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Abstract

Consider a set of n vertices, where each vertex has a location in R
d that is sampled

uniformly from the unit cube in R
d , and a weight associated to it. Construct a random

graph by placing edges independently for each vertex pair with a probability that is a
function of the distance between the locations and the vertex weights.

Under appropriate integrability assumptions on the edge probabilities that imply
sparseness of the model, after appropriately blowing up the locations, we prove that the
local limit of this random graph sequence is the (countably) infinite random graph on R

d

with vertex locations given by a homogeneous Poisson point process, having weights
which are independent and identically distributed copies of limiting vertex weights. Our
set-up covers many sparse geometric random graph models from the literature, includ-
ing geometric inhomogeneous random graphs (GIRGs), hyperbolic random graphs,
continuum scale-free percolation, and weight-dependent random connection models.

We prove that the limiting degree distribution is mixed Poisson and the typical degree
sequence is uniformly integrable, and we obtain convergence results on various measures
of clustering in our graphs as a consequence of local convergence. Finally, as a byproduct
of our argument, we prove a doubly logarithmic lower bound on typical distances in this
general setting.
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1. Introduction and main results

Random graphs with underlying geometry are becoming the model of choice when it comes
to modeling and understanding real-world networks [6, 12, 18, 25] (see also [22, Section 9.5]).
The presence of an ambient geometric space enables one to model the natural tendency for
connections to form between entities that are close to each other, where closeness is measured
in terms of the underlying geometry. The power of these models is the inherent diversity of the
geometric component. It can encode actual physical distance, such as two servers in adjacent
cities, as well as a more abstract form of similarity, e.g., users with similar interests or hobbies.
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Spatial networks have been employed to study social networks [33]. Empirical research shows
that the spatial positions of individuals often play a role in the formation of friendships among
them [1, 28, 31, 32].

The prototypical random graph model in this setting is the random geometric graph, first
introduced by Gilbert [16] and later popularized by Penrose [29]. Here the graph is formed
by placing edges between pairs of points of some Poisson point process on a Euclidean
space, if and only if their metric distance is smaller than some fixed parameter. In general,
one can consider models in which the connection probabilities are a decreasing function of
the distance between pairs of vertices. Since nearby vertices are more likely to be connected
in these spatial models, they naturally exhibit clustering, which captures the tendency for a
connection to exist between two entities having a common neighbor, a feature that is often
observed in real-world networks.

Other than clustering, experimental studies suggest that most real-world networks are sparse
(i.e., the number of connections is often of the same order as the number of individuals) and that
they are small worlds (i.e., for most pairs of nodes, it takes only a small number of connection
steps to reach one from the other). Finally, many networks have highly inhomogeneous degree
distributions (i.e., many vertices have only a few connections, while a small proportion of
vertices have a lot of connections). The most notable spatial random graph models capable of
capturing all these features are scale-free percolation [12], geometric inhomogeneous random
graphs [8], and hyperbolic random graphs [25].

When studying network models, one is often interested in the limits of specific network
measures, e.g., degree distribution, average path length, or clustering coefficients. There is
plenty of literature analyzing limits of such measures for a wide variety of models. Here, how-
ever, one first must prove convergence. Suppose that instead we have a limit object for our
graph models, which implies convergence of the network measures of interest. Then we no
longer have to worry about convergence and can instead focus on actually analyzing the limit
measures. For sparse graphs such a framework exists under the name of local weak conver-
gence [2, 4]. At a high level, if a model has a local weak limit, then any local property converges
to an associated measure on the limit graph. Therefore, if we know the local graph limit, we
immediately obtain the limits of a wide variety of local network measures [22, Chapter 2].
Furthermore, sometimes conclusions about sufficiently global properties of the graph can also
be obtained from its local behavior (see [21] and [22, Chapter 2]).

In this paper, we study local convergence of a general class of spatial random graphs, which
cover as particular cases many well-known models that are sparse, have inhomogeneous degree
distributions, have short path lengths, and exhibit non-vanishing clustering. We establish that
the typical local behavior in these ensembles matches the expected local behavior of the nat-
ural infinite version of the model. Our results immediately imply convergence of several local
network measures, such as the degree distribution of a random vertex and the local clustering
coefficient.

Organization of the paper. In the rest of this section, we review the basics of local con-
vergence of graphs, introduce our model, and state our main results. Next, in Section 2, we
present examples of models that are covered, as well as results on degrees and clustering in our
graphs, and a small discussion on typical distances in our models. All the proofs are deferred to
Section 3.
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Local limits of SIRGs 795

1.1. The space of rooted graphs and local convergence

The notion of local convergence of graphs was first introduced by Benjamini and Schramm
[4] and independently by Aldous and Steele [2]. Intuitively, this notion studies the asymptotic
local properties of a graph sequence, as observed from a typical vertex.

A (possibly infinite) graph G = (V(G), E(G)) is called locally finite when every vertex has
finite degree. A rooted locally finite graph is a tuple (G, o), where G = (V(G), E(G)) is a locally
finite graph, with a designated vertex o ∈ V(G) called the root.

Definition 1. (Rooted isomorphism.) For rooted locally finite graphs (G1, o1) and (G2, o2)
where G1 = (V(G1), E(G1)) and G2 = (V(G2), E(G2)), we say that (G1, o1) is rooted isomor-
phic to (G2, o2) when there exists a graph isomorphism between G1 and G2 mapping o1 to o2,
i.e., when there exists a bijective function φ : V(G1) → V(G2) such that

{u, v} ∈ E(G1) ⇐⇒ {φ(u), φ(v)} ∈ E(G2),

and such that φ(o1) = o2.
We use the notation

(G1, o1) ∼= (G2, o2)

to denote that there is a rooted isomorphism between (G1, o1) and (G2, o2).

Let G� be the space of all rooted isomorphic equivalence classes of locally finite rooted
graphs; i.e., G� consists of the equivalence classes [(G, o)] of rooted locally finite graphs,
where two rooted locally finite graphs (G1, o1) and (G2, o2) belong to the same class if they
are rooted isomorphic to each other. We often omit the equivalence class notation, and just
write (G, o) for an element of G�.

Fix a graph G = (V(G), E(G)). We denote the graph distance in G by dG; i.e., for any two
vertices u, v ∈ V(G), dG(u, v) equals the length of the shortest path in G from u to v, and we
adopt the convention that dG(u, v) = ∞ whenever u and v are not connected by a sequence of
edges.

Definition 2. (Neighborhood of the root.) For any R ≥ 1 and (G, o) ∈ G� where G =
(V(G), E(G)), we call the element

(
BG

o (R), o
)

of G� the R-neighborhood of o in G, where BG
o (R)

is the subgraph of G induced by

{v ∈ V(G) : dG(o, v)≤R}.
We sometimes abbreviate (BG

o (R), o) as BG
o (R).

The space G� is usually endowed with the local topology, which is the smallest topology
that makes the functions of the form (G, o) �→ 1{

BG
o (K)∼=(G′

,o′)
} for K ≥ 1 and (G′, o′) ∈ G� con-

tinuous. This topology is metrizable with an appropriate metric d� (see [22, Definition 2.4]),
and (G�, d�) is a Polish space, which enables one to do probability on it. We omit further details
on this.

For the next two definitions, we assume that (Gn)n≥1 with Gn = (V(Gn), E(Gn)) is a

sequence of (possibly random) graphs that are (almost surely) finite, i.e., |V(Gn)| a.s.
< ∞ for

all n ≥ 1, and, conditionally on Gn, Un is a uniformly chosen random vertex of Gn. Note then
that (Gn, Un) is a random variable taking values in G�. Local weak convergence of such random
variables is defined as follows.
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Definition 3. (Local weak convergence.) The sequence of graphs (Gn)n≥1 is said to converge
locally weakly to the random element (G, o) ∈ G� having law μ�, as n → ∞, when, for every
r > 0, and for every (G�, o�) ∈ G�,

P

(
BGn

Un
(r) ∼= (G�, o�)

)
→ μ�

(
BG

o (r) ∼= (G�, o�)
)

,

as n → ∞.

Definition 3 is in fact equivalent to saying that the sequence ((Gn, Un))n≥1 of random vari-
ables taking values in G� converges in distribution to the random variable (G, o) taking values
in G� as n → ∞, under the topology induced by the metric d� on G� (for a proof of this fact,
see [22, Definition 2.10 and Theorem 2.13]).

This concept of local convergence can be adapted to the setting of convergence in prob-

ability. For a sequence of random variables Z, (Zn)n≥1, we write Zn
P→ Z to indicate that Zn

converges in probability to Z, as n → ∞.

Definition 4. (Convergence locally in probability.) The sequence of graphs (Gn)n≥1 is said to
converge locally in probability to the (possibly random) element (G, o) ∈ G� having (possibly
random) law μ if for any r > 0 and any (G�, o�) ∈ G�,

P

(
BGn

Un
(r) ∼= (G�, o�)

∣∣∣∣Gn

)
= 1

|V(Gn)|
∑

i∈V(Gn)

1{
BGn

i (r)∼=(G�,o�)
} P→μ

(
BG

o (r) ∼= (G�, o�)
)

,

as n → ∞.

For more on local convergence, we refer the reader to [22, Chapter 2].

1.2. Model description and assumptions

Let S be either [n] = {1, . . . , n} or N∪ {0}.
Consider a sequence X = (Xi)i∈S of (possibly random) points in R

d, a sequence of (possibly
random) reals W = (Wi)i∈S, and a function κ : R+ ×R×R→ [0, 1] which is symmetric in its
second and third arguments.

Conditionally on X and W, form the (undirected) random graph G = (V(G), E(G)) with
vertex set V(G) = S, and with each possible edge {i, j} ∈ E(G) ⊂ S × S being included inde-
pendently with probability

κ(‖Xi − Xj‖, Wi, Wj). (1)

Note that the requirement of symmetry is necessary since the probability of including the edge
{i, j} has to be the same as the probability of including the edge {j, i}. For each vertex i, we
think of Xi as the spatial location of the vertex, and Wi as the weight associated to it.

We call such a graph G a spatial inhomogeneous random graph, or SIRG for short, and
we use the notation

G(X, W, κ) (2)

to denote the SIRG corresponding to the location sequence X, weight sequence W, and
connection function κ .

Remark 1. (Non-spatial inhomogeneous random graphs.) In the setting of (non-spatial) inho-
mogeneous random graph as proposed by Bollobás, Janson and Riordan in [5], the vertex
locations of the SIRGs can be thought of as types associated to each vertex. However, the type
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space in [5] was taken to be an abstract space without any structure. In our model, these are
locations in a Euclidean space, with connections depending upon distances between vertex
locations, incorporating the underlying metric structure. In particular, in our models, the edge
probabilities are large for nearby vertices, while in [5], edge probabilities are typically of the
order 1/n. This allows for non-trivial clustering to be present in our models, unlike in [5],
where the local limits are multitype branching processes; see [22, Chapter 3].

Consider a sequence Gn = (V(Gn) = [n], E(Gn)) = G(X(n), W(n), κn) of SIRGs of size n.
Then X(n) = (X(n)

i )i∈[n] and W(n) = (W(n)
i )i∈[n] are the location and weight sequences, respec-

tively, while κn is the sequence of connection functions. If X(n), W(n), and κn have limits
X, W, and κ , respectively, as n → ∞ and in some appropriate sense, it is natural to expect
the sequence of random graphs G(X(n), W(n), κn) to have the graph G(X, W, κ) as its limit.
Our main contribution formalizes this intuition using local convergence, under appropriate
convergence assumptions on X(n), W(n), and κn, which we discuss next.

Assumption 1. (Law of vertex locations.) Define the box

I :=
[
− 1

2 , 1
2

]d
. (3)

For each n ∈N, the collection (X(n)
i )i∈[n] is a collection of independent and uniformly

distributed random variables on the box I.

Assumption 2. (Weight distributions.) Let W(n) = (W(n)
i )i∈[n] be the sequence of weights asso-

ciated to the vertices of Gn, and assume that W(n) is independent of X(n). Furthermore, we
assume that there exists a random variable W, with distribution function FW (x) := P (W ≤ x),
such that for every continuity point x of FW (x),

1

n

n∑
i=1

1{
W(n)

i ≤x
} P→FW (x), (4)

as n → ∞. That is, we assume convergence in probability of the (possibly random) empirical
distribution function to the (deterministic) distribution function FW of some limiting weight
random variable W.

The above assumption on the weights in our model is natural. Note that if we let Un be
uniform on [n] = {1, . . . , n}, then (4) is equivalent to the convergence in distribution of the
typical weight W(n)

Un
, conditionally on the entire weight sequence (W(n)

i )i∈[n], to W. Such reg-
ularity conditions are essential for understanding the behavior of the typical vertex, which is
what local convergence aims to understand. Similar regularity assumptions on the weight of a
typical vertex are also required for generalized random graphs (see e.g. [20, Condition 6.4]) to
make sure the typical degree distribution has a limit.

In most spatial random graph models, one starts with an infinite weight sequence and
assigns the first n entries of this sequence as weights to the vertices of Gn. This infinite
weight sequence usually is deterministic, or is an independent and identically distributed (i.i.d.)
sequence of weights from some given distribution. Note that for the latter, the above assump-
tion is satisfied using the strong law of large numbers, and for the former case, (4) ensures that
we have convergence in distribution of the typical weight.
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We also need some convergence assumptions for the sequence of connection functions κn.

Assumption 3. (Connection functions.)

1. There exists a function κ : R+ ×R×R→ [0, 1] such that for every pair of real
sequences xn → x and yn → y, and for almost every t ∈R+,

κn(n1/dt, xn, yn) → κ(t, x, y), (5)

as n → ∞.

2. Let W(1) and W(2) be two i.i.d. copies of the limiting weight random variable W. Then
there exist t0 > 0, α > 0, such that, for any t ∈R+ with t > t0,

E

[
κ(t, W(1), W(2))

]
≤ t−α . (6)

Before stating our results, let us reflect on Assumption 3 a little. The term n1/d in the first
argument of κn is required, because to obtain a local limit, we need to blow up the vertex
locations from being uniform on I (recall (3)) to being uniform on

In :=
[
−n1/d

2
,

n1/d

2

]d

. (7)

This is done via the transformation x �→ n1/dx, and the n1/d term in (5) ensures convergence of
κn after this transformation.

Next, the ‘strong’ form of continuity in (5) is required so that the connection function
sequence κn is continuous with respect to convergence of weights as formulated in (4). To
explain this, let j ∈N, and consider a sequence (hn)n≥1 of bounded continuous functions
hn : Rj →R, converging to a bounded continuous function h : Rj →R in the following ‘strong’
sense analogous to (5): for any collection {(xi

n)n≥1 : 1 ≤ i ≤ j} of j real sequences satisfying
xi

n → xi as n → ∞ for 1 ≤ i ≤ j, hn(x1
n, . . . , xj

n) → h(x1, . . . , xj). Then, if for each n ∈N we
let Un,1, . . . , Un,j be j independent uniformly distributed random variables on [n] and let
W(1), . . . , W(j) be j i.i.d. copies of the limiting weight random variable W, (4) implies that

E

[
hn(W(n)

Un,1
, . . . , W(n)

Un,j
)
]
→E

[
h(W(1), . . . , W(j))

]
, (8)

as n → ∞. In particular, as a consequence of (5) and (4), one can take hn in (8) to be κn, or
products of κn, which will enable us to compute probabilities that paths exist in our finite graphs
Gn. Note that (8) is not true in general if we just assume that the function hn is continuous on
R

j for each fixed n ∈N.
The above strong sense of continuity is in line with the assumption of graphical kernels in

[5] (see [5, (2.10)]). In the setting of [5], if we now consider the weights (instead of vertex
locations as in Remark 1) associated to each vertex as vertex types, then we merely require the
connection kernels to be continuous with respect to convergence of types, which is one of the
key properties of graphical kernels in [5].

