinement of the Bergelson-HostKra decomposition and new multiple ergodic theorems' [3]. Theorem 7.1 in that paper is incorrect as stated, and the error originates with Proposition 7.5, part (iii), which was incorrectly quoted from a paper by Bergelson, Host, and Kra [1]. Consequently, this invalidates the proof of Theorem 4.2, which was used in the proofs of the main results in [3]. In this corrigendum we fix the problem by establishing a slightly weaker version of Theorem 7.1 (see $\S 2$ below) and use it to give a new proof of Theorem 4.2 (see $\S 3$ below). This ensures that all main results in [3] remain correct. We thank Zhengxing Lian and Jiahao Qiu for bringing this mistake to our attention.

1. A counterexample to [3, Theorem 7.1]

We begin by presenting the counterexample to [3, Theorem 7.1] provided to us by Zhengxing Lian and Jiahao Qiu. We will use common terminology about nilmanifolds and nilsystems as reviewed in [3, §3].

THEOREM 7.1. (From [3]) Let $k \in \mathbb{N}$, let X be a connected nilmanifold and let $R: X \rightarrow X$ be an ergodic nilrotation. Define $S:=R \times R^{2} \times \cdots \times R^{k}$ and

$$
\begin{equation*}
Y_{x}:=\overline{\left\{S^{n}(x, x, \ldots, x): n \in \mathbb{Z}\right\}} \subseteq X^{k} . \tag{1.1}
\end{equation*}
$$

For almost every $x \in X, \sigma\left(Y_{x}, S\right)=\sigma(X, R)$.

Counterexample. Let $k=2$ and let (X, R) be the skew-product system given by R : $(x, y) \mapsto(x+\alpha, y+x)$ on \mathbb{T}^{2} for some irrational α. This system can be realized as an
ergodic nilsystem (see [3, Example 7.2]). For any point $(x, y) \in X$ let $Y_{(x, y)}$ be the orbit closure of the diagonal point $(x, y, x, y) \in X^{2}$ under the map $S=R \times R^{2}$. Then

$$
\begin{aligned}
Y_{(x, y)} & =\overline{\left\{\left(x+n \alpha, y+n x+\binom{n}{2} \alpha, x+2 n \alpha, y+2 n x+\binom{2 n}{2} \alpha\right): n \in \mathbb{N}\right\}} \\
& =(x, y, x, y)+\overline{\left\{\left(n \alpha, n x+\binom{n}{2} \alpha, 2 n \alpha, 2 n x+4\binom{n}{2} \alpha-n \alpha\right): n \in \mathbb{N}\right\}} .
\end{aligned}
$$

If $x, \alpha, 1$ are linearly independent over \mathbb{Q} (which happens almost surely) then it follows that

$$
\begin{equation*}
Y_{(x, y)}=(x, y, x, y)+\{(z, w, 2 z, \tilde{w}): z, w, \tilde{w} \in \mathbb{T}\} . \tag{1.2}
\end{equation*}
$$

Therefore the nilsystem $\left(Y_{(x, y)}, S\right)$ is isomorphic to the nilsystem (\mathbb{T}^{3}, τ_{x}), where $\tau_{x}(z, w, \tilde{w})=(z+\alpha, w+z+x, \tilde{w}+4 z+2 x+\alpha)$. Consider the function $f: \mathbb{T}^{3} \rightarrow \mathbb{C}$ described by $f(z, w, \tilde{w})=e(\tilde{w}-4 w)$, where $e(z):=e^{2 \pi i z}$. Then

$$
f\left(\tau_{x}(z, w, \tilde{w})\right)=e((\tilde{w}+4 z+2 x+\alpha)-4(w+z+x))=e(\alpha-2 x) f(z, w, \tilde{w}) .
$$

This shows that $\alpha-2 x$ is an eigenvalue of the system $\left(Y_{(x, y)}, S\right)$, but not of the system (X, R), so $\sigma\left(Y_{(x, y)}, R \times T^{2}\right) \nsubseteq \sigma(X, S)$ for almost every $(x, y) \in X$.

