CORRIGENDUM

A spectral refinement of the Bergelson–Host–Kra decomposition and new multiple ergodic theorems – CORRIGENDUM

JOEL MOREIRA and FLORIAN K. RICHTER

(Received 28 June 2023 and accepted in revised form 19 July 2023)

doi:10.1017/etds.2017.61, Published by Cambridge University Press, 7 September 2017

Abstract. This is a corrigendum to the paper 'A spectral refinement of the Bergelson–Host– Kra decomposition and new multiple ergodic theorems' [3]. Theorem 7.1 in that paper is incorrect as stated, and the error originates with Proposition 7.5, part (iii), which was incorrectly quoted from a paper by Bergelson, Host, and Kra [1]. Consequently, this invalidates the proof of Theorem 4.2, which was used in the proofs of the main results in [3]. In this corrigendum we fix the problem by establishing a slightly weaker version of Theorem 7.1 (see §2 below) and use it to give a new proof of Theorem 4.2 (see §3 below). This ensures that all main results in [3] remain correct. We thank Zhengxing Lian and Jiahao Qiu for bringing this mistake to our attention.

1. A counterexample to [3, Theorem 7.1]

We begin by presenting the counterexample to [3, Theorem 7.1] provided to us by Zhengxing Lian and Jiahao Qiu. We will use common terminology about nilmanifolds and nilsystems as reviewed in [3, §3].

THEOREM 7.1. (From [3]) Let $k \in \mathbb{N}$, let X be a connected nilmanifold and let $R : X \to X$ be an ergodic nilrotation. Define $S := R \times R^2 \times \cdots \times R^k$ and

$$Y_x := \overline{\{S^n(x, x, \dots, x) : n \in \mathbb{Z}\}} \subseteq X^k.$$
(1.1)

For almost every $x \in X$, $\sigma(Y_x, S) = \sigma(X, R)$.

Counterexample. Let k = 2 and let (X, R) be the skew-product system given by R: $(x, y) \mapsto (x + \alpha, y + x)$ on \mathbb{T}^2 for some irrational α . This system can be realized as an

ergodic nilsystem (see [3, Example 7.2]). For any point $(x, y) \in X$ let $Y_{(x,y)}$ be the orbit closure of the diagonal point $(x, y, x, y) \in X^2$ under the map $S = R \times R^2$. Then

$$Y_{(x,y)} = \overline{\left\{ \left(x + n\alpha, y + nx + \binom{n}{2}\alpha, x + 2n\alpha, y + 2nx + \binom{2n}{2}\alpha \right) : n \in \mathbb{N} \right\}}$$
$$= (x, y, x, y) + \overline{\left\{ \left(n\alpha, nx + \binom{n}{2}\alpha, 2n\alpha, 2nx + 4\binom{n}{2}\alpha - n\alpha \right) : n \in \mathbb{N} \right\}}.$$

If $x, \alpha, 1$ are linearly independent over \mathbb{Q} (which happens almost surely) then it follows that

$$Y_{(x,y)} = (x, y, x, y) + \{(z, w, 2z, \tilde{w}) : z, w, \tilde{w} \in \mathbb{T}\}.$$
(1.2)

Therefore the nilsystem $(Y_{(x,y)}, S)$ is isomorphic to the nilsystem (\mathbb{T}^3, τ_x) , where $\tau_x(z, w, \tilde{w}) = (z + \alpha, w + z + x, \tilde{w} + 4z + 2x + \alpha)$. Consider the function $f : \mathbb{T}^3 \to \mathbb{C}$ described by $f(z, w, \tilde{w}) = e(\tilde{w} - 4w)$, where $e(z) := e^{2\pi i z}$. Then

 $f(\tau_x(z, w, \tilde{w})) = e((\tilde{w} + 4z + 2x + \alpha) - 4(w + z + x)) = e(\alpha - 2x)f(z, w, \tilde{w}).$

This shows that $\alpha - 2x$ is an eigenvalue of the system $(Y_{(x,y)}, S)$, but not of the system (X, R), so $\sigma(Y_{(x,y)}, R \times T^2) \not\subseteq \sigma(X, S)$ for almost every $(x, y) \in X$.

2. Revised version of [3, Theorem 7.1]

The above example shows that [3, Theorem 7.1] is not correct as stated. Here is a corrected version.