Finally, let us discuss the technicality of having the convergence (5) hold for almost every
t ∈R+, instead of all t. This is a purely technical condition, to avoid pathological examples. For
example, consider the sequence of connection functions κn(t, x, y) := 1{t<n1/dxy}. We naturally
want the limit of this sequence of connection functions to be 1{t<xy}. It is easily verified that for
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any pair of real sequences xn → x and yn → y, (5) holds, except possibly for t ∈ {xy}, a set of
measure zero, with limiting connection function κ(t, x, y) = 1{t<xy}. In particular, Assumption

3(1) holds. Typically, t will be replaced by ‖X(n)
i − X(n)

j ‖, with X(n)
i , X(n)

j being the respective

locations of two vertices i and j. Since, under Assumption 1, the random variable ‖X(n)
i − X(n)

j ‖
is a continuous random variable, it will avoid sets of measure zero, and Assumption 3(1) will
continue to hold in our probabilistic statements.

1.3. Statement of main results

Let us now formally discuss the limit of the SIRG model. As mentioned before, we shall
consider the ‘blown-up’ SIRG sequence Gn = G(Y(n), W(n), κn), where Y(n) = (Y (n)

i )i∈[n], with

Y (n)
i = n1/dX(n)

i for all i ∈ [n], and X(n) = (X(n)
i )i∈[n] satisfies Assumption 1, i.e., the locations

of Gn are now i.i.d. uniform variables on In (recall (7)).
For convenience, we also define the point process on R

d, corresponding to the spatial
locations of Gn, as

�n(·) :=
n∑

i=1

δ
Y(n)

i
(·), (9)

where δx denotes the Dirac measure at x ∈R
d.

If Gn has a local limit, then it is natural to expect that the weights associated to each vertex
in this limit are i.i.d. copies of the limiting weight random variable W because of Assumption 2,
and that the limiting connection function is κ . For the locations, it is standard that the sequence
�n, viewed as random measures on R

d, converges to a unit-rate homogeneous Poisson point
process on R

d (see [23]), whose points will serve as the locations of the vertices of the limiting
graph.

To this end, let us consider a unit-rate homogeneous Poisson point process �, and write its
atoms as � = {Yi}i∈N (such an enumeration is possible by [27, Corollary 6.5]). Define the point
process

�∞ := � ∪ {0} (10)

(where 0 = (0, 0, . . . , 0) ∈R
d), which is the Palm version of �, and write the sequence of

its atoms as Y = (Yi)i∈N∪{0}, where Y0 = 0. Also let W = (Wi)i∈N∪{0} be a collection of i.i.d.
copies of the limiting weight random variable W. Then we define the infinite SIRG, whose
vertex set is given by N∪ {0}, as G∞ = G(Y, W, κ).

Our first result establishes that Gn converges locally weakly to G∞.

Theorem 1. (Convergence of SIRGs in the local weak sense.) Consider the sequence
(Gn)n≥1 = (G(Y(n), W(n), κn))n≥1 of SIRGs, where Y (n)

i = n1/dX(n)
i for each n and each i ∈

[n], with X(n) = (X(n)
i )i∈[n], W(n) = (W(n)

i )i∈[n], and κn satisfying Assumptions 1, 2, and 3,
respectively, with the parameter α in (6) satisfying

α > d.

Then (Gn)n≥1 converges locally weakly to the infinite rooted SIRG (G∞, 0), rooted at vertex 0,
where G∞ = G(Y, W, κ).

Remark 2. (Regularly varying connection functions.) Note that if E
[
κ(t, W(1), W(2))

]
, as a

function of t, either is itself, or is dominated by, a regularly varying function in t, with some
exponent greater than d, then by Potter’s theorem (see e.g. [30]), Assumption 3(2) is satisfied,
with some α > d. Hence, for such connection functions, Theorem 1 goes through.
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Theorem 1 is equivalent to the statement that if Un is uniformly distributed on [n], then the
random rooted graph (Gn, Un) converges in distribution to the random rooted graph (G∞, 0),
in the space (G�, d�).

The condition α > d is required to avoid non-integrability of z �→ E
[
κ(‖z‖, W(1), W(2))

]
as

a function on R
d. Integrability of E

[
κ(‖z‖, W(1), W(2))

]
implies that the degrees in G∞ have

finite mean, which ensures that our random graph model is sparse. It also ensures that G∞ is
locally finite almost surely, which we need for local weak convergence to make sense.

There are two main challenges in proving Theorem 1. The first is to formulate the proba-
bility that the rooted subgraph induced by vertices whose locations fall inside a Euclidean ball
with some fixed radius centered at the location Y (n)

Un
of Un is isomorphic to a given graph, in

terms of suitable functionals of the spatial locations of the vertices. The latter have nice lim-
iting behavior owing to vague convergence of the spatial locations to a homogeneous Poisson
process. The second is a careful path-counting analysis to conclude that the expected number
of paths starting at Un, containing vertices with spatial locations far away from the location of
Un, can be made arbitrarily small.

The result of Theorem 1 can be improved to local convergence in probability, as follows.

Theorem 2. (Convergence of SIRGs locally in probability.) Under the assumptions of
Theorem 1, the sequence of SIRGs (Gn)n≥1 converges locally in probability to the infinite
rooted SIRG (G∞, 0), where G∞ = G(Y, W, κ).

The improvement in Theorem 2 is achieved via a second moment analysis on neighborhood
counts. The required independence essentially follows from the fact that the spatial locations
of two uniformly chosen vertices of Gn are with high probability far apart from each other.

2. Consequences and discussion

In this section, we discuss implications of Theorems 1 and 2. We first discuss some standard
examples that are covered under our setting. We then discuss how local convergence implies
convergence of interesting graph functionals. We focus our attention on the degree and clus-
tering structure of our SIRGs. Finally we provide a lower bound on typical distances in our
graphs.

2.1. Examples

In this section, we discuss examples of spatial random graph models that are covered under
our set-up.

2.1.1. Product SIRGs. We begin by discussing a particular type of SIRG, in which the
connection has a product form.

Definition 5. (Product SIRGs.) For a SIRG G(X, W, κ), if the connection function κ has the
product form

κ(t, x, y) = 1 ∧ f (t)g(x, y), (11)

for some non-negative functions f : R+ →R+ and g : R2 →R+, where g is symmetric, then
we call the SIRG a product SIRG, or PSIRG for short, and we call κ a product kernel.

Theorem 1 can be directly adapted to the PSIRG setting under appropriate conditions on
the product kernel.
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Assumption 4. (PSIRG connection functions.) Let κ : R+ ×R×R→ [0, 1] be a product
kernel κ(t, x, y) = 1 ∧ f (t)g(x, y) such that the following hold:

1. There exist αp > 1 and t1 ∈R+ such that for all t > t1,

f (t) ≤ t−αp .

2. There exist βp > 0 and t2 ∈R+ such that for all t > t2,

P

(
g(W(1), W(2)) > t

)
≤ t−βp ,

where W(1), W(2) are i.i.d. copies of the limiting weight random variable W in (4).

Let W(1) and W(2) be two i.i.d. copies of W (see Assumption 2). The following lemma
derives a useful bound on product kernels that satisfy Assumption 4.

Lemma 1. (Bound on product kernel.) Under Assumption 4, for any ε > 0, there exists t0 =
t0(ε) > 0 such that whenever t > t0,

E

[
κ(t, W(1), W(2))

]
≤ t− min{αp,αpβp}+ε .

In other words, if the limiting connection function κ in Theorem 2 satisfies Assumption 4,
it also satisfies Assumption 3(3), with α = min{αp, αpβp} − ε for any ε > 0. So, if

γp := min{αp, αpβp} > d,

then using Lemma 1, we have that κ satisfies Assumption 3(3) with some α > d, by choosing
ε > 0 sufficiently small. Hence we obtain the following direct corollary to Theorem 2, whose
proof we omit. Recall the vector W = (Wi)i∈N∪{0} of i.i.d. copies of the limiting weight variable
W (see (4)), and Y = (Yi)i∈N∪{0} the atoms of �∞ (see (10)), with Y0 = 0.

Corollary 1. (Convergence of PSIRGs locally in probability.) Consider the sequence
(Gn)n≥1 = (G(Y(n), W(n), κn))n≥1 of SIRGs, where, for each n and each i ∈ [n], Y (n)

i = n1/dX(n)
i ,

with X(n) = (X(n)
i )i∈[n] and W(n) = (W(n)

i )i∈[n] satisfying Assumptions 1 and 2, κn satisfying
Assumption 3(1), κ satisfying Assumption 4, and

γp := min{αp, αpβp} > d.

Then (Gn)n≥1 converges locally in probability to the infinite rooted SIRG (G∞, 0), rooted at
vertex 0, where G∞ = G(Y, W, κ).

Remark 3. (Regularly varying product forms.) Note that if f(t) and P
(
g(W(1), W(2)) > t

)
are

regularly varying functions of t outside some compact sets, with respective exponents αp > 0
and βp > 0 with min{αp, αpβp} > d, then by Potter’s theorem (see [30]), they respectively sat-
isfy Assumptions 4(1) and 4(2) with some exponents αp > 0 and βp > 0, with min{αp, αpβp} >

d. Hence for these kinds of connection functions, Lemma 1, and hence Corollary 1, continue
to be true.

Remark 4. (Dominance by PSIRG connections.) Note that even if κ is not of product
form, but instead is dominated by 1 ∧ f (t)g(x, y), with f and g respectively satisfying
Assumptions 4(1) and 4(2), with γp > d, then Lemma 1, and hence Corollary 1, continue to be
true.
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Next we discuss several known models which are all examples of PSIRGs, or of SIRGs
with connection functions dominated by PSIRG connection functions. The results that follow
are presented as corollaries of Theorem 2, and their proofs are in Section 3.7.

2.1.2. Geometric inhomogeneous random graphs. Geometric inhomogeneous random graphs
(GIRGs) [6–8] were motivated as spatial versions of the classic Chung–Lu random graphs
[9, 10]. Although Chung–Lu random graphs with suitable parameters are scale-free and exhibit
small-world properties, they fail to capture clustering, a ubiquitous property of real-world
networks.

GIRGs have four parameters: the number of vertices n, αG ∈ (1, ∞], βG > 2, and the dimen-
sion d ≥ 1. To each vertex i ∈N, one associates an independent, uniformly distributed random
location X(n)

i on I (recall (3)) and a real weight W(n)
i (possibly random) such that (4) holds. Here

the limiting weight variable W has a power-law tail with exponent βG: there exists tG ∈R+
such that

cGz1−βG ≤ P (W > z) ≤ CGz1−βG , (12)

whenever z > tG, for some absolute constants cG, CG > 0. In particular, we have E [W] < ∞.
Conditionally on (X(n)

i )i∈[n] and (W(n)
i )i∈[n], each edge {i, j} is included independently with

probability pi,j given by

pi,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 ∧
(

W(n)
i W(n)

j∑
i∈[n] W(n)

i

)αG
1

‖X(n)
i −X(n)

j ‖dαG
if 1 < αG < ∞,

1⎧⎨
⎩
(

W(n)
i W(n)

j∑
i∈[n] W(n)

i

)1/d

>‖X(n)
i −X(n)

j ‖
⎫⎬
⎭

if αG = ∞. (13)

We denote the resulting random graph by

GIRGn,αG,βG,d.

Remark 5. (Relationship to GIRGs in [8].) Our formulation of GIRGs is closer to the formu-
lation adopted in [24] than to that of [8]. In the original definition of GIRGs (see [8]), the
connection function is only assumed to be bounded above and below by multiples of (13), and
vertex locations are assumed to be uniform on the torus Tn which is obtained by identifying
the boundaries of I. However, to define a local limit, we need the connection function to con-
verge to a limiting function, for which we have taken the explicit form (13). Finally, using the
observation that only a negligible proportion of vertex locations fall near the boundary of I,
our results can easily be transferred to the torus setting.

Now consider the infinite SIRG G(Y, W, καG), where Y = (Yi)i∈N∪{0} is the sequence of
atoms of � ∪ {0} (with Y0 = 0), � is a unit-rate homogeneous Poisson point process on R

d,
W = (Wi)i∈N∪{0} is an i.i.d. collection of limiting weight random variables W, and κ (αG) is the
connection function

κ (αG)(t, x, y) =

⎧⎪⎨
⎪⎩

1 ∧
(

xy
E[W]

)αG
t−dαG if 1 < αG < ∞,

1{(
xy

E[W]

)1/d
>t

} if αG = ∞. (14)

As a corollary to Theorem 2, we establish the local limit of the GIRG sequence to be
(G(Y, W, καG), 0). This answers a question posed in [24] (see [24, Section 2.1]) in the
affirmative. We call the above infinite SIRG the infinite GIRG, and denote it by GIRG∞,αG,βG,d.
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Corollary 2. (Convergence of GIRGs locally in probability.) As n → ∞, the sequence
(GIRGn,αG,βG,d)n≥1 converges locally in probability to the rooted infinite GIRG
(GIRG∞,αG,βG,d, 0), rooted at 0, where αG ∈ (1, ∞], βG > 2, d ∈N.

2.1.3. Hyperbolic random graphs. Hyperbolic random graphs (HRGs) were first proposed by
Krioukov et al. in 2010 [25], as a model that captures the three main properties of most real-
world networks: scale-free, small distances, and non-vanishing clustering coefficient.

HRGs have three parameters, namely the number of vertices n, αH > 1
2 , and ν > 0, which

are fixed constants. Let

Rn := 2 log
n

ν
. (15)

The vertex set of the graph is the set of n i.i.d. points u(n)
1 , . . . , u(n)

n on the hyperbolic plane

H, where u(n)
i = (r(n)

i , θ
(n)
i ) is the polar representation of u(n)

i . The angular component vector

(θ (n)
i )n

i=1 is a vector with i.i.d. coordinates, each coordinate having the uniform distribution

on [ − π, π ]. The radial component vector (r(n)
i )n

i=1 is independent of (θi)n
i=1 and has i.i.d.

coordinates, with cumulative distribution function

F(n)
αH ,ν(r) =

⎧⎪⎪⎨
⎪⎪⎩

0 if r < 0,
cosh αHr − 1

cosh αHRn − 1
if 0 ≤ r ≤ Rn,

1 if r > Rn.