2. Revised version of [3, Theorem 7.1]

The above example shows that [3, Theorem 7.1] is not correct as stated. Here is a corrected version.

Revised Theorem 7.1. Let $k \in \mathbb{N}$, let X be a connected nilmanifold and let $R: X \rightarrow X$ be an ergodic nilrotation. Define $S:=R \times R^{2} \times \cdots \times R^{k}$ and

$$
\begin{equation*}
Y_{x}:=\overline{\left\{S^{n}(x, x, \ldots, x): n \in \mathbb{Z}\right\}} \subseteq X^{k} . \tag{2.1}
\end{equation*}
$$

For any $\theta \in[0,1)$, if $\theta \notin \sigma(X, R)$ then for almost every $x \in X$ we have $\theta \notin \sigma\left(Y_{x}, S\right)$.

Remark 2.1. The difference between the (incorrect) statement of Theorem 7.1 in [3] and the (correct) statement of Revised Theorem 7.1 above is that
'for almost every $x \in X$ and all $\theta \notin \sigma(X, R)$ one has $\theta \notin \sigma\left(Y_{x}, S\right)^{\prime}$
has been replaced with
'for all $\theta \notin \sigma(X, R)$ and almost all $x \in X$ one has $\theta \notin \sigma\left(Y_{x}, S\right)^{\prime}$.
In other words, the full measure set of x is now allowed to depend on θ.

Proof of Revised Theorem 7.1. Given a nilpotent Lie group G, denote by $G=G_{1} \unrhd G_{2} \unrhd$ $\cdots \unrhd G_{s} \unrhd\left\{1_{G}\right\}$ its lower central series. For $k \in \mathbb{N}$, define $H^{(1)}(G), \ldots, H^{(k-1)}(G)$ as

$$
\left.H^{(i)}(G):=\left\{\left(g^{\binom{1}{i}}, g^{\left(\begin{array}{l}
2 \tag{2.2}
\end{array}\right)}, \ldots, g^{(k}{ }_{i}^{k}\right)\right): g \in G_{i}\right\} \subseteq G^{k},
$$

where $\binom{j}{i}=0$ for $j<i$, and let $H(G)$ be given by

$$
\begin{equation*}
H(G):=H^{(1)}(G) H^{(2)}(G) \cdots H^{(k-1)}(G) G_{k}^{k} \tag{2.3}
\end{equation*}
$$

Also, for a co-compact lattice $\Gamma \subset G$ define $\Delta(G, \Gamma):=H(G) \cap \Gamma^{k}$. Since $H(G)$ is a rational subgroup of G^{k}, it follows from [2, Lemma 1.11] that $\Delta(G, \Gamma)$ is a uniform and discrete subgroup of $H(G)$. Define the nilmanifold $Y(G, \Gamma):=H(G) / \Delta(G, \Gamma)$. Note that we can naturally identify $Y(G, \Gamma)$ with a subnilmanifold of $(G / \Gamma)^{k}$.

For $b \in G$, define $R_{b}: G / \Gamma \rightarrow G / \Gamma$ to be the map $R_{b}(g \Gamma)=(b g) \Gamma$ and let

$$
\begin{equation*}
S_{b}:=R_{b} \times R_{b}^{2} \times \cdots \times R_{b}^{k} \tag{2.4}
\end{equation*}
$$

For $x=g \Gamma \in G / \Gamma$ define

$$
\begin{equation*}
Y_{x}:=\overline{\left\{S_{b}^{n}(x, x, \ldots, x): n \in \mathbb{Z}\right\}} \subseteq(G / \Gamma)^{k} . \tag{2.5}
\end{equation*}
$$

It was shown in [3, Proposition 7.5, part (iv)] that for almost every $x=g \Gamma \in G / \Gamma$ the map $R_{g^{-1}} \times \cdots \times R_{g^{-1}}:(G / \Gamma)^{k} \rightarrow(G / \Gamma)^{k}$ is an isomorphism from the nilsystem $\left(Y_{x}, S_{a}\right)$ to the nilsystem $\left(Y(G, \Gamma), S_{g^{-1} a g}\right)$.