REVISED THEOREM 7.1. Let $k \in \mathbb{N}$, let X be a connected nilmanifold and let $R : X \to X$ be an ergodic nilrotation. Define $S := R \times R^2 \times \cdots \times R^k$ and

$$Y_x := \overline{\{S^n(x, x, \dots, x) : n \in \mathbb{Z}\}} \subseteq X^k.$$
(2.1)

For any $\theta \in [0, 1)$, if $\theta \notin \sigma(X, R)$ then for almost every $x \in X$ we have $\theta \notin \sigma(Y_x, S)$.

Remark 2.1. The difference between the (incorrect) statement of Theorem 7.1 in [3] and the (correct) statement of Revised Theorem 7.1 above is that

'for almost every $x \in X$ and all $\theta \notin \sigma(X, R)$ one has $\theta \notin \sigma(Y_x, S)'$

has been replaced with

for all
$$\theta \notin \sigma(X, R)$$
 and almost all $x \in X$ one has $\theta \notin \sigma(Y_x, S)'$.

In other words, the full measure set of x is now allowed to depend on θ .

Proof of Revised Theorem 7.1. Given a nilpotent Lie group *G*, denote by $G = G_1 \supseteq G_2 \supseteq \cdots \supseteq G_s \supseteq \{1_G\}$ its lower central series. For $k \in \mathbb{N}$, define $H^{(1)}(G), \ldots, H^{(k-1)}(G)$ as

$$H^{(i)}(G) := \{ (g^{\binom{1}{i}}, g^{\binom{2}{i}}, \dots, g^{\binom{k}{i}}) : g \in G_i \} \subseteq G^k,$$
(2.2)

where $\binom{j}{i} = 0$ for j < i, and let H(G) be given by

$$H(G) := H^{(1)}(G)H^{(2)}(G)\cdots H^{(k-1)}(G)G_k^k.$$
(2.3)

Also, for a co-compact lattice $\Gamma \subset G$ define $\Delta(G, \Gamma) := H(G) \cap \Gamma^k$. Since H(G) is a rational subgroup of G^k , it follows from [2, Lemma 1.11] that $\Delta(G, \Gamma)$ is a uniform and discrete subgroup of H(G). Define the nilmanifold $Y(G, \Gamma) := H(G)/\Delta(G, \Gamma)$. Note that we can naturally identify $Y(G, \Gamma)$ with a subnilmanifold of $(G/\Gamma)^k$.

For $b \in G$, define $R_b : G/\Gamma \to G/\Gamma$ to be the map $R_b(g\Gamma) = (bg)\Gamma$ and let

$$S_b := R_b \times R_b^2 \times \cdots \times R_b^k.$$
(2.4)

For $x = g\Gamma \in G/\Gamma$ define

$$Y_x := \overline{\{S_b^n(x, x, \dots, x) : n \in \mathbb{Z}\}} \subseteq (G/\Gamma)^k.$$
(2.5)

It was shown in [3, Proposition 7.5, part (iv)] that for almost every $x = g\Gamma \in G/\Gamma$ the map $R_{g^{-1}} \times \cdots \times R_{g^{-1}} : (G/\Gamma)^k \to (G/\Gamma)^k$ is an isomorphism from the nilsystem (Y_x, S_a) to the nilsystem $(Y(G, \Gamma), S_{g^{-1}ag})$.

Suppose now that $X = G/\Gamma$ is the system in the statement of the theorem and let $a \in G$ be such that $R = R_a$. Take $\theta \in [0, 1)$. Our goal is to show that if $\theta \notin \sigma(X, R)$ then $\theta \notin \sigma(Y_x, S_a)$ for almost every $x \in X$. Let us first deal with the case when θ is irrational.

Observe that θ is not an eigenvalue of (X, R_a) if and only if the product system $(X, R_a) \times (\mathbb{T}, R_{\theta})$ is ergodic, where $R_{\theta} : t \mapsto t + \theta$ is rotation by θ . Notice that $X \times \mathbb{T} = (G \times \mathbb{R})/(\Gamma \times \mathbb{Z})$ is a nilmanifold too, and hence $(X, R_a) \times (\mathbb{T}, R_{\theta})$ is a nilsystem. In accordance with (2.4) and (2.5) let

$$S_{(a,\theta)} = (R_a \times R_\theta) \times (R_a^2 \times R_{2\theta}) \times \cdots \times (R_a^k \times R_{k\theta})$$

and

$$Y_{(x,t)} := \overline{\{S_{(a,\theta)}^n((x,t),\ldots,(x,t)) : n \in \mathbb{Z}\}} \subseteq (X \times \mathbb{T})^k.$$

As was mentioned above, for almost every $(x, t) = (g\Gamma, t) \in X \times \mathbb{T}$, the nilsystem $(Y_{(x,t)}, S_{(a,\alpha)})$ is isomorphic to $(Y(G \times \mathbb{R}, \Gamma \times \mathbb{Z}), S_{(g^{-1}ag,\theta)})$.