(16)

Given (u(n)
i )n

i=1 = ((r(n)
i , θ

(n)
i ))n

i=1, one forms the threshold HRG (THRG) by placing edges

between all pairs of vertices u(n)
i and u(n)

j with conditional probability

p(n)
THRG

(
u(n)

i , u(n)
j

)
:= 1{

dH
(

u(n)
i ,u(n)

j

)
<Rn

}, (17)

where dH denotes the distance in the hyperbolic plane H; i.e., the edge between u(n)
i and u(n)

j is

included if and only if dH
(
u(n)

i , u(n)
j

)
< Rn.

Similarly, one forms a parametrized version of the THRG (see [25, Section 6]), which we
call the parametrized HRG (PHRG), by placing edges independently between u(n)

i and u(n)
j

with conditional probability

p(n)
PHRG

(
u(n)

i , u(n)
j

)
:=

(
1 + exp

(
dH
(
u(n)

i , u(n)
j

)− Rn

2TH

))−1

, (18)

where TH > 0 is another parameter.
We denote the THRG model with parameters n, αH , ν by THRGn,αH ,ν , and the PHRG

model with parameters n, αH, TH, ν by PHRGn,αH ,TH ,ν .
Both the THRG and PHRG models can be seen as finite SIRGs, which gives us the local

limits for these models, as a corollary to Theorem 2.

Corollary 3. (Convergence of HRGs locally in probability.) Let αH > 1
2 , 0 < TH < 1, and n ∈

N. Let Y be the sequence of atoms of (10). Then there exists a random variable W having a
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power-law distribution with exponent 2αH + 1, such that if W = (Wi)i∈N∪{0} is a sequence of
i.i.d. copies of W, the following hold:

(a) The sequence (THRGn,αH ,ν)n≥1 converges locally in probability to the infinite SIRG
G(Y, W, κTHRG,∞), where

κTHRG,∞(t, x, y) := 1{t≤ νxy
π }.

(b) The sequence (PHRGn,αH ,TH ,ν)n≥1 converges locally in probability to the infinite SIRG
G(Y, W, κPHRG,∞), where

κPHRG,∞(t, x, y) :=
(

1 +
(

π t

νxy

)1/TH
)−1

.

2.1.4. Continuum scale-free percolation. The continuum scale-free percolation (CSFP) model
[13] was introduced as a continuum analogue of the discrete scale-free percolation (SFP)
model [12], a model that captures power-law degree distributions while preserving non-zero
clustering and logarithmic typical distances.

We now formally define the model following [13]. The vertex set is the set of points of a
homogeneous Poisson point process (Yi)i∈N, marked with i.i.d. weights (Wi)i∈N which have a
Pareto distribution with power-law tail parameter β > 0 and scale parameter 1:

P (W > w) = w−β, (19)

whenever w > 1. Conditionally on (Yi)i∈N and (Wi)i∈N, each edge {Yi, Yj} is included indepen-
dently with probability

1 − exp

(
− λWiWj

‖Yi − Yj‖α

)
,

where λ > 0 is a parameter. Here we remark that in the original definition in [13], instead
of a homogeneous Poisson process (Yi)i∈N, a Poisson process with some constant intensity
ν > 0 was considered. By standard scaling arguments, this does not make any difference in our
results.

Considering the Palm version (Yi)i∈N∪{0} of (Yi)i∈N, where Y0 = 0 ∈R
d, marking Y0 with

an independent weight W0, and rooting the resulting graph at 0, it is immediate that the result-
ing rooted infinite CSFP model is the rooted SIRG (G(Y, W, κ), 0), where Y = (Yi)i∈N∪{0},
W = (Wi)i∈N∪{0}, and κ(t, x, y) := 1 − exp

(
−λxy

tα

)
.

For each n ≥ 1, let X(n) = (X(n)
i )i∈[n] satisfy Assumption 1, and consider the ‘blown-up’

finite CSFP model G(Y(n), W(n), κn), where Y (n)
i = n1/dX(n)

i for i ∈ [n], W(n) = (W(n)
i )i∈[n] is a

vector of i.i.d. weight variables having law (19), and κn(t, x, y) = 1 − exp
(
− λxy

n− α
d tα

)
. Then as

corollary to Theorem 2, we have that the infinite CSFP is the local limit of finite CSFPs under
suitable assumptions.

Corollary 4. (Convergence of CSFPs locally in probability.) Let

min{α, αβ} > d.

Then, as n → ∞, the graph sequence G(Y(n), W(n), κn) converges locally in probability to the
infinite rooted CSFP (G(Y, W, κ), 0).
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2.1.5. Weight-dependent random connection models. Another very general class of spatial
random graph model, called the weight-dependent random connection model (WDRCM), was
first introduced in [18], motivated by the study of recurrence and transience properties of
general geometric graphs, which we briefly discuss.

To construct the graph, one takes a unit-rate Poisson process on R
d × [0, 1], condition-

ally on which edges between pairs of vertices (x, s) and (y, t) are placed independently with
probability

ρ(h(s, t, ‖x − y‖)),

for some profile function ρ : R+ → [0, 1] and a suitable kernel h : [0, 1] × [0, 1] ×R+ →R+.
The vertex (x, s) is thought of as being located at x ∈R

d, and having a weight of s−1 associated
to it.

Including the point r = (0, U) ∈R
d × [0, 1], where U is uniformly distributed on [0, 1]

and independent of the weights and locations of other vertices, and rooting the graph at r,
we obtain the infinite rooted SIRG (G(Y, W, κ), 0), where Y = (Yi)i∈N∪{0} are the atoms of
(10), W = (Wi)i∈N∪{0} is a sequence of i.i.d. random weights that are uniform on [0, 1], and
κ = ρ ◦ h.

For n ≥ 1, let (X(n)
i )i∈[n] satisfy Assumption 1, let (W(n)

i )i∈[n] be a collection of n i.i.d.
weights that are uniform on [0, 1], and let κn:R×R×R+ → [0, 1] be defined as κn(t, x, y) =
ρ(h(x, y, n−1/dt)), with κ(t, x, y) = ρ(g(x, y, t)) satisfying Assumption 3(2). Then as a direct
consequence of Theorem 2 we have the following corollary, whose proof we omit.

Corollary 5. (Convergence of WDRCMs locally in probability.) Let Y(n) = (Y (n)
i )i∈[n] =

(n1/dX(n)
i )i∈[n]. Then, as n → ∞, the sequence of SIRGS G(Y(n), W(n), κn) converges locally

in probability to the infinite rooted WDRCM (G(Y, W, κ), 0).

2.2. Consequences of local convergence: degrees

Theorem 2 is equivalent to the statement that for any subset A ⊂ G�,

1

n

n∑
i=1

1{(Gn,i)∈A}

converges in probability to P ((G∞, 0) ∈ A) (see e.g. [22, (2.3.5)]).
In particular, for fixed k ∈N, one can take Ak to be the subset of those rooted graphs (G, o)

for which the root o has degree k in G, to conclude that

Nk(Gn)

n
P→P (D = k),

where Nk(Gn) is the number of vertices with degree k in Gn, and where D is the degree of 0
in G∞.

Taking expectation and applying dominated convergence, we have that for any k ∈N,
P (Dn = k) → P (D = k) as n → ∞, where Dn is the degree of Un in Gn, which implies

Dn
d→D, (20)
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(where
d→ means convergence in distribution) as n → ∞. We next give a description of the

random variable D. For this, let W0 be the weight of 0 in G∞, and let W(1) be an independent
copy of W0.

Proposition 1. (Degree distribution.) Under the assumptions of Theorem 1, the random
variable D is distributed as

Poi

(∫
Rd

E

[
κ(‖z‖, W0, W(1))

∣∣∣W0

]
dz

)
;

i.e. it has a mixed Poisson distribution with mixing parameter∫
Rd

E

[
κ(‖z‖, W0, W(1))

∣∣∣W0

]
dz.

Note that Proposition 1, Assumption 3(3), and Fubini’s theorem imply that

E [D] =
∫
Rd

E

[
κ(‖x‖, W0, W(1))

]
dx,

which is finite. Since the expectation of the mixing parameter is finite, the mixing parameter is
finite almost surely, and hence Proposition 1 makes sense.

In particular, when the mixing parameter
∫
Rd E

[
κ(‖z‖, W0, W(1))

∣∣W0
]

dz is regularly vary-
ing with some exponent ζ > 0, the random variable D is also regularly varying with the same
exponent ζ > 0. This allows for the existence of power-law degree distributions in spatial
random graphs.

Recall that Dn is the degree of the uniform vertex Un in Gn.

Proposition 2. (Uniform integrability of typical degree sequence.) Under the assumptions of
Theorem 1, the sequence (Dn)n≥1 is a uniformly integrable sequence of random variables.

The proof is given in Section 3.8. This result is of independent interest. Uniform integra-
bility of the typical degree sequence in general does not follow from local convergence, even
when the limiting degree distribution has finite mean; see for example [22, Exercise 2.14].

Combining Proposition 2 with (20), we note that

E [Dn] →E [D] ,

as n → ∞. Note that one cannot directly conclude this from Theorem 1, because the function
D : G� →R+ defined by

D((G, o)) := degree of o in G

is continuous, but not necessarily bounded.

2.3. Consequences of local convergence: clustering

In this section, we discuss convergence of various clustering measures of SIRGs.
For any graph G = (V(G), E(G)), we let

WG :=
∑

v1,v2,v3∈V(G)

1{{v1,v2},{v2,v3}∈E(G)} =
∑

v∈V(G)

dv(dv − 1) (21)
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(where dv is the degree of v in G) be twice the number of wedges in the graph G, and we let

�G :=
∑

v1,v2,v3∈V(G)

1{{v1,v2},{v2,v3},{v3,v1}∈E(G)} (22)

be six times the number of triangles in the graph G, where the sums in (21) and (22) are over
distinct vertices v1, v2, v3 ∈ V(G).

Then the global clustering coefficient CCG of the graph G is defined as

CCG := �G

WG
. (23)

We next discuss a local notion of clustering. For v ∈ V(G), define

CCG(v) :=
{

�v(G)
dv(dv−1) if dv ≥ 2,

0 otherwise,

where

�v(G) =
∑

v1,v2∈V(G)

1{{v1,v},{v2,v},{v1,v2}∈E(G)}

is twice the number of triangles in G containing the vertex v, and dv, as before, is the degree of
v in G. The local clustering coefficient CCG of G is then defined as

CCG := 1

n

∑
v∈V(G)

CCG(v). (24)

Finally, we discuss a notion of clustering contribution from only vertices of a certain degree.
For k ∈N, define the clustering function to be

k �→ CCG,k,

where CCG,k is defined as

CCG,k :=
⎧⎨
⎩

1
Nk(G)

∑
v∈v(G),dv=k

�v(G)
k(k−1) if Nk(G) > 0,

0 otherwise,
(25)

where Nk(G) is the total number of vertices in G with degree k. Thus, CCG,k measures the
proportion of wedges that are triangles, where one of the participant vertices has degree k.

We now present the results on convergence of these various clustering measures for SIRGs.

Corollary 6. (Convergence of clustering coefficients of SIRGs.) Under the assumptions of
Theorem 1, as n → ∞, the following hold:

1. If α > 2d, then

CCGn

P→ E [�0]

E [D(D − 1)]
, (26)

where �0 := ∑
i,j∈N 1{{0,i},{0,j},{i,j}∈E(G∞)} is twice the number of triangles containing

0 in G∞, and D is the degree of 0 in G∞.
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2. We have

CCGn

P→E

[
�0

D(D − 1)

]
. (27)

3. For any k ∈N,

CCG,k
P→ 1(k

2

)E [�0| D = k] . (28)

Parts 2 and 3 of Corollary 6 are direct consequences of local convergence (see [22, Section
2.4.2]). For Corollary 6(1), we need an additional uniform convergence property of the square
of the degree of a uniform vertex, which we prove is implied by the condition α > 2d.

Remark 6. (Condition on α.) The condition α > 2d in Corollary 6(1) is not optimal, as will be
evident in the proof. Our purpose is not to find the optimal conditions under which the global
clustering coefficient converges, but to demonstrate how local convergence of graphs implies
convergence of the global clustering coefficient.

Recently, in [15], precise results have been obtained concerning convergence of clustering
coefficients and scaling of the clustering function as k grows to infinity for hyperbolic random
graphs. Also, it was shown in [11] that under suitable conditions, the CSFP model has non-zero
clustering in the limit.

2.4. Consequences of our local convergence proof: distance lower bound

Finally, we provide a result on typical distances in our graphs. Let Un,1 and Un,2 be two
i.i.d. uniformly distributed vertices of Gn, so that dGn (Un,1, Un,2) is the graph distance in Gn

between Un,1 and Un,2. Recall that by convention we let dGn (Un,1, Un,2) = ∞ when Un,1 and
Un,2 are not in the same connected component of Gn, so that dGn (Un,1, Un,2) is a well-defined
random variable.

Theorem 3. (Lower bound on typical distances.) Under the assumptions of Theorem 1, for any

C ∈
(

0, 1
log ( α

α−d )

)
,

P
(
dGn (Un,1, Un,2) > C log log n

)→ 1,

as n → ∞.

In fact, we believe that the limit in the above display holds with C replaced by 1
log ( α

α−d ) ,

but our method of proof does not allow us to establish this improvement. As we will see, the
proof is a direct byproduct of the proof of the local weak limit in Theorem 1. Note that as α

approaches d, the lower bound in Theorem 3 becomes trivial.
If, instead of a regularly varying domination as in Assumption 3(2), we have that

E [κ(t, W0, W1)] itself is regularly varying in t with exponent α, then it follows from
Proposition 1 that the expectation of the limiting degree distribution D is infinite in the regime
α ∈ (0, d). We conjecture that the distances are of constant order in this regime.

Conjecture 1. (Constant distances for α ∈ (0, d).) Let Gn = G(Y(n), W(n), κn) satisfy the
assumptions of Theorem 1 except for Assumption 3(2), instead of which we assume that
the limiting connection function κ is such that E [κ(t, W0, W1)] is regularly varying with
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exponent α ∈ (0, d). Then if Un,1 and Un,2 are two uniformly chosen vertices in the SIRG
Gn = G(Y(n), W(n), κn), conditionally on the event that Un,1 and Un,2 are connected in Gn,

dGn (Un,1, Un,2)
P→K(α, d),

as n → ∞, where K(α, d) is a constant depending only on the exponent α and dimension d.

For the case α = d, we do not expect universal behavior, and the question then becomes
model-dependent. Results for constant distances when the limiting degree distribution has infi-
nite mean are known for lattice models such as long-range percolation (see [3, Example 6.1]),
for scale-free percolation (see [19, Theorem 2.1]), and for the configuration model [14], which
is a model without geometry.

Theorem 3 poses the following question: when are the typical distances exactly doubly
logarithmic? Interestingly, distances can be larger than doubly logarithmic, even when the
limiting degree distribution has infinite second moment, E

[
D2
]= ∞, as was shown in [17];

see for example [17, Theorem 1.1(a)]. We conjecture that if certain lower-order moments below
a (model-dependent) critical threshold are infinite, this implies ultra-small distances. This is
also the behavior that the authors of [17] observe, for a special class of models, but we believe
this behavior is universal.