Suppose now that $X=G / \Gamma$ is the system in the statement of the theorem and let $a \in G$ be such that $R=R_{a}$. Take $\theta \in[0,1)$. Our goal is to show that if $\theta \notin \sigma(X, R)$ then $\theta \notin \sigma\left(Y_{x}, S_{a}\right)$ for almost every $x \in X$. Let us first deal with the case when θ is irrational.

Observe that θ is not an eigenvalue of $\left(X, R_{a}\right)$ if and only if the product system $\left(X, R_{a}\right) \times\left(\mathbb{T}, R_{\theta}\right)$ is ergodic, where $R_{\theta}: t \mapsto t+\theta$ is rotation by θ. Notice that $X \times \mathbb{T}=(G \times \mathbb{R}) /(\Gamma \times \mathbb{Z})$ is a nilmanifold too, and hence $\left(X, R_{a}\right) \times\left(\mathbb{T}, R_{\theta}\right)$ is a nilsystem. In accordance with (2.4) and (2.5) let

$$
S_{(a, \theta)}=\left(R_{a} \times R_{\theta}\right) \times\left(R_{a}^{2} \times R_{2 \theta}\right) \times \cdots \times\left(R_{a}^{k} \times R_{k \theta}\right)
$$

and

$$
Y_{(x, t)}:=\overline{\left\{S_{(a, \theta)}^{n}((x, t), \ldots,(x, t)): n \in \mathbb{Z}\right\}} \subseteq(X \times \mathbb{T})^{k}
$$

As was mentioned above, for almost every $(x, t)=(g \Gamma, t) \in X \times \mathbb{T}$, the nilsystem $\left(Y_{(x, t)}, S_{(a, \alpha)}\right)$ is isomorphic to $\left(Y(G \times \mathbb{R}, \Gamma \times \mathbb{Z}), S_{\left(g^{-1} a g, \theta\right)}\right)$.

We claim that $Y(G \times \mathbb{R}, \Gamma \times \mathbb{Z}) \cong Y(G, \Gamma) \times Y(\mathbb{R}, \Gamma)$. Assuming this claim for now, it follows that

$$
\begin{aligned}
\left(Y_{(x, t)}, S_{(a, \theta)}\right) & \cong\left(Y(G \times \mathbb{R}, \Gamma \times \mathbb{Z}), S_{\left(g^{-1} a g, \theta\right)}\right) \\
& \cong\left(Y(G, \Gamma), S_{g^{-1} a g}\right) \times\left(Y(\mathbb{R}, \mathbb{Z}), S_{\theta}\right) \\
& \cong\left(Y(G, \Gamma), S_{g^{-1} a g}\right) \times\left(\mathbb{T}, R_{\theta}\right) \\
& \cong\left(Y_{x}, S_{a}\right) \times\left(\mathbb{T}, R_{\theta}\right)
\end{aligned}
$$

Recall that any transitive nilsystem is ergodic. Since $\left(Y_{(x, t)}, S_{(a, \theta)}\right)$ is transitive by definition, it follows that it is ergodic, which implies that $\left(Y_{x}, S_{a}\right) \times\left(\mathbb{T}, R_{\theta}\right)$ is ergodic for almost every $x \in X$. However, $\left(Y_{x}, S_{a}\right) \times\left(\mathbb{T}, R_{\theta}\right)$ can only be ergodic if θ is not in the discrete spectrum of $\left(Y_{x}, S_{a}\right)$, which finishes the proof that $\theta \notin \sigma\left(Y_{x}, S_{a}\right)$ for almost every $x \in X$.

