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Introduction

In studying the compression of loops of fabric between flat parallel
plates, the problem arises of the compression of bends. A 'bend' is illustrated
in Figs. 1 and 2. Two bends are joined to form a loop. The material is postu-

P
Fig. 1. The loading of a bend.

lated to yield in bending such that the bending moment

(1) M = B(KX-KR)

where B is a bending rigidity, Kj the current impressed curvature, and
KR the 'remanent' curvature. This remanent curvature is the free, or
natural curvature in the material caused by its past and present deformation.
We study the case when the remanent curvature

(2) KR = XmaxKj

that is, the remanent curvature is proportional to the greatest previously
impressed curvature. We call equations (1) and (2) the 'Remanent Curvature
Hypothesis'.
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Stuart and Mann have shown (6) that such a relationship between
remanent curvature and impressed curvature is a reasonable extension of
the notion of 'recovery angle' after a material has been bent to form a half
circle shape. This is a standard test of recovery from creasing (2), (3),
for woven cloth.

Waters (4) and Stechert (5) have studied the case of a 'bend' of an
elastica. A more complete study of the differential equation governing the
bend shape is given by Stuart et at. (1), when the relationship between
bending moment and curvature is not prescribed, and when the bend can
have a non-zero curvature where it contacts the compressing plates.

We proceed to analyse this more general case when the bending is
described by the Remanent Curvature Hypothesis. We consider both the
loading and unloading of the bend, and give the results of some calculations
with some comparison with experimental results of the loading and un-
loading of loop of a wool worsted cloth.

Analysis

The loading of a loop between parallel plates is somewhat akin to the
bending of a length of yielding wire between the jaws of a pair of pliers
(see Fig. 3). The piece of wire between the jaws is gradually diminishing

Fig. 3. Wire being bent between the jaws of a pair of pliers.
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(a)

(b)

Fig. 2. Photographs of a loop of cloth (a) loading (b) unloading.
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so that the place on the wire in contact with the jaws has been previously
between the jaws, and suffered some deformation and possibly has yielded
prior to being in contact with the jaws. If there is no moment being applied
to the wire in contact with the jaws as is the case under assumption A below,
the curvature there is that due to the past history of its deformation between
the jaws.

The flexural properties of the loop are assumed to be constant so that
the bend is symmetrical about a plane half-way between the plates. We
describe the bend by the distance s along it from this plane of symmetry,
and the angle 6 made by the bend with this plane. The senses taken by the
shear force N, the tension T and the bending moment M are indicated in
Figure 4(a).

It follows from symmetry and equilibrium of the bend between 0 = 0
and 6 = n that the tensions at 6 = 0 and 0 = n are zero.

The equilibrium of the segment of bend (0, 0) shown in Figure 4(b)
requires that

^ N = — P cos 6

where P is the load supported by the bend.

/ o
(a)

N

(b)
Fig. 4. (a) Senses of N, T, M acting at point (s, 8) on a bend, (b) Forces and moments acting

on the bend on the interval (0, 0), under assumption A.
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It follows from the equilibrium equations of elementary bending
theory that

So the differential equation governing the bend shape which applies
irrespective of bending and yielding properties of the bend material is

(3)

Boundary Conditions

We consider two sets of boundary conditions. The first set — which
we call assumption A — follows when we assume that the material outside
the bend has no influence on the material inside the bend. The boundary
conditions then become:

at s = 0, 6 — \TI, (by symmetry and continuity), and
when 0 = 0, n\ T = 0, and M = 0.

The second set of boundary conditions, assumption B, corresponds to
the situation where the material between the compressing plates is held
flat against the plates by a moment due to interference between the parts
of the loop outside the bends. The condition of zero moment at 6 = 0
and 7i is replaced by the condition that the curvature is zero at these points.