Conjecture 2. (Ultra-small distances.) Under the assumptions of Theorem 3, there is a con-
stant ε∗ ∈ (0, 1), depending on the model parameters, such that for any ε > ε∗, E

[
D2−ε

]= ∞
implies that there is a constant C(α, d) > 0 such that

P

(
dGn (Un,1, Un,2) < C(α, d) log log n

∣∣∣∣Un,1 and Un,2 are connected in Gn

)
→ 1,

as n → ∞.

3. Proofs

In this section we give all the proofs. We start, in Section 3.1, by defining the notation that
we use throughout this section, and by outlining the general proof strategy for our main results,
Theorems 1 and 2. Sections 3.2 and 3.3 contain proofs of some of the key tools that we employ
to prove our main results. The proofs of Theorems 1 and 2 can be found in Sections 3.4 and
3.5 respectively. The proof of Theorem 3 can be found in Section 3.6. Proofs of results on
examples covered under our set-up are in Section 3.7. Proofs of degree and clustering results
can be found respectively in Sections 3.8 and 3.9.

3.1. Notation and general proof strategy for Theorems 1 and 2

Recall the SIRGs Gn = G(Y(n), W(n), κn) and G∞ = G(Y, W, κ) from Theorem 1. We first
define some notation which we will use throughout. Recall that Gn has vertex set V(Gn) = [n],
and G∞ has vertex set V(G∞) =N∪ {0}.

For r > 0, define the set

Ar
n :=

[
−n1/d

2
+ r,

n1/d

2
− r

]d

. (29)

Thus, Ar
n is a sub-box of the box In, such that for any point in Ar

n the open Euclidean ball
of radius r around that point is contained in the box In. Hence, the number of points of the
binomial process �n (recall (9)) falling in this open ball has the same distribution as the number
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of points of �n falling in the open ball of radius r around the origin 0 ∈R
d. We will use this

property of Ar
n in a suitable manner, which we formally explain next.

To this end, for any x ∈R
d, define the ball

Br
x := {y ∈R

d : ‖x − y‖ < r}. (30)

Then if we let ∂(In) = In \ int(In) denote the boundary of the set In, where int(In) is the interior
of In, i.e. the union of all open subsets of In, we note that for any vertex j ∈ V(Gn) with location
Y (n)

j ∈ Ar
n, the ball Br

Y(n)
j

does not intersect the boundary ∂(In) of In, i.e. Br
Y(n)

j

⊂ int(In). As a

result, the distribution of the number of vertices of Gn (other than j) with locations in Br
Y(n)

j

does not depend on Y (n)
j , and it follows a Bin

(
n − 1,

λd(Br
0)

n

)
distribution (where λd denotes

the Lebesgue measure on R
d).

In particular, since λd(In\Ar
n)

n → 0 as n → ∞, the location Y (n)
Un

of the uniformly chosen vertex
Un of Gn will with high probability fall in Ar

n. We will condition on this good event, under

which the number of points of �n in Br
Y(n)

Un

follows a Bin
(

n − 1,
λd(Br

0)
n

)
distribution, and this

will simplify our computations.

Definition 6. (Euclidean graph neighborhoods around a vertex.) For a vertex i ∈ V(Gn), we
define (FGn

i (r), i) to be the rooted subgraph of Gn rooted at i, induced by those vertices j

whose locations Y (n)
j satisfy Y (n)

j ∈Br
Y(n)

i

.

Similarly, we define (FG∞
0 (r), 0) to be the rooted subgraph of G∞ rooted at 0, induced by

the vertices j ∈ V(G∞) whose locations Yj satisfy Yj ∈Br
Y0

=Br
0.

For i ∈ [n], we will sometimes abbreviate the rooted graph (FGn
i (r), i) as simply FGn

i (r), and

similarly for FG∞
0 (r).

For any graph G = (V(G), E(G)), edge e = {v1, v2} ∈ E(G), and vertex v ∈ V(G), by the
graph distance of the edge e= {v1, v2} from v we mean the number

min{dG(v1, v), dG(v2, v)}, (31)

where dG is the graph distance on G.
Having introduced the main notation, we next discuss the main ingredients and the proof

strategy for Theorems 1 and 2.

Local convergence of Euclidean graph neighborhoods. Recall the graphs FGn
Un

(r) and

FG∞
0 (r) from Definition 6. In Section 3.2, we will prove that the typical local graph structure

in any deterministic Euclidean ball around the root location is asymptotically what it should
be, i.e., for any r, (FGn

Un
(r), Un) is close in distribution to (FG∞

0 (r), 0).

Proposition 3. (Local convergence of Euclidean graph neighborhoods.) For any fixed rooted
finite graph H∗ = (H, h) ∈ G�, and for any r > 0,

P

(
(FGn

Un
(r), Un) ∼= (H, h)

)
→ P

(
(FG∞

0 (r), 0) ∼= (H, h)
)

,

as n → ∞, where Un is uniformly distributed on V(Gn) = [n].
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Path-counting analysis. Next, in Section 3.3, we do a path-counting analysis. We begin by
proving a technical lemma that will help us in implementing this path-counting analysis. To
state this lemma, we first introduce some more notation to keep things neat. Recall that Un is
uniformly distributed on [n].

For n, j ∈N, v1, . . . , vj ∈ [n], and �x = (x0, . . . , xj) ∈ (Rd)j+1, we define

W
v1,...,vj
n (�x) :=E

[
κn

(
‖x1 − x0‖, W(n)

Un
, W(n)

v1

)
· · · κn

(
‖xj − xj−1‖, W(n)

vj−1
, W(n)

vj

)]
, (32)

and for j ∈N, u1, . . . , uj ∈N, x0, . . . , xj ∈R
d, we define

Wj(�x) :=E
[
κ
(‖x1 − x0‖, W0, Wu1

) · · · κ (‖xj − xj−1‖, Wuj−1, Wuj

)]
. (33)

Note that the values of the expectations on the right-hand sides of (32) and (33), respectively,
do not depend on the values of the vi’s and ui’s.

Then our main path-counting tool is the following lemma.

Lemma 2. (Path-counting estimate.) For any j ≥ 1, a > 1, we have

lim
m→∞ lim sup

n→∞
1

n

∫
In

· · ·
∫

In

1

nj

∑
v1,...,vj∈[n]

W
v1,...,vj
n (�x)

×
⎛
⎝j−2∏

i=0

1{‖xi+1−xi‖<ami+1
}
⎞
⎠1{‖xj−xj−1‖>amj

}dx0 · · · dxj = 0

(34)

and

lim
m→∞

∫
Rd

. . .

∫
Rd
Wj(0, x1 . . . , xj)

×1{‖x1‖<am}

⎛
⎝j−2∏

i=1

1{‖xi+1−xi‖<ami+1
}
⎞
⎠1{‖xj−xj−1‖>amj

}dx1 · · · dxj = 0.
(35)

As a corollary to Lemma 2, we will show that for any fixed K ∈N and a, m > 1, if we
choose

r = r(a, m, K) = am + am2 + am3 + · · · + amK
, (36)

then as m → ∞, with high probability, the K-neighborhood of the rooted graph (FGn
Un

(r), Un)

will be the K-neighborhood BGn
Un

(K) of (Gn, Un), and a similar result holds for (G∞, 0). This
will help us in proving Theorems 1 and 2. To state the result, we again introduce some
shorthand notation:

Bn := BGn
Un

(K), B := BG∞
0 (K), Fn,r := FGn

Un
(r), Fr := FG∞

0 (r),

BFn,r := B
Fn,r
Un

(K), BFr := BFr
0 (K). (37)

Remark 7. (Spatial and graph neighborhoods.) At this point, we emphasize that we rely on
two kinds of neighborhoods around the root Un (respectively 0) of Gn (respectively G∞).
These are the graph Fn,r (respectively Fr), which is the subgraph induced by those vertices
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FIGURE 1. Illustration to distinguish between the two kinds of neighborhoods. The star in the middle is
the location Y(n)

Un
of the root Un, and the big circle around it is the boundary of the Euclidean ball centered

at Y(n)
Un

of radius r, in R
d . Diamonds are the vertices of the graph neighborhood BGn

Un
(2) of radius 2 around

the root. Black dots are the vertices which are not in BGn
Un

(2). The circled vertices are the vertices of

FGn
Un

(r). The circled diamonds are the vertices of BFn,r, the graph neighborhood of radius 2 about the root

Un, of the graph FGn
Un

(r).

whose spatial locations are within Euclidean distance r of the root location Y (n)
Un

(respec-
tively Y0), and the graph Bn (respectively B), which is the graph neighborhood of radius K
around the root Un (respectively 0) (see Figure 1). The difference between these two kinds
of neighborhoods should be understood clearly. For example, the graph Fn,r may possibly be
disconnected, while Bn is always a connected graph. Moreover, BFn,r (respectively BFr) is the
graph neighborhood of radius K, of the rooted graph (Fn,r, Un) (respectively (Fr, 0)).

We have the following corollary to Lemma 2.

Corollary 7. (Coupling spatial and graph neighborhoods.) Let BFn,r, Bn, BFr, B be as in (37),
where r = r(a, m, K) is as in (36). Then

lim
m→∞ lim sup

n→∞
P
(
BFn,r �= Bn

)= 0 (38)

and
lim

m→∞ P (BFr �= B) = 0. (39)

In proving Corollary 7, we perform a careful path-counting analysis to bound the expected
number of K-paths of Gn which are not K-paths in FGn

Un
(r) by the integral expression (34), and

to obtain the similar bound (35) for G∞. Corollary 7 then follows directly using the technical
Lemma 2.

In the course of proving Corollary 7, we develop a general path estimate, where for r =
r(a, m, K) as in (36), we can have a = an, K = Kn be n dependent sequences, while m does not
depend on n. This general estimate will be used in the proof of Theorem 3.

Proof strategy for Theorem 1. In Section 3.4, we prove Theorem 1. Recall that, to conclude
Theorem 1, we need to show that for any K ∈N, the K-neighborhoods of (Gn, Un) and (G∞, 0)
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are close in distribution in G�. Consequently, to conclude Theorem 1, using Corollary 7, it will
be enough to show that the K-neighborhoods of (FGn

Un
(r), Un) and (FG∞

0 (r), 0) are close in
distribution. This we will observe to be an easy consequence of Proposition 3.

Proof strategy for Theorem 2. In Section 3.5, we prove Theorem 2. The first step is to show
that the empirical Euclidean graph neighborhood distribution concentrates. That is, for H∗ =
(H, h) ∈ G�, where h ∈ V(H), and for any r > 0, we define the random variables

Cr,n(H, h) := P

(
FGn

Un
(r) ∼= (H, h)

∣∣∣∣Gn

)
= 1

n

n∑
i=1

1{
FGn

i (r)∼=(H,h)
}, (40)

and show these random variables concentrate, as follows.

Lemma 3. (Concentration of empirical Euclidean graph neighborhood measure.) For any r >

0 and a locally finite rooted graph H∗ = (H, h) ∈ G�, the variance of the random variable
Cr,n(H, h) converges to 0 as n → ∞, i.e.∣∣∣E [Cr,n(H, h)2

]
−E

[
Cr,n(H, h)

]2∣∣∣→ 0,

as n → ∞.

The key observation in proving this lemma is that the Euclidean graph neighborhoods
around two uniformly chosen vertices of Gn are asymptotically independent, which is a con-
sequence of the fact that the distance between the locations of two uniformly chosen vertices
of Gn in R

d diverges in probability, as n → ∞.
Next, we combine Lemma 3 with Corollary 7 to show that the empirical neighborhood

distribution of Gn also concentrates. That is, for any K ∈N and G∗ = (G, g) ∈ G�, if we define
random variables

Bn(G, g) := P

(
BGn

Un
(K) ∼= (G, g)

∣∣∣∣Gn

)
= 1

n

n∑
i=1

1{
BGn

i (K)∼=(G,g)
}, (41)

for n ∈N, then these random variables also concentrate. This is achieved by first using
Lemma 3 and taking a sum over all rooted graphs H∗ = (H, h) with BH

h (K) ∼= (G, g), to show
that the random variables

1

n

n∑
i=1

1{
B

FGn
i (r)

i (K)∼=(G,g)

}

concentrate, and then employing Corollary 7 to obtain the same conclusion for the vari-
ables Bn(G, g). Theorem 2 is then a direct consequence of these observations, combined with
Proposition 3.

3.2. Proof of Proposition 3

Let us first discuss the proof strategy informally. We make use of the following two key
observations:

• The number of vertices in FGn
Un

(r) converges in distribution to the number of vertices in

FG∞
0 (r).
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• Conditionally on the number of vertices of FGn
Un

(r) (respectively FG∞
0 (r)) other than the

root, their locations are uniform on Br
Y(n)

Un

(respectively Br
0). It will then follow that any

‘not so bad’ translation-invariant function, evaluated at the locations of the vertices of
FGn

Un
(r), should have nice limiting behavior.

In particular, we define functions Fn
(H,h) and F∞

(H,h) (see (52)), which for a given rooted graph

(H, h) ∈ G� count the number of rooted isomorphisms between (H, h) and FGn
Un

(r), and between

(H, h) and FG∞
0 (r). We show that for any such rooted graph (H, h) ∈ G�, the probability of

the event {Fn
(H,h) > 0} converges to that of the event {F∞

(H,h) > 0}. In turn, this implies that the

random rooted graph FGn
Un

(r) converges in distribution to the random rooted graph FG∞
0 (r), on

the space G�. We now go into the details.

Proof of Proposition 3. The random variable Y (n)
Un

is uniformly distributed on In. We write

P

(
(FGn

Un
(r), Un) ∼= (H, h)

)
= P

(
(FGn

Un
(r), Un) ∼= (H, h), Y (n)

Un
∈ Ar

n

)
+ P

(
(FGn

Un
(r), Un) ∼= (H, h), Y (n)

Un
/∈ Ar

n

)
and observe that, as n → ∞,

P

(
(FGn

Un
(r), Un) ∼= (H, h), Y (n)

Un
/∈ Ar

n

)
≤ P

(
Y (n)

Un
/∈ Ar

n

)
≤ 2d

(
r
(
n(d−1)/d

))
n

→ 0. (42)

Therefore, it is enough to show that, as n → ∞,

P

(
(FGn

Un
(r), Un) ∼= (H, h), Y (n)

Un
∈ Ar

n

)
→ P

(
(FG∞

0 (r), 0) ∼= (H, h)
)

. (43)

Note that

P

(
(FGn

Un
(r), Un) ∼= (H, h), Y (n)

Un
∈ Ar

n

)
= P

(
(FGn

Un
(r), Un) ∼= (H, h), Y (n)

Un
∈ Ar

n, |V(FGn
Un

(r))| = |V(H)|
)

,

and so we can repeatedly condition to rewrite

P

(
(FGn

Un
(r), Un) ∼= (H, h), Y (n)

Un
∈ Ar

n

)
= P

(
(FGn

Un
(r), Un) ∼= (H, h)

∣∣∣∣|V(FGn
Un

(r))| = |V(H)|, Y (n)
Un

∈ Ar
n

)

× P

(
|V(FGn

Un
(r))| = |V(H)|

∣∣∣∣Y (n)
Un

∈ Ar
n

)
P

(
Y (n)

Un
∈ Ar

n

)
.