It remains to show that $Y(G \times \mathbb{R}, \Gamma \times \mathbb{Z}) \cong Y(G, \Gamma) \times Y(\mathbb{R}, \Gamma)$. Note that $H^{(i)}(\mathbb{R})=\{0\}^{k}$ for all $i \geq 2$, so that $H(\mathbb{R})=\{(t, 2 t, \ldots, k t): t \in \mathbb{R}\}$. More generally, for any G we have $H^{(i)}(G \times \mathbb{R})=H^{(i)}(G) \times\{0\}^{k}$ whenever $i \geq 2$. This implies that

$$
H(G \times \mathbb{R})=H(G) \times H(\mathbb{R})
$$

Finally, since

$$
\begin{aligned}
\Delta(G \times \mathbb{R}, \Gamma \times \mathbb{Z}) & =(H(G) \times H(\mathbb{R})) \cap\left(\Gamma^{k} \times \mathbb{Z}^{k}\right) \\
& =H(G) \cap \Gamma^{k} \times H(\mathbb{R}) \cap \mathbb{Z}^{k} \\
& =\Delta(G, \Gamma) \times \Delta(\mathbb{R}, \mathbb{Z}),
\end{aligned}
$$

the claim $Y(G \times \mathbb{R}, \Gamma \times \mathbb{Z}) \cong Y(G, \Gamma) \times Y(\mathbb{R}, \Gamma)$ follows.
Lastly, we deal with the case when $\theta=p / q \in(0,1)$ is rational. Recall that $S_{a}=R_{a} \times$ $R_{a}^{2} \times \cdots \times R_{a}^{k}$ and $Y_{x}:=\overline{\left\{S_{a}^{n}(x, x, \ldots, x): n \in \mathbb{Z}\right\}}$ and that

$$
\begin{equation*}
\left(Y_{x}, S_{a}\right) \cong\left(Y(G, \Gamma), S_{g^{-1} a g}\right) \tag{2.6}
\end{equation*}
$$

for all $x=g \Gamma \in X^{\prime}$, where X^{\prime} is some full measure subset of X. Observe that (2.6) implies

$$
\begin{equation*}
\left(Y_{x}, S_{a}^{q}\right) \cong\left(Y(G, \Gamma), S_{g^{-1} a g}^{q}\right) \tag{2.7}
\end{equation*}
$$

for all $x=g \Gamma \in X^{\prime}$. Then define

$$
Y_{x}^{(q)}:=\overline{\left\{S_{a}^{q n}(x, x, \ldots, x): n \in \mathbb{Z}\right\}}=\overline{\left\{S_{a q}^{n}(x, x, \ldots, x): n \in \mathbb{Z}\right\}} .
$$

Since X is connected and $\left(X, R_{a}\right)$ is ergodic, the nilsystem $\left(X, R_{a}^{q}\right)$ is ergodic. This implies that there exists a full measure set $X^{\prime \prime} \subset X$ such that for all $x=g \Gamma \in X^{\prime \prime}$ we have

$$
\begin{equation*}
\left(Y_{x}^{(q)}, S_{a}^{q}\right) \cong\left(Y(G, \Gamma), S_{g^{-1} a g}^{q}\right) \tag{2.8}
\end{equation*}
$$

Combining (2.7) and (2.8), we see that for any $x \in X^{\prime} \cap X^{\prime \prime}$ we have

$$
\left(Y_{x}, S_{a}^{q}\right) \cong\left(Y_{x}^{(q)}, S_{a}^{q}\right)
$$

Since $\left(Y_{x}^{(q)}, S_{a}^{q}\right)$ is transitive by definition, it must be ergodic, and thus it follows that for all $x \in X^{\prime} \cap X^{\prime \prime}$ the system $\left(Y_{x}, S_{a}^{q}\right)$ is ergodic. We conclude that $\theta=p / q$ is not an eigenvalue of (Y_{x}, S_{a}^{q}) and this finishes the proof.