2.2.1. Analysis of the loading of a bend under assumption A

When the bending moment M is related to the current impressed
curvature,

dd
K

and to the remanent curvature KR by equation (1), then equation (3)
becomes

( 4 ) *

The boundary conditions are:

s = 0, 6 = \K;
dd

6 = 0, n; from M = 0, — = KRds

and the remanent curvature KR is given by equation (2).
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We put

and

(5)

Then equation

(6)

The compression of yielding

i

(4) becomes

d (dd

da Xdo

P

a = s/c.

-cKR\= (1-A)

loops

COS 1

319

For load increasing we denote by the suffix * parameters associated
with the greatest load yet reached. Thus P# is the greatest load yet applied,
and

d =

In equation (6) the only load dependent term is

d
da

Now
/dB\ /dd\

say, the remanent curvature expressed in dimensionless terms. We now
suppose that kR is independent of c. This assumption is equivalent to as-
suming that the forms of the bend at different loads are similar, and re-
ducible to the same shape by a scale factor.

Now, let the solution of equation (6) with boundary conditions stated
be given by

d9
(8) £ = /(*.*).

That is

(9) «lC(.)_

(Note: As 6 decreases from \rt to 0, dd/da is negative.)
In the context of increasing load on the bend the remanent curvature

hypothesis, given by equation (2) can be written

|K,1,(5)1= A Max 1^(5)1.

Now equation (9) gives the curvature at s for all values of c. Differen-
tiating equation (9) with respect to c keeping s fixed
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/-s\ 8f(sjc, X)
8(s/c)

We put (8K(s)/dc) = 0 to obtain the condition for K(s) stationary,
and substitute for if (s) using equation (9) to obtain

or

or

(11) £{of(o,V} = 0.

We find by calculation that this stationary value is in fact a maximum
of the absolute value of the curvature \K(s)\.

Let this equality of equation (11) occur when a = aM. For a particular
distance s along the bend, this value aM of a prescribes a value of c, cM say,
which indicates a value of the load applied when the value of the curvature
imposed at s has been stationary. cM and aM are related by

CM

For values of cM > c* (or a* > aM), the stationary value of the cur-
vature has been achieved at a load less than the current load.

By equation (9) the value of this curvature is given by

or substituting sjaM for cM,

o

So, for a* > aM the remanent curvature expressed in dimensionless terms

k C K <S)

On the other hand, for cM < c* the current curvature is the greatest
yet applied.

So, for <r* < aM,
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Thus the differential equations to be integrated are as follows:

d

where kR = X(dd/da) for a < aM and

*ii = — l>/(ff. *)]«• for o^aMa

where [CT/(CT, A)]^ is the stationary value of a(dd\da) occurring when a = aM.
The boundary conditions are:

a = 0, Q = \n,
dd X
da a

or

The procedure for solution of equation (12) is thus as follows.
To start the integration it is necessary to estimate a value of {ddlda)rr=0,

say «!. Equation (6) is then integrated from a = 0, starting with 0 = \n,
ia) = flt and kR = X{dO/da).
Thus we have:

d

or (d2 djda2) = cos 0.
We proceed with this integration until a(ddjda) has a stationary value,

aM {d6jda)M say, with the value of a, aM .
We then change to the differential equation

d
da

and integrate until

/dd

has a stationary value.
At this value of a, a01 say, 6 should be zero. If it is not, we take a second

value of (ddldo)a_0, a2 say, and repeat the integration, repeating until
0 = 0 at the stationary point.
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ABBREVIATED PROCEDURE. Starting at a = 0 with 6 = \n, (dBjda) = ax

(which will be negative), integrate the equation:

= c o s

inspecting a(ddjda) = f}(o) say.
When a{ddjda) turns up, find aMi, (5Mi at the stationary point.
Then change equation to

da%

and integrate until

reverses direction, when we find the values a01, 0(a01) at the stationary
point.

If 0(<rol) 7̂  0, we select a new value of a, a2, and repeat. Thus we
integrate j times until S(aOj) = 0 (to a sufficient limit of accuracy).

2.1.2. Analysis of the unloading of a bend under assumption A

We consider the shape of the bend as the load is decreased after having
been applied to a maximum value of P^.