(44)

Using (42), the last term in the right-hand side of (44) tends to 1 as n → ∞. Observe that

P

(
|V(FGn

Un
(r))| = |V(H)|

∣∣∣∣Y (n)
Un

∈ Ar
n

)
= P (Yn = |V(H)| − 1) ,

where Yn follows a Bin(n − 1, λd(Br
0)/n) distribution.

Since Yn converges in distribution to Y ∼ Poi(λd(Br
0)), and since Y is equal in distribution

to �(Br
0) (recall � from (10)), it follows that Yn

d→�(Br
0), as n → ∞.

https://doi.org/10.1017/apr.2022.61 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.61


Local limits of SIRGs 815

Observe that �(Br
0)

d= |V(FG∞
0 (r))| − 1, so that

lim
n→∞ P

(
|V(FGn

Un
(r))| = |V(H)|

∣∣∣∣Y (n)
Un

∈ Ar
n

)
= lim

n→∞ P (Yn = |V(H)| − 1)

= P

(
|V(FG∞

0 (r))| − 1 = |V(H)| − 1
)

= P

(
|V(FG∞

0 (r))| = |V(H)|
)

.

Hence, from (44), we note that to conclude (43), it is enough to show that

lim
n→∞ P

(
(FGn

Un
(r), Un) ∼= (H, h)

∣∣∣∣|V(FGn
Un

(r))| = |V(H)|, Y (n)
Un

∈ Ar
n

)

= P

(
(FG∞

0 (r), 0) ∼= (H, h)

∣∣∣∣|V(FG∞
0 (r))| = |V(H)|

)
.

(45)

For the remainder of the proof, we assume |V(H)| = l + 1. We continue by making
some observations on the locations and weights of the vertices of the graph FGn

Un
(r)

(respectively FG∞
0 (r)), conditionally on {|V(FGn

Un
(r))| = l + 1, Y (n)

Un
∈ Ar

n} (respectively

{|V(FG∞
0 (r))| = l + 1}).

Locations of FGn
Un

(r). Since (Y (n)
i )i∈[n] is an i.i.d. collection of uniform random variables on

In, conditionally on the event {Y (n)
Un

∈ Ar
n, |V(FGn

Un
(r))| = l + 1}, the locations P1, . . . , Pl of the

l vertices of Gn (in some order) falling in Br
Y(n)

Un

, other than Y (n)
Un

, are at independent uniform

locations in the ball Br
Y(n)

Un

, given Y (n)
Un

. Hence, conditionally on {Y (n)
Un

∈ Ar
n, |V(FGn

Un
(r))| = l + 1},

the random variables P1 − Y (n)
Un

, . . . , Pl − Y (n)
Un

are independently, uniformly distributed on the
ball Br

0.

Conditionally on {Y (n)
Un

∈ Ar
n, |V(FGn

Un
(r))| = l + 1}, let the locations of all the vertices of

Gn falling in Br
Y(n)

Un

(including Y (n)
Un

) be P0, P1, . . . , Pl, where Y (n)
Un

= P0. So, conditionally on

{Y (n)
Un

∈ Ar
n, |V(FGn

Un
(r))| = l + 1}, the random matrix (‖Pi − Pj‖)0≤i,j≤l;i �=j is equal in distribu-

tion to (‖Yi − Yj‖)0≤i,j≤l;i �=j, where the set {Yi : 1 ≤ i ≤ l} consists of l i.i.d. uniform points in
Br

0 (independent of Y(n), W(n), Y, W) and Y0 = 0.

Locations of FG∞
0 (r). Again, conditionally on the event {�∞(Br

0) = l + 1} = {|V(FG∞
0 (r))| =

l + 1}, the locations of the l vertices of G∞ in Br
0 other than 0 are i.i.d. uniform on Br

0 (since
� is a homogeneous Poisson point process). So if Z0, . . . , Zl are the locations of the l + 1
vertices of G∞ in Br

0 (in some order), where Z0 = 0, the random matrix (‖Zi − Zj‖)0≤i,j≤l;i �=j

is also equal in distribution to (‖Yi − Yj‖)0≤i,j≤l;i �=j, where the set {Yi : 1 ≤ i ≤ l} consists of l
i.i.d. uniform points in Br

0 (independent of Y(n), W(n), Y, W) and Y0 = 0.
We conclude that

(‖Pi − Pj‖)0≤i,j≤l;i �=j

∣∣∣∣{Y (n)
Un

∈ Ar
n, |V(FGn

Un
(r))| = l + 1}

d= (‖Yi − Yj‖)1≤i,j≤l+1;i �=j

d= (‖Zi − Zj‖)0≤i,j≤l;i �=j

∣∣∣∣{�∞(Br
0) = l + 1}. (46)
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Weights of FGn
Un

(r). Next, conditionally on {Y (n)
Un

∈ Ar
n, |V(FGn

Un
(r))| = l + 1}, for 0 ≤ i ≤ l, let

Wn,i denote the weight of the vertex of FGn
Un

(r) with location Pi. Then (Wn,0, . . . , Wn,l) has the

distribution of l + 1 uniformly chosen weights from the weight set {W(n)
1 , . . . , W(n)

n } without
replacement, in some arbitrary order. This is because for any i0, . . . , il ∈ [n],

P

(
(Wn,0, . . . , Wn,l) = (W(n)

i0
, . . . , W(n)

il
)

∣∣∣∣Y (n)
Un

∈ Ar
n, |V(FGn

Un
(r))| = l + 1

)

=
P

(
(Wn,0, . . . , Wn,l) = (W(n)

i0
, . . . , W(n)

il
)

∣∣∣∣Y (n)
Un

∈ Ar
n

)

P

(
|V(FGn

Un
(r))| = l + 1

∣∣∣∣Y (n)
Un

∈ Ar
n

) , (47)

where in the second step we use the fact that the event that the vector of weights of the vertices
of FGn

Un
(r) is of length l + 1 is contained in the event that {|V(FGn

Un
(r))| = l + 1}. The numerator

in (47) is

1

n
× P

(
Y (n)

ip
∈Br

Y(n)
i0

∀ p ∈ [l], Y (n)
iq

/∈Br
Y(n)

i0

∀ iq ∈ [n] \ {i0, i1, . . . , il}
∣∣∣∣Y (n)

i0
∈ Ar

n

)
× 1

l! ,

where the term 1/n is just the probability that Un = i0, and the term 1
l! accounts for the choice

of the ordering Pk = Y (n)
ik

for 1 ≤ k ≤ l among all l! possible labelings. This evaluates to

1

n
×
(

λd(Br
0)

n

)l

×
(

1 − λd(Br
0)

n

)n−1−l

× 1

l! .

The denominator in (47) is just the probability that a Bin
(

n − 1,
λd(Br

0)
n

)
random variable

takes the value l, which evaluates to(
n − 1

l

)
×
(

λd(Br
0)

n

)l

×
(

1 − λd(Br
0)

n

)n−1−l

.

Combining, we get that

P

(
(Wn,0, . . . , Wn,l) = (W(n)

i0
, . . . , W(n)

il
)

∣∣∣∣Y (n)
Un

∈ Ar
n, |V(FGn

Un
(r))| = l + 1

)

= 1

n(n − 1) · · · (n − l)
. (48)

We also make the observation that the random vector (Wn,0, . . . , Wn,l) is permutation-
invariant: for any σ ∈ S(l + 1), where S(l + 1) denotes the set of all permutations of {0, . . . , l},

(Wn,0, . . . , Wn,l)
d= (Wn,σ (0), . . . , Wn,σ (l)). (49)

Weights of FG∞
0 (r). Again, conditionally on {�∞(Br

0) = l + 1}, for 0 ≤ i ≤ l, let W∞,i denote

the weight of the vertex of FG∞
0 (r) with location Zi. Since the weights in the limiting graph

G∞ are i.i.d., it immediately follows that the random weight vector (W∞,0, . . . , W∞,l) is
permutation-invariant, i.e. for any σ ∈ S(l + 1),

(W∞,0, . . . , W∞,l)
d= (W∞,σ (0), . . . , W∞,σ (l)), (50)
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and that given {�∞(Br
0) = l + 1}, the vector (W∞,0, . . . , W∞,l)

d= (W0, . . . , Wl), where each
entry of the vector (W0, . . . , Wl) is an i.i.d. copy of the limiting weight variable W (recall (4)).

We now continue with the proof.

Convergence of weights of FGn
Un

(r) to the weights of FG∞
0 (r). We also note that

(Wn,0, . . . , Wn,l)

∣∣∣∣{Y (n)
Un

∈ Ar
n, |V(FGn

Un
(r))| = l + 1}

d→(W∞,0, . . . , W∞,l)

∣∣∣∣{�∞(Br
0) = l + 1}. (51)

This is because for any continuity set A0 × · · · × Al of (W0, . . . , Wl), by (48),

P

(
(Wn,0, . . . , Wn,l) ∈ A0 × · · · × Al

∣∣∣∣Y (n)
Un

∈ Ar
n, |V(FGn

Un
(r))| = l + 1

)

≥E

⎡
⎣ ∑

j0,...,jl

1

nl

l∏
k=0

1{
W(n)

jk
∈Ak

}
⎤
⎦=E

[
l∏

k=0

(
1

n

n∑
i=1

1{
W(n)

i ∈Ak

}
)]

and

P

(
(Wn,0, . . . , Wn,l) ∈ A0 × · · · × Al

∣∣∣∣Y (n)
Un

∈ Ar
n, |V(FGn

Un
(r))| = l + 1

)

≤E

⎡
⎣ ∑

j0,...,jl

1

(n − l)l

l∏
k=0

1{
W(n)

jk
∈Ak

}
⎤
⎦=E

[
l∏

k=0

(
1

n − l

n∑
i=1

1{
W(n)

i ∈Ak

}
)]

,

where the sums in the last two displays are taken over all cardinality-(l + 1) subsets {j0, . . . , jl}
of [n]. Since the right-hand sides of the last two displays are bounded from above by 1, we use
dominated convergence and apply (4) to conclude that both right-hand sides converge to

l∏
k=0

P (W ∈ Ak) = P ((W0, . . . , Wl) ∈ A0 × · · · × Al)

= P

(
(W∞,0, . . . , W∞,l) ∈ A0 × · · · × Al

∣∣∣∣�∞(Br
0) = l + 1

)
.

Functions counting rooted isomorphisms, and their symmetry properties. Now we pro-
ceed to define the functions we use to count the number of isomorphisms between the given
rooted graph (H, h) and the Euclidean graph neighborhoods FGn

Un
(r), FG∞

0 (r). Let the vertices of
(H, h) be v0, . . . , vl, where h = v0. Let us denote the subset of the set of permutations S(l + 1)
of {0, 1, . . . , l} that fix 0 by S0(l + 1); i.e., for all σ ∈ S0(l + 1), σ (0) = 0.

Let MS
l+1(R) denote the space of all symmetric square matrices of order l + 1 with entries

in R. For each n ∈N, define the function Fn
(H,h) :

(
R

d
)l+1 × (

R
d
)l+1 × MS

l+1(R) →R by

Fn
(H,h)

(
�x, �y, (aij)

l
i,j=0

)
:=

∑
π∈S0(l+1)

∏
{vi,vj}∈E(H)

(
1{aπ (i)π (j)<κn(‖xπ (i)−xπ (j)‖,yπ (i),yπ (j))}

)

×
∏

{vi,vj}/∈E(H)

(
1{aπ (i)π (j)>κn(‖xπ (i)−xπ (j)‖,yπ (i),yπ (j))}

)
,

(52)
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for �x = (x0, . . . , xl), �y = (y0, . . . , yl) ∈ (Rd)l+1 and (aij)l
i,j=0 ∈ MS

l+1(R). Similarly define the

function F∞
(H,h) :

(
R

d
)l+1 × (

R
d
)l+1 × MS

l+1(R) →R, where F∞
(H,h) is just Fn

(H,h) with κn

replaced by κ .
Heuristically, we want the indicators

1{aπ (i)π (j)<κn(‖xπ (i)−xπ (j)‖,yπ (i),yπ (j))}
to be the indicators of the events {the edge {π (i), π (j)} is present}. Since in our graphs
these events occur independently, each with probability κn

(‖xπ (i) − xπ (j)‖, yπ (i), yπ (j)
)

when
the locations and weights of the vertices π (i) and π (j) are respectively (xπ (i), yπ (i)) and
(xπ (j), yπ (j)), we will take the matrix (aij)l

i,j,=0 to be a symmetric i.i.d. uniform matrix. Before
that, we first discuss some symmetry properties of the functions Fn

(H,h) and F∞
(H,h).

Observe the following symmetry: for any permutation π ∈ S0(l + 1), and for • being either
n or ∞,

F•
(H,h)

(
(x0, . . . , xl), (y0, . . . , yl), (aij)

l
i,j=0

)
=F•

(H,h)

(
(xπ (0), . . . , xπ (l)), (yπ (0), . . . , yπ (l)), (aπ (i)π (j))

l
i,j=0

)
.