3. Revised proof of [3, Theorem 4.2]

In light of the fact that [3, Theorem 7.1] is incorrect, we need to provide a new proof for [3, Theorem 4.2] to ensure that all the main results presented in [3] are still correct. With the same notation as in [3], let us recall the statement of [3, Theorem 4.2].

THEOREM 4.2. Let $k \in \mathbb{N}$, let G be an s-step nilpotent Lie group, and let Γ be a uniform and discrete subgroup of G such that $X=G / \Gamma$ is a connected nilmanifold. Let $R: X \rightarrow X$ be an ergodic niltranslation on X. Define $S:=R \times R^{2} \times \cdots \times R^{k}$ and

$$
Y_{X^{\Delta}}:=\overline{\left\{S^{n}(x, x, \ldots, x): x \in X, n \in \mathbb{Z}\right\}} \subseteq X^{k}
$$

Then $\sigma(X, R)=\sigma\left(Y_{X^{\Delta}}, S\right)$, where $\sigma(X, R)$ denotes the spectrum of the nilsystem (X, R) and $\sigma\left(Y_{X^{\Delta}}, S\right)$ denotes the spectrum of the nilsystem $\left(Y_{X^{\Delta}}, S\right)$.

Proof. Given $\theta \in \sigma(X, R)$, let $f \in L^{2}(X)$ be an eigenfunction of the system (X, R) with eigenvalue θ. Since the function $\tilde{f} \in L^{2}\left(Y_{X^{\Delta}}\right)$ defined by $\tilde{f}\left(x_{1}, \ldots, x_{k}\right)=f\left(x_{1}\right)$ is an eigenfunction for the system $\left(Y_{X^{\Delta}}, S\right)$ with eigenvalue θ, it follows that $\sigma(X, R) \subseteq$ $\sigma\left(Y_{X^{\Delta}}, S\right)$.

Next we prove the converse inclusion. Let v be the Haar measure of the nilmanifold $Y_{X^{\Delta}}$ and let v_{x} be the Haar measure of the nilmanifold Y_{x} defined by (2.1). Observe that the sets Y_{x} are precisely the atoms of the invariant σ-algebra of the system $\left(Y_{X^{\Delta}}, S\right)$. Therefore, the measures v_{x} form the ergodic decomposition of ν.

Let $\theta \in \sigma\left(Y_{X^{\Delta}}, S\right)$ and let $f \in L^{2}\left(Y_{X^{\Delta}}, \nu\right)$ be an eigenfunction with eigenvalue θ, that is, for almost every $y \in Y_{X^{\Delta}}$ we have $S f(y)=e(\theta) f(y)$. Since f cannot be 0ν-almost everywhere, there exists a positive measure set of $x \in X$ for which the restriction of f to the system $\left(Y_{x}, v_{x}, S\right)$ is not the zero function. But for any such x, the restriction of f to the system $\left(Y_{x}, v_{x}, S\right)$ is an eigenfunction with eigenvalue θ. This implies that $\theta \in \sigma\left(Y_{X^{\Delta}}, S\right)$ for all such x. Finally, by invoking Revised Theorem 7.1, we conclude that $\theta \in \sigma(X, R)$, finishing the proof.

References

[1] V. Bergelson, B. Host and B. Kra. Multiple recurrence and nilsequences. Invent. Math. 160 (2005), 261-303. With an appendix by I. Ruzsa.
[2] A. Leibman. Rational sub-nilmanifolds of a compact nilmanifold. Ergod. Th. \& Dynam. Sys. 26 (2006), 787-7098.
[3] J. Moreira and F. K. Richter. A spectral refinement of the Bergelson-Host-Kra decomposition and new multiple ergodic theorems. Ergod. Th. \& Dynam. Sys. 39 (2019), 1042-1070.