The remanent curvature will be as follows:

KR = X • K(c*) for s

= —- for c%oM < s
s

which corresponds to the remanent curvature being determined by the
maximum curvature during loading.

The differential equation is then:

d

and putting
B(l-X) 2 B(l-X) s

= c*, = c2, a = —
P*

we obtain
d

with C^KR given by:
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(a) for 0 < a < am(X)

KR =
or

(b) for a > a

or

a

The relevant equations become:

(b)

2.2 Assumption B

The end condition of zero moment at 6 = 0 can be replaced by the
assumption (B) that the curvature is zero at that point, corresponding to
the situation where the material between the compressing plates is held
flat against the plates by a moment due to interference between the parts
of the loop outside the bend. This is probably a closer approximation to the
conditions of our tests than the assumption (A) of no interference.

2.2.1. Loading of the Bend under Assumption B

Because of the straightening moment at its end, part of the loop,
in bending, will reach a curvature less than a previous remanent curvature
\$m\s, and so we assume its remanent curvature to be reduced to

A p m fApm CL X)

or

da

where 0 ^ %R < 1 and AB is not necessarily equal to 1. This equation applies
for s > sR where, at s = sR, (dd/ds) = (A/Sm/s) which reduces to the same
condition as the endpoint under the previous assumption; that is, a(ddjda)
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has a minimum. The endpoint to be found under assumption B is when 6
has a minimum (ddjda = 0), where 6 should also be zero. For s < sR,
the equations are as for the previous assumption.

2.2.2. Unloading of the Bend under Assumption B

As the bend is unloaded, some of the material which had had its
remanent curvature reduced during bending may again experience an
increase in that curvature. This is assumed to happen when:

and thus the remanent curvature in unloading is given by:

/dt
(a) 0 < s < : c*Kn =Jm • ^-"-fl

(b) c*am<s

(d)

: c*Ap =

(c) c%oR < s < C^OQ : c%KR = — max

*Kr> = — max

— M(l— AR) r^iJl'j")

dd

da

da

3. Method of Solution of the Equations

The equations describing the loop were solved by numerical integration
on the CDC3600 computer of the CSIRO Scientific Computing Network.

Each equation was reduced to the form:

dd ic* \
— = G p , A cos O+Q{a)
da \c I

and the three point approximation for d2 6/da2 was used:

(d*0\ = 0^

\do*J0

where H is the interval size in a to be used for the step by step integration.
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At a = 0, 0 = \n and dQjda = — a. An approximation obtained by
a rough analysis was a ^ \/2 which was used as a first estimate, ax.

Thus an array, 6(n), where n is the step number, was built up as in
Table I. (n = a/H+1.)

TABLE I

1 0 o1 = \n

2 H 6t = \n-aH

3 2H 0. = 2 0 , -

4 3H 04 = 203— 02+HsK cos 08+H2 • g(2H)
etc.

The bending situation of the case under consideration was first solved
as indicated in Table III. c#o0 is the length of the half loop, and 0O which
should be zero, is the error associated with at.

If d0 was outside acceptable limits (usually ± 0.0001) a correction
was made to 'a' by:

where, empirically, m = 0.5 was found suitable. The integration, using
'a2', was repeated. Further corrections to 'a' were by linear, and then
quadratic, interpolation, based on the values of 8Q.

TABLE II

Assumption A Assumption B

2aH n = 1
0«4-l — Wn-1 2 •< « < M_

« - l

zpm[i—-A) AR
»-l '"I

M - l

M > Mm Mm < » <

n < n0

(TO!
where nra = —• + 1 , etc.

H
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TABLE III

[12]

Integrate with

Q

Inspecting for
minimum of

Determine at the
minimum

Assumption A, Bending

(1) 1 0

(2) (1-A) *t
a1

Assumption A, Unbending

dd
"do

4H*

Assumption B, Bending

(1) 1 0

Xpm

dd
"do

(2) (1-A)

0) ^
Xjhn

Assumption B, Unbending

am

< r 0 .