Recall the permutation-invariance of the weights of FGn
Un

(r) and FG∞
0 (r) from (49) and (50),

and note that for (x0, . . . , xl), (z0, . . . , zl) ∈ (Rd
)l+1

, if there exists a permutation π ∈ S0(l + 1)
such that

(‖xi − xj‖)l
i,j=0 = (‖zπ (i) − zπ (j)‖)l

i,j=0 (entrywise),

then for any (aij)l
i,j=0 ∈ MS

l+1(R), conditionally on {Y (n)
Un

∈ Ar
n, |V(FGn

Un
(r))| = l + 1},

Fn
(H,h)

(
(x0, . . . , xl), (Wn,0, . . . , Wn,l), (aij)

l
i,j=0

)
d=Fn

(H,h)

(
(z0, . . . , zl), (Wn,0, . . . , Wn,l), (aij)

l
i,j=0)

)
, (53)

and a similar distributional equality holds for F∞
(H,h), conditionally on {�∞(Br

0) = l + 1}.
Simplifying the events {FGn

Un
(r) ∼= (H, h)} and {FG∞

0 (r) ∼= (H, h)}. Now, let (Uij)l
i,j=0 and

(U′
ij)

l
i,j=0 be two i.i.d. random elements of MS

l+1(R) which are also independent from X(n),

W(n), X, W, and {Yi : 0 ≤ i ≤ l}, where for each i < j, Uij ∼ U([0, 1]), all the entries above the
diagonal of the random matrix (Uij)

l+1
i,j=1 are independent, and for each i, Uii := 0 (the diagonal

elements will not come into the picture and can be defined arbitrarily).
Let

An := 1{
FGn

Un
(r)∼=(H,h)

}∣∣∣∣{Y (n)
Un

∈ Ar
n, |V(FGn

Un
(r))| = l + 1} (54)

and

A∞ := 1{
FG∞

0 (r)∼=(H,h)
}∣∣∣∣{|V(FG∞

0 (r))| = l + 1}. (55)

Note from (45) that our target is to show that E [An] →E [A∞], as n → ∞.
Recall (46). Observe that

An
d= 1{Fn

(H,h)

(
(P0,...,Pl),(Wn,0,...,Wn,l),(Uij)l

i,j=0

)
>0
}∣∣∣∣{Y (n)

Un
∈ Ar

n, |V(FGn
Un

(r))| = l + 1}, (56)
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since, conditionally on the event {Y (n)
Un

∈ Ar
n, |V(FGn

Un
(r))| = l + 1}, if for some π ∈ S0(l + 1) the

corresponding term in the sum in Fn
(H,h) is positive, then vi �→ Pπ (i) gives a rooted isomorphism

(note that the fact that every permutation in S0(l + 1) fixes 0 ensures that the isomorphism
is rooted), and if there is a rooted isomorphism φ : G → FGn

Un
(r), then the term in the sum

corresponding to the permutation σ ∈ S0(l + 1) is positive, where φ(vi) = Pσ (i).
Using the symmetry (53) with (46), we obtain

An
d= 1{Fn

(H,h)

(
(Y0,...,Yl),(Wn,0,...,Wn,l),(Uij)l

i,j=0

)
>0
}∣∣∣∣{Y (n)

Un
∈ Ar

n, |V(FGn
Un

(r))| = l + 1}
=: An. (57)

Using exactly similar arguments for the random variable A∞ and the function F∞
(H,h), we

obtain

A∞
d= 1{F∞

(H,h)

(
(Y0,...,Yl),(W∞,0,...,W∞,l),(U′

ij)
l
i,j=0

)
>0
}∣∣∣∣{|V(FG∞

0 (r))| = l + 1}. (58)

Finally, using that (U′
ij)

l
i,j=0

d= (Uij)l
i,j=0, and that both the matrices Uij and U′

ij are
independent of everything else, it is easy to see that

A∞
d= 1{F∞

(H,h)

(
(Y0,...,Yl),(W∞,0,...,W∞,l),(Uij)l

i,j=0

)
>0
}∣∣∣∣{|V(FG∞

0 (r))| = l + 1} =: A∞. (59)

Conclusion. Using (51), and using the convergence of connection functions (5), for any

(x0, . . . , xl) ∈ (Rd
)l+1

such that the collection of positive reals {‖xi − xj‖ : 1 ≤ i, j, ≤ l, i �= j}
avoids some set of measure zero, and for any (aij)l

i,j=0 ∈ MS
l+1([0, 1]), as n → ∞,

Fn
(H,h)

(
(x0, . . . , xl), (Wn,0, . . . , Wn,l), (aij)

l
i,j=0

) ∣∣∣∣{Y (n)
Un

∈ Ar
n, |V(FGn

Un
(r))| = l + 1}

d→F∞
(H,h)

(
(x0, . . . , xl), (W∞,0, . . . , W∞,l), (aij)

l
i,j=0

) ∣∣∣∣{|V(FG∞
0 (r))| = l + 1},

(60)

which implies that, as n → ∞, writing �x = (x0, x1 . . . , xn),

P

(
Fn

(H,h)

(
�x, (Wn,0, . . . , Wn,l), (aij)

l
i,j=0

)
> 0

∣∣∣∣{Y (n)
Un

∈ Ar
n, |V(FGn

Un
(r))| = l + 1}

)

→ P

(
F∞

(H,h)

(
�x, (W∞,0, . . . , W∞,l), (aij)

l
i,j=0

)
> 0

∣∣∣∣{|V(FG∞
0 (r))| = l + 1}

)
.

(61)

Combining (61) with the fact that both (Y0, . . . , Yl) and (Uij)l
i,j=0 are independent of W(n)

and W, and the fact that the random variables ‖Yi − Yj‖ for 1 ≤ i, j ≤ l with i �= j are continuous
random variables and hence almost surely avoid sets of measure 0, we have (recalling An and
A∞ from (57) and (59))

E

[
An| (Y0, . . . , Yl), (Uij)

l
i,j=0

]
a.s.→E

[
A∞| (Y0, . . . , Yl), (Uij)

l
i,j=0

]
,

which implies, using dominated convergence (note that domination by 1 works), that

E
[
An
]→E

[
A∞

]
,

as n → ∞.
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Hence, again using (57) and (59), we have E [An] →E [A∞], which is just (45), as can
be seen by recalling the definition of An from (54) and the definition of A∞ from (55). This
completes the proof of Proposition 3. �

3.3. Proofs of path-counting results: Lemma 2 and Corollary 7

Proof of Lemma 2. Recall the notation Br
x from (30), which denotes the open Euclidean ball

of radius r in R
d centered at x ∈R

d. We first prove (35).
We first bound Wj(0, x1, . . . , xj) from above by E

[
κ(‖xj − xj−1‖, W0, W1)

]
, where W0 and

W1 are i.i.d. copies of the limiting weight distribution W (recall (4)). Then we apply the change
of variables

zi = xi − xi−1, 1 ≤ i ≤ j,

where x0 = 0, and apply Fubini’s theorem to obtain∫
Rd

· · ·
∫
Rd

Wj(0, x1 . . . , xj)

1{‖x1‖<am}
j−2∏
i=1

1{‖xi+1−xi‖<ami+1
}1{‖xj−xj−1‖>amj

}dx1 · · · dxj

≤
∫
Bam

0

· · ·
∫
Bamj−1

0

∫
Rd\Bamj

0

E
[
κ(‖zj‖, W0, W1)

]
dzjdzj−1 · · · dz1

≤ C0(am)d · · · (amj−1
)d
∫
Rd\Bamj

0

E [κ(‖z‖, W0, W1)] dz, (62)

for some constant C0 > 0. Recall the polynomial domination from (6) and the assumption
α > d in Theorem 1.

We note, by first making a change of variables to bring the integral∫
Rd\Bamj

0

E [κ(‖z‖, W0, W1)] dz

down to an integral on R, and then using (6), that for any m sufficiently large so that amj
> t0,

∫
Rd\Bamj

0

E [κ(‖z‖, W0, W1)] dz ≤ C1
1

a(α−d)mj , (63)

for some constant C1 > 0.
Combining (63) with (62), we note that for some constant C2 > 0,∫

Rd
· · ·

∫
Rd

Wj(0, x1, . . . , xj)

1{‖x1‖<am}
j−2∏
i=1

1{‖xi+1−xi‖<ami+1
}1{‖xj−xj−1‖>amj

}dx1 · · · dxj

≤ C2
1

a
dmj

(
α
d −1− 1

m −···− 1
mj−1

) → 0, (64)

as m → ∞, since α
d > 1. This finishes the proof of (35).
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We next go into the proof of (34). Recall the definition of W
v1,...,vj
n (x0, x1, . . . , xj) from

(32), where v0 = Un is the uniformly chosen vertex of Gn.
We use the notation

�v = v1, . . . , vj; �x = (x0, x1, . . . , xj).

For fixed x0, . . . , xj ∈R
d, we define the function W�x

n : Rj+1 →R by

W�x
n(�t) := κn (‖x1 − x0‖, t0, t1) · · · κn

(‖xj − xj−1‖, tj−1, tj
)
, (65)

for �t = (t0, t1, . . . , tj) ∈R
j+1.

Note that

1

nj

∑
v1,...,vj∈[n]

W
�v
n(�x) =E

⎡
⎣ 1

nj+1

∑
i0,i1,...,ij

W�x
n(W(n)

i0
, . . . , W(n)

ij
)

⎤
⎦ , (66)

where we have used (32) and the fact that v0 = Un is uniformly distributed over n.
Since clearly

E

⎡
⎣ 1

nj+1

∑
i0,i1,...,ij

W�x
n(W(n)

i0
, . . . , W(n)

ij
)

⎤
⎦=E

[
W�x

n(W(n)
Un,0

, . . . , W(n)
Un,j

)
]
,

where Un,0, . . . , Un,j is an i.i.d. collection of uniformly distributed random variables on [n] =
{1, . . . , n}, we can take hn in (8) to be W�x

n and conclude (recalling the definition of Wj(�x) =
Wj(x0, x1 · · · , xj) from (33)) that

1

nj

∑
v1,...,vj∈[n]

W
�v
n(�x) =E

[
W�x

n(W(n)
Un,0

, . . . , W(n)
Un,j

)
]
→Wj(�x), (67)

as n → ∞. Now, (34) can be concluded using (67), a routine change of variables, Fatou’s
lemma, and (35). �
Remark 8. (Efficacy of our bounds.) In the proof of Lemma 2, we have bounded
Wj(0, x1, . . . , xj) from above by

E
[
κ(‖xj − xj−1‖, W0, W1)

]
.

That is, we have bounded all except the last term in the product inside the expectation
Wj(0, x1, . . . , xj) by 1. This is usually a poor bound. However, as we see in the proof, this
loss is well compensated by the strong double-exponential growth of r = r(a, m, K) (recall
(36)). In particular, for our purpose, we have been able to avoid the question of how corre-
lated the random variables κ(‖x0 − x1‖, W(0), W(1)) and κ(‖x1 − x2‖, W(1), W(2)) are, where
x0, x1, x2 ∈R

d, and W(0), W(1), W(2) are i.i.d. copies of the limiting weight distribution. We
believe this question to be hard to tackle in general, under our general assumptions on κ as
formulated in Assumption 3.

Next we go into the proof of Corollary 7.
Proof of Corollary 7. Recall the definition of the distance of an edge from a vertex from

(31). Also recall the abbreviations in (37).
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FIGURE 2. Illustration demonstrating bad edges. The star is the root. The dashed edges are bad: each of
them connects a pair of vertices whose locations are at least amL+1

apart, where L is the distance of the
edge from the root. The solid edges are good.

We begin by analyzing the event {BFn,r �= Bn}. Note that if ‖Y (n)
i − Y (n)

j ‖ < amL+1
for every

edge {i, j} in Bn that is at graph distance L (0 ≤ L ≤ K − 1) from the root Un, then Bn is a
subgraph of Fn,r with the same root Un, which implies that BFn,r = Bn. Hence, the event
{BFn,r �= Bn} implies the event

Badr,n := {there is some bad edge in Bn}, (68)

where a bad edge is an edge {i, j} in Bn with ‖Y (n)
i − Y (n)

j ‖ > amL+1
, where 0 ≤ L ≤ K − 1 is the

graph distance of the edge {i, j} from the root Un of Bn.
Therefore,

P
(
BFn,r �= Bn

)≤ P
(
Badr,n

)
. (69)

By a similar argument,
P (BFr �= B) ≤ P (Badr) , (70)

where the event Badr is similarly defined for the rooted graph (G∞, 0).
Define the event In,j, for n ∈N, j ∈ [n], as

In,j := {∃ v1, . . . , vj ∈ V(Gn) = [n] : {v0, v1, . . . , vj} is a j-path in (Gn, Un) starting from

the root v0 = Un, ‖Y (n)
vi−1

− Y (n)
vi

‖ < ami∀i ∈ [j − 1], ‖Y (n)
vj−1

− Y (n)
vj

‖ > amj}. (71)

A simple union bound gives

P
(
Badr,n

)≤
K∑

j=1

P
(In,j

)
. (72)

Similarly,

P (Badr) ≤
K∑

j=1

P
(Ij
)
, (73)

where the event Ij for j ∈N is similarly defined for the rooted graph (G∞, 0).
Note that since K is fixed, it suffices to prove that limm→∞ lim supn→∞ P

(In,j
)= 0 and

limm→∞ lim supn→∞ P
(Ij
)= 0 for 1 ≤ j ≤ K.

We proceed by bounding the probabilities P
(In,j

)
and P

(Ij
)
. Recall that we use v0 to

denote the typical vertex Un of Gn from the definition of the event In,j from (71). Note that,
by Markov’s inequality, using the notation �v = (v0, v1, . . . , vn),

P
(In,j

)≤∑
v1,...,vj∈[n]

P

(
�v is a j-path, ‖Y (n)

vi−1
− Y (n)

vi
‖ < ami ∀i ∈ [j − 1], ‖Y (n)

vj−1
− Y (n)

vj
‖ > amj

)
. (74)
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For convenience, for v0, . . . , vj ∈ [n], we define the event

En,j(�v) := {‖Y (n)
vi−1

− Y (n)
vi

‖ < ami ∀i ∈ [j − 1], ‖Y (n)
vj−1

− Y (n)
vj

‖ > amj}. (75)

We compute

P

(
{v0, v1, . . . , vj} j-path, ‖Y (n)

vi−1
− Y (n)

vi
‖ < ami ∀i ∈ [j − 1], ‖Y (n)

vj−1
− Y (n)

vj
‖ > amj

)
=E

[
1En,j(�v) P

(
{v0, v1, . . . , vj} j-path

∣∣∣∣Y (n)
v0

, . . . , Y (n)
vj

, W(n)
v0

, . . . , W(n)
vj

)]

=E

[
1En,j(�v) κn

(
‖Y (n)

v0
− Y (n)

v1
‖, W(n)

v0
, W(n)

v1

)
· · · κn

(
‖Y (n)

vj−1
− Y (n)

vj
‖, W(n)

vj−1
, W(n)

vj

)]
. (76)

Recall the notation W
v1,...,vj
n from (32). Using Fubini’s theorem and the fact that

{Y (n)
v0 , Y (n)

v1 , . . . , Y (n)
vj } is an i.i.d. collection of j + 1 uniform random variables on In, recalling

(75), and using the notation �x = (x0, x1, . . . , xj), we find that (76) becomes

1

nj+1

∫
In

· · ·
∫

In

W
v1,...,vj
n (�x)

j−2∏
i=0

1{‖xi+1−xi‖<ami+1
}1{‖xj−xj−1‖>amj

}dx0 · · · dxj. (77)

Using (74) and (77), we have

P
(In,j

)≤ 1

nj+1

∫
In

· · ·
∫

In

∑
v1,...,vj∈[n]

W
v1,...,vj
n (�x)

×
j−2∏
i=0

1{‖xi+1−xi‖<ami+1
}1{‖xj−xj−1‖>amj

}dx0 · · · dxj. (78)

Recall the notation Wj from (33). Similarly, by the multivariate Mecke formula for Poisson
processes [27, Theorem 4.4],

P
(Ij
)≤

∫
Rd

· · ·
∫
Rd

Wj(0, x1, . . . , xj)1{‖x1‖<am}

×
j−2∏
i=1

1{‖xi+1−xi‖<ami+1
}1{‖xj−xj−1‖>amj

}dx1 . . . dxj. (79)

Now we apply Lemma 2 for the bounds (79) and (77), and use the bounds (69), (70), (72),
and (73) to conclude Corollary 7. �
Remark 9. (A general estimate.) Recall the notation (37), and recall r(a, m, K) from (36). Note
that the bound (69) is true even when one has a = an and K = Kn in r = r(an, m, Kn), and so is
the simple union bound (72). The integral bound (78) also works in this generality. Recalling

the definition of the function W (x0,...,xj)
n from (65), the equality (66), and the display below it,

bounding E

[
W (x0,...,xj)

n (W(n)
Un,0

, . . . , W(n)
Un,j

)
]

from above by E

[
κn(‖xj − xj−1‖, W(n)

Un,j
, W(n)

Un,j−1
)
]
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(where Un,0, . . . , Un,j are i.i.d. uniformly distributed random variables on [n]), and making an
easy change of variable, we obtain the general bound

P

(
B

FGn
Un

(rn)
Un

(Kn) �= BGn
Un

(Kn)

)

≤
Kn∑
j=1

∫
B

am
n

0

· · ·
∫
B

amj−1
n

0

∫
Rd\Bamj

n
0

E

[
κn(‖zj‖, W(n)

U′
n,1

, W(n)
U′

n,2
)

]
dzj · · · dz1, (80)

where U′
n,1 and U′

n,2 are two i.i.d. uniform elements in [n]. Below, we will use the bound (80)
with suitable choices of a = an and K = Kn to prove Theorem 3.