We claim that $Y(G \times \mathbb{R}, \Gamma \times \mathbb{Z}) \cong Y(G, \Gamma) \times Y(\mathbb{R}, \Gamma)$. Assuming this claim for now, it follows that

$$(Y_{(x,t)}, S_{(a,\theta)}) \cong (Y(G \times \mathbb{R}, \Gamma \times \mathbb{Z}), S_{(g^{-1}ag,\theta)})$$
$$\cong (Y(G, \Gamma), S_{g^{-1}ag}) \times (Y(\mathbb{R}, \mathbb{Z}), S_{\theta})$$
$$\cong (Y(G, \Gamma), S_{g^{-1}ag}) \times (\mathbb{T}, R_{\theta})$$
$$\cong (Y_x, S_a) \times (\mathbb{T}, R_{\theta}).$$

Recall that any transitive nilsystem is ergodic. Since $(Y_{(x,t)}, S_{(a,\theta)})$ is transitive by definition, it follows that it is ergodic, which implies that $(Y_x, S_a) \times (\mathbb{T}, R_\theta)$ is ergodic for almost every $x \in X$. However, $(Y_x, S_a) \times (\mathbb{T}, R_\theta)$ can only be ergodic if θ is not in the discrete spectrum of (Y_x, S_a) , which finishes the proof that $\theta \notin \sigma(Y_x, S_a)$ for almost every $x \in X$.

It remains to show that $Y(G \times \mathbb{R}, \Gamma \times \mathbb{Z}) \cong Y(G, \Gamma) \times Y(\mathbb{R}, \Gamma)$. Note that $H^{(i)}(\mathbb{R}) = \{0\}^k$ for all $i \ge 2$, so that $H(\mathbb{R}) = \{(t, 2t, \dots, kt) : t \in \mathbb{R}\}$. More generally, for any *G* we have $H^{(i)}(G \times \mathbb{R}) = H^{(i)}(G) \times \{0\}^k$ whenever $i \ge 2$. This implies that

$$H(G \times \mathbb{R}) = H(G) \times H(\mathbb{R}).$$

Finally, since

$$\Delta(G \times \mathbb{R}, \Gamma \times \mathbb{Z}) = (H(G) \times H(\mathbb{R})) \cap (\Gamma^k \times \mathbb{Z}^k)$$
$$= H(G) \cap \Gamma^k \times H(\mathbb{R}) \cap \mathbb{Z}^k$$
$$= \Delta(G, \Gamma) \times \Delta(\mathbb{R}, \mathbb{Z}),$$

the claim $Y(G \times \mathbb{R}, \Gamma \times \mathbb{Z}) \cong Y(G, \Gamma) \times Y(\mathbb{R}, \Gamma)$ follows.

Lastly, we deal with the case when $\theta = p/q \in (0, 1)$ is rational. Recall that $S_a = R_a \times R_a^2 \times \cdots \times R_a^k$ and $Y_x := \overline{\{S_a^n(x, x, \dots, x) : n \in \mathbb{Z}\}}$ and that

$$(Y_x, S_a) \cong (Y(G, \Gamma), S_{g^{-1}ag})$$
(2.6)

for all $x = g\Gamma \in X'$, where X' is some full measure subset of X. Observe that (2.6) implies

$$(Y_x, S_a^q) \cong (Y(G, \Gamma), S_{g^{-1}ag}^q), \tag{2.7}$$

for all $x = g\Gamma \in X'$. Then define

$$Y_x^{(q)} := \overline{\{S_a^{qn}(x, x, \dots, x) : n \in \mathbb{Z}\}} = \overline{\{S_{a^q}^n(x, x, \dots, x) : n \in \mathbb{Z}\}}.$$