••*•-(•£)

am,

OR

Also testing for (0B+1— 0n_j) > (—ifn) in which case change to (2):

(2) p | 0

<7o .

testing for (0,-! —0n+i) < (—Rn) when revert
to (1). After solution, replace Rn in table by
Rn = 6n+1 — 0»_i, where (2) was used.

of:
Once the bending case was solved, an array was filled giving the values

2H
R (K)

a modified form of the remanent curvature, as in Table II. This was used
to solve the unbending case, c*\c < 1 with successive values of {c*\c)
decreasing from 1.0, usually 1(0.02)0.10. The value of ax was found by
extrapolation from values found for previous values of c^c. Solutions have
been obtained for a variety of values of X (and kR), and the arrays 0(n)
were used to find parameters of the loops.

The main output of the program was either:
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0-9 r

1-5 r

Fig. 5. The variation of some parameters of the loop with X.
(a) Y, the half-height; (b) <r0, the half-length; (c) a, the curvature of the axis; (d) /?„,, the

maximum value of a(ddlda); (e) am, the value of a which maximises o(d6/do)
A represents assumption A; Bo represents assumption B with XR = 0; BSI represents assump-

tion B with XR J

0-2

Fig. 6. The shapes of the bends as plotted by the computer
(a) Assumption A X = 0.2; (b) Assumption A A = 0.5; (c) Assumption B X = 0.5 XR = 0

Figures on the curves represent c*jc = (PjPt)i
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(i) To calculate the height of the loop, Y = JJ» sin dda. The value
of Y was normalised so that

Y(cJ = 1.0,

and (F^ / c ) ) was plotted against {c^jc) by the computer's X—Y recorder.
This graph corresponds to YPi—Pi (normalised), or

(ii) To plot the shape of the loop:

X = f^cos dda; Y= ("sin Odo.Jo Jo

4. Results Obtained by Solution of the Equations

4.1. Bending

Because of the assumption that kR is independent of c in bending,
the form of the equations is such that the shape of the loop, and hence
the parameters of its dimensionless form, are independent of the load
(i.e. of c).

The way in which the main parameters of the loop (half-height, Y,
half-length, cr0; curvature at axis, a; (}m and am) vary with A, under various
postulates, is shown in Fig. 5. The actual shape of the loops, in a few cases
are shown by the cases {cjc) = 1 in Fig. 6.

4.2. Unbending

The only parameter upon which the solution of the unbending equations
depends is (c^/c) or (P/P^i, and hence the form of the solution depends

Fig. 7. Graphs of Y(ctjc) ~ ctjc for values of A marked under (a) Assumption A and, (b)
Assumption B with XR = 0.
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only on this ratio, and is independent of the maximum load applied. The
shapes of the unbending curves in a few cases are shown in Fig. 6, and the
resulting graphs of Y(cjc) ~ (cjc) are shown in Fig. 7.

5. Discussion and Comparison with some
Experimental Results on Cloth Loops

The shape of YPl ~ Pi curves for experimental loops of fabrics do not
very closely approximate the Y(cjc) ~ (cjc) curves predicted from the
theory. Experimental curves, compared to some theoretical ones, are shown
in Fig. 8. Down to a value of (cjc) of about 0.4 (i.e. down to P s 0.2 P J ,
a reasonable degree of agreement can be obtained by using a rather high
value of A (0.4—0.6), which value is much higher than would be expected
from the recovery angle experiments (2), (3).

1-0

1-0

Fig. 8. Solid lines: Typical theoretical curves with X marked. L indicates loading curves or
A = 0.

Broken lines: Typical experimental curve. L again indicates loading.
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It is possible that a worsted cloth does have a rather higher plasticity
at high bending strains such as used in our tests than at low bending strains
as used by Bostwick (2), (3). The upward swing of the experimental YPl
curves as P i decreases may be partly due to the fact that tension need not
be zero at the end of the bend in the experimental case, as the loop has
two bends which may sustain a tension in the fabric between them. Time
varying effects, which have not yet been considered, may also be interfering.
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