3.4. Proof of Theorem 1

Proposition 3 implies that the random rooted graph (FGn
Un

(r), Un) converges in distribution

to the random rooted graph (FG∞
0 (r), 0) in the space G�. The proof of this fact can be carried

out in the same manner as [22, Theorem 2.13] is proved assuming [22, Definition 2.10], and
so we leave this for the reader to check. In particular, as a consequence of Proposition 3,

P

(
(FGn

Un
(r), Un) ∈ A

)
→ P

(
(FG∞

0 (r), Un) ∈ A
)

, (81)

for any subset A ⊂ G�.
Proof of Theorem 1. Recall the definition of local weak convergence from Definition 3.

Recall the abbreviations in (37). Let G∗ = (G, g) ∈ G�.
Fix K ∈N and ε > 0. To conclude Theorem 1, we need to find an N ∈N such that for all

n > N, ∣∣∣P (BGn
Un

(K) ∼= (G, g)
)

− P

(
BG∞

0 (K) ∼= (G, g)
)∣∣∣< ε, (82)

that is

|P (Bn ∼= (G, g)) − P (B ∼= (G, g))| < ε.

Note that

|P (Bn ∼= (G, g)) − P (B ∼= (G, g))|
≤ ∣∣P (BFn,r ∼= (G, g)

)− P (BFr ∼= (G, g))
∣∣+ ∣∣εn,r

∣∣+ |εr| , (83)

where
εn,r = P

(
Bn ∼= (G, g), BFn,r �= Bn

)− P
(
BFn,r ∼= (G, g), BFn,r �= Bn

)
(84)

and
εr = P (B ∼= (G, g), BFr �= B) − P (BFr ∼= (G, g), BFr �= B) . (85)

Clearly,
|εn,r| ≤ P

(
BFn,r �= Bn

)
(86)

and
|εr| ≤ P (BFr �= B) . (87)

For the rest of the proof, we fix m > 0 and n0 ∈N such that, for all n ≥ n0,

|εn,r| + |εr| < ε/2, (88)

which is possible by Corollary 7.
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Note that

P
(
BFn,r ∼= (G, g)

)= P
(
Fn,r ∈ A(K, (G, g))

)
,

where A(K, (G, g)) ⊂ G� is defined as

A(K, (G, g)) := {(H, h) ∈ G� : BH
h (K) ∼= (G, g)}. (89)

By (81), as n → ∞,

P
(
Fn,r ∈ A(K, (G, g))

)→ P (Fr ∈ A(K, (G, g))) = P (BFr ∼= (G, g)) . (90)

Combining (90) with (88) and (83), we can choose n1 ∈N such that for all n > N =
max{n1, n0}, (82) holds. This completes the proof of Theorem 1. �

3.5. Proof of Theorem 2

For (H, h) ∈ G� and r > 0, recall the empirical Euclidean graph neighborhood distribution
as defined in (40). We first give the proof of Lemma 3.

Proof of Lemma 3. To ease notation, let us write Cr,n for Cr,n(H, h).
Note that

C2
r,n = 1

n2

n∑
i,j=1

1{
FGn

i (r)∼=(H,h)
}1{

FGn
j (r)∼=(H,h)

}

= P

(
FGn

Un,1
(r) ∼= (H, h), FGn

Un,2
(r) ∼= (H, h)

∣∣∣∣Gn

)
,

where Un,1, Un,2 are i.i.d. uniformly distributed random variables on [n]. Therefore,

E

[
C2

r,n

]
= P

(
FGn

Un,1
(r) ∼= (H, h), FGn

Un,2
(r) ∼= (H, h)

)
. (91)

We introduce the following abbreviations, which we will use throughout this proof to keep
notation concise (recall the point process �n of the locations of the vertices of Gn from (9), the
set Ar

n from (29), and the ball Br
x from (30)):

E :=
{

FGn
Un,1

(r) ∼= (H, h)
}

, F :=
{

FGn
Un,2

(r) ∼= (H, h)
}

,

U :=
{

�n

(
Br

Y(n)
Un,1

)
= |V(H)|

}
, V :=

{
�n

(
Br

Y(n)
Un,2

)
= |V(H)|

}
,

J :=
{
Br

Y(n)
Un,1

∩Br
Y(n)

Un,2

=∅

}
, W := {

Un,1, Un,2 ∈ Ar
n

}
. (92)

Recall that the target is to show

|P (E∩F) − P (E) P (F) | = |P (E∩F) − P (E)2 | → 0, (93)

as n → ∞ (note that conditionally on Gn, the random variables 1E and 1F are identi-
cally distributed, so that they have the same conditional expectation, and hence the same
expectation).

https://doi.org/10.1017/apr.2022.61 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.61


826 R. VAN DER HOFSTAD ET AL.

First we write

P (E∩F) = P

(
E∩F

∣∣∣∣J∩U∩V∩W

)
P (J∩U∩V∩W) (94)

+ P
({E∩F} ∩ {Jc ∪Uc ∪Vc ∪Wc}) . (95)

Note that the term in (95) is bounded from above by

P
({E∩F} ∩ {Uc ∪Vc})+ P

(
Jc)+ P

(
Wc) ,

and it is easily observed that the first term is equal to 0, while the last term tends to 0 as n → ∞
by (42). Also note that

P
(
Jc)≤ P

(
Y (n)

Un,1
∈B2r

Y(n)
Un,2

∩ In

)
.

Clearly,

P

(
Y (n)

Un,1
∈B2r

Y(n)
Un,2

∩ In

∣∣∣∣Y (n)
Un,2

)
a.s.≤ λd({y ∈R

d : ‖y‖ < 2r})
n

,

which tends to 0 as n → ∞. Hence, taking expectations of both sides in the last display and
letting n → ∞, we get P (Jc) → 0. Hence the term in (95) tends to 0 as n → ∞.

To analyze the term in (94), we observe that, conditionally on J∩U∩V∩W, the random
variables 1E and 1F are independent, since they are just functions of the locations of the |V(H)|
points falling in Br

Y(n)
Un,1

and Br
Y(n)

Un,2

, and these locations are independent (since the locations of

different vertices of Gn are independent). Hence,

(94) = P

(
E

∣∣∣∣J∩U∩V∩W

)
P

(
F

∣∣∣∣J∩U∩V∩W

)
P (J∩U∩V∩W) .

Now note that E is independent of V, conditionally on {J∩U∩W}. Similarly, F is
independent of U, conditionally on {J∩V∩W}.

Hence,

(94) = P

(
E

∣∣∣∣J∩U∩W

)
P

(
F

∣∣∣∣J∩V∩W

)
P (J∩U∩V∩W) .

As argued earlier, P (Jc) → 0, so P (J) → 1, and it is easy to observe that P (W) → 1 using
(42). Hence we can forget about the ‘almost’ certain events W and J for the first two terms
from the last display, and condition on J∩W for the third term, to conclude that (recall (94))∣∣∣∣P

(
E∩F

∣∣∣∣J∩U∩V∩W

)
P (J∩U∩V∩W)

−P

(
E

∣∣∣∣U
)
P

(
F

∣∣∣∣V
)
P

(
U∩V

∣∣∣∣J∩W

)∣∣∣∣→ 0; (96)

that is, the difference between (94) and P

(
E

∣∣∣∣U
)
P

(
F

∣∣∣∣V
)
P

(
U∩V

∣∣∣∣J∩W

)
tends to 0.
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We claim that to conclude the proof, it suffices to check that∣∣∣∣P
(
U∩V

∣∣∣∣J∩W

)
− P (U) P (V)

∣∣∣∣→ 0. (97)

This is because (97), combined with (96) and the observations that E⊂U and F ⊂V, implies
that the difference between the expression (94) and P (E) P (F) goes to 0. Combining this with
the fact that the expression in (95) goes to 0, we obtain (93).

We now show (97). Recall that |V(H)| denotes the size of the vertex set of the graph H.
Observe that

P

(
U∩V

∣∣∣∣J∩W

)
= P ((M1, M2, M3) = (|V(H)| − 1, |V(H)| − 1, n − 2|V(H)|)) ,

where M = (M1, M2, M3) is a multinomial vector with parameters(
n − 2;

λd(Br
0)

n
,
λd(Br

0)

n
, 1 − 2

λd(Br
0)

n

)
.

Hence,

P

(
U∩V

∣∣∣∣J∩W

)

= n!
(|V(H)| − 1)! (|V(H)| − 1)! (n − 2|V(H)|)!

×
(

λd(Br
0)

n

)|V(H)|−1 (λd(Br
0)

n

)|V(H)|−1 (
1 − 2

λd(Br
0)

n

)n−2|V(H)|
.

It is an easy analysis to check that this converges to P (Y = |V(H)| − 1)2, where Y ∼
Poi(λd(Br

0)).
Again,

P

(
U

∣∣∣∣Y (n)
Un,1

∈ Ar
n

)
P

(
V

∣∣∣∣Y (n)
Un,2

∈ Ar
n

)
= P

(
Y ′

n = |V(H)| − 1
)2

,

where Y ′
n ∼ Bin(n − 1,

λd(Br
0)

n ).

Since P
(
Y ′

n = |V(H)| − 1
)2 → P (Y = |V(H)| − 1)2, and both

P

(
Y (n)

Un,1
∈ Ar

n

)
, P
(

Y (n)
Un,2

∈ Ar
n

)
≥ P (W) → 1

(using (42)), we have shown that

|P
(
U∩V

∣∣∣∣J∩W

)
− P (U) P (V) |

≤
∣∣∣∣P
(
U∩V

∣∣∣∣J∩W

)
− P

(
U

∣∣∣∣Y (n)
Un,1

∈ Ar
n

)
P

(
V

∣∣∣∣Y (n)
Un,2

∈ Ar
n

)∣∣∣∣
+
∣∣∣∣P
(
U

∣∣∣∣Y (n)
Un,1

∈ Ar
n

)
P

(
V

∣∣∣∣Y (n)
Un,2

∈ Ar
n

)
− P (U) P (V)

∣∣∣∣→ 0.

This completes the proof of (97) and hence of Lemma 3. �
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Note that using Lemma 3 with Proposition 3, a direct application of Chebyshev’s inequality
gives, for any (H, h) ∈ G�,

Cr,n(H, h)
P→P

(
FG∞

0 (r) ∼= (H, h)
)

.

In particular, this implies that the empirical Euclidean graph neighborhood measure of Gn

converges in probability to the measure induced by the random element (FG∞
0 (r), 0) in G�:

for any subset A ⊂ G� and for any r > 0 (recall the Euclidean graph neighborhoods from
Definition 6),

1

n

n∑
i=1

1{
(FGn

i (r),i)∈A
} P→P

(
(FG∞

0 (r), 0) ∈ A
)

, (98)

as n → ∞. We now use (98) to prove Theorem 2.

Proof of Theorem 2. For K ∈N and (G, g) ∈ G�, recall the random variables Bn(G, g) as
defined in (41). Furthermore, recall the definition of local convergence in probability from
Definition 4.

Fix ε > 0. Note that the target is to show that, for every ε > 0, there exists N ∈N such that
for all n > N,

P

(∣∣∣Bn(G, g) − P

(
BG∞

0 (K) ∼= (G, g)
) ∣∣∣> ε

)
< ε. (99)

We abbreviate the Euclidean graph neighborhoods Fn,r,i := FGn
i (r), with r = r(a, m, K) as

in (36), and i ∈ V(Gn) = [n]. We note that

Bn(G, g) = 1

n

n∑
i=1

1{
BGn

i (K)∼=(G,g)
}

= 1

n

n∑
i=1

1{
BGn

i (K)∼=(G,g)
}1{

BGn
i (K)=B

Fn,r,i
i (K)

} (100)

+ 1

n

n∑
i=1

1{
BGn

i (K)∼=(G,g)
}1{

BGn
i (K)�=B

Fn,r,i
i (K)

}. (101)

Writing the first term on the right-hand side of (101) as

1

n

n∑
i=1

1{
B

Fn,r,i
i (K)∼=(G,g)

} − 1

n

n∑
i=1

1{
B

Fn,r,i
i (K)∼=(G,g)

}1{
BGn

i (K)�=B
Fn,r,i
i (K)

}, (102)

we note from (101) that

Bn(G, g) = 1

n

n∑
i=1

1{
B

Fn,r,i
i (K)∼=(G,g)

} + ε′
n,r, (103)

where (recall the event Badr,n from (68)) the expectation E
[|ε′

n,r|
]

of the absolute value of the
error ε′

n,r is bounded from above by 2P
(
Badr,n

)
.

It can be shown using a similar argument that (recall the notation (37))

P

(
BG∞

0 (K) ∼= (G, g)
)

= P (BFr ∼= (G, g)) + ε′
r, (104)

where E
[|ε′

r|
]

is bounded from above by 2P (Badr).
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Using Corollary 7, it is easy to see that there exists n0 ∈N such that for m > 0 sufficiently
large (recall r = r(a, m, K)), for all n > n0,

2P
(
Badr,n

)+ 2P (Badr) < ε/2. (105)

Recall the subset A(K, (G, g)) ⊂ G� from (89). Note that using (98),

1

n

n∑
i=1

1{
B

Fn,r,i
i (K)∼=(G,g)

} = 1

n

n∑
i=1

1{(Fn,r,i,i)∈A(K,(G,g))}
P→P

(
(FG∞

0 (r), 0) ∈ A(K, (G, g))
)

= P (BFr ∼= (G, g)) ,

and so there exists n1 ∈N such that for all n > n1 we have

P

(∣∣∣1
n

n∑
i=1

1{
B

Fn,r,i
i (K)∼=(G,g)

} − P (BFr ∼= (G, g))
∣∣∣> ε/2

)
< ε/2. (106)

Hence, for all n > N = max{n0, n1}, we note that by (105) and (106), (99) holds. This
completes the proof of Theorem 2. �

3.6. Proof of Theorem 3

The main idea in this proof is that the first result of Corollary 7 can be pushed to the case
when K = Kn is allowed to grow in a doubly logarithmic manner, instead of being fixed. For
this, we need a finer analysis of the error terms we encounter while proving Lemma 2. We now
go into the formal argument.

Proof. Recall C ∈
(

0, 1
log ( α

α−d )

)
. Fix some C ∈

(
C, 1

log ( α
α−d )

)
, and let

m := e1/C. (107)

Since C < 1
log ( α

α−d ) ,

α

d
>

m

m − 1
.