Since *X* is connected and (X, R_a) is ergodic, the nilsystem (X, R_a^q) is ergodic. This implies that there exists a full measure set $X'' \subset X$ such that for all $x = g\Gamma \in X''$ we have

$$(Y_x^{(q)}, S_a^q) \cong (Y(G, \Gamma), S_{g^{-1}ag}^q).$$
 (2.8)

Combining (2.7) and (2.8), we see that for any $x \in X' \cap X''$ we have

$$(Y_x, S_a^q) \cong (Y_x^{(q)}, S_a^q).$$

Since $(Y_x^{(q)}, S_a^q)$ is transitive by definition, it must be ergodic, and thus it follows that for all $x \in X' \cap X''$ the system (Y_x, S_a^q) is ergodic. We conclude that $\theta = p/q$ is not an eigenvalue of (Y_x, S_a^q) and this finishes the proof.

3. *Revised proof of* [3, Theorem 4.2]

In light of the fact that [3, Theorem 7.1] is incorrect, we need to provide a new proof for [3, Theorem 4.2] to ensure that all the main results presented in [3] are still correct. With the same notation as in [3], let us recall the statement of [3, Theorem 4.2].

THEOREM 4.2. Let $k \in \mathbb{N}$, let G be an s-step nilpotent Lie group, and let Γ be a uniform and discrete subgroup of G such that $X = G/\Gamma$ is a connected nilmanifold. Let $R: X \to X$ be an ergodic niltranslation on X. Define $S := R \times R^2 \times \cdots \times R^k$ and

$$Y_{X^{\Delta}} := \overline{\{S^n(x, x, \dots, x) : x \in X, n \in \mathbb{Z}\}} \subseteq X^k.$$

Then $\sigma(X, R) = \sigma(Y_{X^{\Delta}}, S)$, where $\sigma(X, R)$ denotes the spectrum of the nilsystem (X, R) and $\sigma(Y_{X^{\Delta}}, S)$ denotes the spectrum of the nilsystem $(Y_{X^{\Delta}}, S)$.

Proof. Given $\theta \in \sigma(X, R)$, let $f \in L^2(X)$ be an eigenfunction of the system (X, R) with eigenvalue θ . Since the function $\tilde{f} \in L^2(Y_{X^{\Delta}})$ defined by $\tilde{f}(x_1, \ldots, x_k) = f(x_1)$ is an eigenfunction for the system $(Y_{X^{\Delta}}, S)$ with eigenvalue θ , it follows that $\sigma(X, R) \subseteq \sigma(Y_{X^{\Delta}}, S)$.

Next we prove the converse inclusion. Let ν be the Haar measure of the nilmanifold $Y_{X^{\Delta}}$ and let ν_x be the Haar measure of the nilmanifold Y_x defined by (2.1). Observe that the sets Y_x are precisely the atoms of the invariant σ -algebra of the system ($Y_{X^{\Delta}}$, S). Therefore, the measures ν_x form the ergodic decomposition of ν .

Let $\theta \in \sigma(Y_{X^{\Delta}}, S)$ and let $f \in L^2(Y_{X^{\Delta}}, v)$ be an eigenfunction with eigenvalue θ , that is, for almost every $y \in Y_{X^{\Delta}}$ we have $Sf(y) = e(\theta)f(y)$. Since f cannot be 0ν -almost everywhere, there exists a positive measure set of $x \in X$ for which the restriction of f to the system (Y_x, v_x, S) is not the zero function. But for any such x, the restriction of f to the system (Y_x, v_x, S) is an eigenfunction with eigenvalue θ . This implies that $\theta \in \sigma(Y_{X^{\Delta}}, S)$ for all such x. Finally, by invoking Revised Theorem 7.1, we conclude that $\theta \in \sigma(X, R)$, finishing the proof.

REFERENCES

- V. Bergelson, B. Host and B. Kra. Multiple recurrence and nilsequences. *Invent. Math.* 160 (2005), 261–303. With an appendix by I. Ruzsa.
- [2] A. Leibman. Rational sub-nilmanifolds of a compact nilmanifold. *Ergod. Th. & Dynam. Sys.* 26 (2006), 787–7098.
- [3] J. Moreira and F. K. Richter. A spectral refinement of the Bergelson-Host-Kra decomposition and new multiple ergodic theorems. *Ergod. Th. & Dynam. Sys.* 39 (2019), 1042–1070.