Let
an = log n (108)

and

Kn = log log n + log ( 1
d − δ) − log log an

log m
= log log n + log ( 1

d − δ) − log log log n

log m
, (109)

where δ > 0 is such that 1
d − δ > 0. Note that by the choice of Kn, we have

amKn

n = n
1
d −δ . (110)

We also let rn = r(an, m, Kn) be as in (36).
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Note that, since C < 1
log m by the choice of m, for all large n,

C log log n ≤ Kn.

Then for Un,1 and Un,2 two uniformly chosen vertices of Gn, for all large n,

P
(
dGn (Un,1, Un,2) ≤ C log log n

)
≤ P

(
dGn (Un,1, Un,2) ≤ Kn

)
= P

(
Un,2 ∈ BGn

Un,1
(Kn)

)

≤ P

(
Un,2 ∈ B

FGn
Un,1

(rn)

Un,1
(Kn)

)
+ P

(
B

FGn
Un,1

(rn)

Un,1
(Kn) �= BGn

Un,1
(Kn)

)

≤ P

(
Un,2 ∈ FGn

Un,1
(rn)

)
+ P

(
B

FGn
Un,1

(rn)

Un,1
(Kn) �= BGn

Un,1
(Kn)

)

= P

(
Y (n)

Un,2
∈B

rn

Y(n)
Un,1

)
+ P

(
B

FGn
Un,1

(rn)

Un,1
(Kn) �= BGn

Un,1
(Kn)

)
, (111)

where we recall the Euclidean graph neighborhoods FGn
i (r) from Definition 6.

Note that to conclude Theorem 3, it is sufficient to establish that the right-hand side of (111)
tends to 0 as n → ∞.

Via a simple conditioning on Y (n)
Un,1

, and using that Y (n)
Un,2

is uniformly distributed on In and

is independent of Y (n)
Un,1

, we have

P

(
Y (n)

Un,2
∈B

rn

Y(n)
Un,1

)
≤ λd(Brn

0 )

n
.

Furthermore (recalling r(a, m, K) from (36)), note that using the upper bound

r(an, m, Kn) ≤ KnamKn

n ,

we have

λd(Brn
0 )

n
≤ wrd

n

n
≤ wKd

n ndδ−1

n
→ 0,

as n → ∞, by the choice of Kn as in (109), where w > 1 is some constant upper bound on
λd(B1

0), and in the last inequality we have used (110). So the first term on the right-hand side
of (111) tends to 0 as n → ∞, and it remains for us to show that

P

(
B

FGn
Un

(rn)
Un

(Kn) �= BGn
Un

(Kn)

)
→ 0, (112)

as n → ∞, where Un is uniformly distributed on V(Gn) = [n].
We now recall the general estimate from Remark 9:

P

(
B

FGn
Un

(rn)
Un

(Kn) �= BGn
Un

(Kn)

)

≤
Kn∑
j=1

∫
B

am
n

0

· · ·
∫
B

amj−1
n

0

∫
Rd\Bamj

n
0

E

[
κn(‖zj‖, W(n)

U′
n,1

, W(n)
U′

n,2
)

]
dzj · · · dz1, (113)
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where a = an is as in (108), m is as in (107), K = Kn is as in (109), rn = r(an, m, Kn) is as in
(36), and U′

n,1, U′
n,2 are two independent uniformly distributed random variables on [n].

Using (113) and Assumption 3(3), taking hn : R2 →R in (8) as being equal to hn(s, t) =
κn(‖zj‖, s, t, ), we note that for n sufficiently large so that am

n > t0 and

E

[
κn(‖zj‖, W(n)

U′
n,1

, W(n)
U′

n,2
)

]
≤ ‖zj‖−α,

we have

P

(
B

FGn
Un

(rn)
Un

(Kn) �= BGn
Un

(Kn)

)
≤

Kn∑
j=1

∫
B

am
n

0

· · ·
∫
B

amj−1
n

0

∫
Rd\Bamj

n
0

1

‖zj‖α
dzj · · · dz1.

=
Kn∑
j=1

wj

a
dmj

(
α
d −1− 1

m −···− 1
mj−1

)
n

, (114)

where w > 1 is some constant upper bound on λd(B1
0).

Since α
d > m

m−1 , and if we let C0 = d
(

α
d − m

m−1

)
> 0, it follows from (114) that for all n

large enough so that w

a
C0
n

< 1, and for some J > 1 sufficiently large so that for all j > J we

have j1/j < m (note that such a J exists since m > 1), we can write (assuming n is large so that
Kn > J + 1)

P

(
B

FGn
Un

(rn)
Un

(Kn) �= BGn
Un

(Kn)

)
≤

Kn∑
j=1

wj

aC0mj

n

=
J∑

j=1

wj

aC0mj

n

+
Kn∑

j=J+1

wj

aC0mj

n

. (115)

Note that the first term on the right-hand side of (115) clearly converges to 0 as n → ∞ since
an → ∞. For the second term on the right-hand side of (115), we note that since for all j ≥
J + 1, mj > j, and since w

a
C0
n

< 1, we have

Kn∑
j=J+1

wj

aC0mj

n

≤
Kn∑

j=J+1

wmj

aC0mj

n

≤
Kn∑

j=J+1

(
w

aC0
n

)j

≤
∞∑

j=1

(
w

aC0
n

)j

= w

aC0
n

1

1 − w

a
C0
n

→ 0,

as n → ∞. This implies (112), completing the proof of Theorem 3. �

3.7. Proofs of results on examples

Proof of Lemma 1. We write

E

[
κ(t, W(1), W(2))

]
=E

[
1 ∧ f (t)g(W(1), W(2))

]
= P

(
g(W(1), W(2)) > 1/f (t)

)
+ f (t)E

[
g(W(1)W(2))1{g(W(1)W(2))<1/f (t)}

]
. (116)

Let us define
Y = g(W(1), W(2))1{g(W(1)W(2))<1/f (t)}.
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Note that since Y is a non-negative random variable, E [Y] = ∫∞
0 P (Y ≥ l) dl. We note that

P (Y ≥ l) ≤
⎧⎨
⎩

0 if l > 1/f (t),

P
(
g(W(1), W(2)) > l

)
if l ≤ 1/f (t).

(117)

Hence,

E

[
g(W(1)W(2))1{g(W(1),W(2))<1/f (t)}

]
=E [Y] =

∫
R+

P (Y ≥ l) dl

≤
∫ 1/f (t)

0
P

(
g(W(1)W(2)) > l

)
dl.

(118)

Recall t1 and t2 from Assumption 4. Let

t1 := inf{t′ > 0 : t > t′ =⇒ f (t)−1 > t2}.
Note from Assumption 4(2) that, since f (t)−1 increases to ∞ as t → ∞, t1 is well defined.

Let

t0 := max{t1, t1}.
Then for any t > t0, we bound∫ 1/f (t)

0
P

(
g(W(1)W(2)) > l

)
dl ≤ t2 +

∫ f (t)−1

t2
l−βp dl

= t2 + 1

1 − βp

(
f (t)βp−1 − t

1−βp
2

)
.

Hence, from (116), for t > t0 we have

E

[
κ(t, W(1), W(2))

]
≤ f (t)βp + t2f (t) + 1

1 − βp

(
f (t)βp − t

1−βp
2 f (t)

)

≤ t−αpβp + t2t−αp + 1

1 − βp

(
t−αpβp − t

1−βp
2 t−αp

)
. (119)

Since, for any ε > 0, the right-hand side of (119) is dominated by t− min{αp,αpβp}+ε outside a
compact set (depending on ε), we are done. �

Proof of Corollary 2. We will rely upon Corollary 1 and Remark 4 to conclude the proof.
Note that by definition, GIRGn,αG,βG,d is the SIRG G(X(n), W(n), κ

αG
n ), where the locations

(X(n))i∈[n] satisfy Assumption 1, the weights (W(n)
i )i∈[n] satisfy Assumption 2, and κ

αG
n : R+ ×

R×R→ [0, 1] is defined as

καG
n (t, x, y) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 ∧
(

xy∑
i∈[n] W(n)

i

)αG
1

tdαG
if 1 < αG < ∞,

1⎧⎨
⎩
(

xy∑
i∈[n] W(n)

i

)1/d

>t

⎫⎬
⎭

if αG = ∞.
(120)

It is not very difficult to check that κ
αG
n satisfies Assumption 3(1) with limiting connection

function καG as defined in (14); hence we only need to check Assumption 4 for κ (αG) to directly
apply Corollary 1.
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Case 1: αG < ∞. Note that for the α < ∞ case, καG is a PSIRG connection function with

g(x, y) =
(

xy
E[W]

)αG
, and f (t) = t−dαG .

Since W has a power-law tail with exponent βG − 1, using Breiman’s lemma [26, Lemma
1.4.3], for any ε > 0, the tail P (W1W2 > t) of the product of two i.i.d. copies W1 and W2 of
W is dominated from above by a regularly varying function with exponent βG − 1 − ε for
all sufficiently large t. Hence if we choose ε > 0 sufficiently small so that βG − 1 − ε > 1,
then g(x, y) satisfies Assumption 4(3) with βp = (βG − 1 − ε)/αG. Also, clearly f (t) satisfies
Assumption 4(2) with αp = dαG. Hence in this case γp = min{αp, αpβp} = min{dαG, d(βG −
1 − ε)} > d, since both αG, (βG − 1 − ε) > 1. So we can conclude the result in this case using
Corollary 1.

Case 2: αG = ∞. Fix γ > d. When αG = ∞, we note from (14) that the function
κ (∞)(t, x, y) can be bounded from above as

κ (∞)(t, x, y) = 1{(
xy

E[W]

)γ /d
>tγ

} ≤ 1 ∧
(

xy
E[W]

)γ /d

tγ
=: h(t, x, y).

Clearly h(t, x, y) is a PSIRG connection function with f (t) = 1
tγ satisfying Assumption

4(2) with αp = γ , and g(x, y) =
(

xy
E[W]

)γ /d
satisfies Assumption 4(3) with βp = d(βG − 1 −

ε)/γ , for ε > 0 sufficiently small so that βG − 1 − ε > 1, again by Breiman’s lemma [26,
Lemma 1.4.3]. Since in this case also we have γp = min{αp, αpβp} = min{γ, d(βG − 1 − ε)} >

d, we can conclude the proof using Remark 4. �
Proof of Corollary 3. We first transform the hyperbolic random graph models into 1-

dimensional SIRGs with appropriate parameters. To do this, we follow the proof of [24,
Theorem 9.6]. Recall respectively, from Section 2.1.3, the radial component vector (r(n)

i )n
i=1

and the angular component vector (θ (n)
i )n

i=1 of the vertices (u(n)
i )n

i=1 of the THRG and PHRG
models. Consider the transformations

X(n)
i =X(θ (n)

i ) := θ
(n)
i

2π
, W(n)

i =W(r(n)
i ) := exp

Rn − r(n)
i

2
. (121)

Clearly, (X(n)
i )n

i=1 is then a vector with i.i.d. coordinates on [ − 1/2, 1/2], and using (16), it

can be shown the i.i.d. components of the vector (W(n)
i )n

i=1 have a power-law distribution with
parameter 2αH + 1 when αH > 1/2 (see [24, (9.8)] and the text following it).

Recall the connection functions p(n)
THRG and p(n)

PHRG from (17) and (18) respectively. The

hyperbolic distance dH(u(n)
i , u(n)

j ) between u(n)
i = (r(n)

i , θ
(n)
i ) and u(n)

j = (r(n)
j , θ

(n)
j ) depends on

the angular coordinates θ
(n)
i and θ

(n)
j through cos (θ (n)

i − θ
(n)
j ) (see [24, (9.1)]). Hence, it can

be seen as a function of |θ (n)
i − θ

(n)
j |, since cos (·) is symmetric. Consequently, there exist

functions pTHRG and pPHRG such that

p(n)
THRG

(
u(n)

i , u(n)
j

)= p(n)
THRG(|θ (n)

i − θ
(n)
j |, r(n)

i , r(n)
j ),

p(n)
PHRG

(
u(n)

i , u(n)
j

)= p(n)
PHRG(|θ (n)

i − θ
(n)
j |, r(n)

i , r(n)
j ). (122)
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Write

κTHRG,n (t, x, y) = p(n)
THRG(2π t, gn(x), gn(y)),

κPHRG,n (t, x, y) = p(n)
PHRG(2π t, gn(x), gn(y)), (123)

where the function gn satisfies

gn(x) = Rn − 2 log (x).

It was shown in [24, (9.17)] and [24, (9.16)] respectively that for fixed (t, x, y) as n → ∞,

κTHRG,n (t, x, y) = p(n)
THRG(2π t, gn(x), gn(y)) → κTHRG,∞(t, x, y),

κPHRG,n (t, x, y) = p(n)
PHRG(2π t, gn(x), gn(y)) → κTHRG,∞(t, x, y),

where

κTHRG,∞(t, x, y) := 1{t≤ νxy
π }, κPHRG,∞(t, x, y) :=

(
1 +

(
π t

νxy

)1/TH
)−1

. (124)

In particular, the THRG and PHRG models can be seen as finite 1-dimensional SIRGs,
where the vertex locations (X(n)

i )n
i=1 satisfy Assumption 1, the vertex weights (W(n)

i )n
i=1 satisfy

Assumption 2 with the function FW (x) being a power-law distribution function with exponent
2αH + 1, and where the connection functions are as in (123), converging pointwise to limiting
connection functions as in (124). The pointwise convergence can in fact be improved to the case
where one has sequences xn → x, yn → y as in Assumption 3(1). This is because the error terms
are uniformly bounded (see [24, (9.15)]), which implies κTHRG,n(t, xn, yn) → κTHRG,∞(t, x, y)
and κPHRG,n(t, xn, yn) → κPHRG,∞(t, x, y), with t avoiding a set of measure zero for the THRG
case, namely the set { νxy

π
}. Thus, the sequences of connection functions κTHRG,n and κPHRG,n

satisfy Assumption 3(1) with limiting connection functions (124).
Finally, we need to check that the limiting connection functions κTHRG,∞ and κPHRG,∞

satisfy Assumption 3(2) with some α > d. For this, we use Corollary 1 and Remark 4.

Case 1: THRG. Let γ > 1 be any constant. Note that the function κTHRG,∞ can be bounded
from above as

κTHRG,∞(t, x, y) ≤ 1 ∧
( νxy

π

)γ
tγ

.

Note that this is a PSIRG connection function with f (t) = 1
tγ satisfying Assumption 4(1) with

αp = γ , and g(x, y) = ( νxy
π

)γ . In addition, from (121) it follows that the limiting weights are
i.i.d. and have a power-law distribution with exponent 2αH + 1. Hence, by Breiman’s lemma
[26, Lemma 1.4.3], if W(1) and W(2) are i.i.d. copies of the limiting weight distribution, then
g(W(1), W(2)) is regularly varying with exponent 2αH/γ . Applying Potter’s bounds, we con-
clude that g(W1, W2) satisfies Assumption 4(2) with βp = (2αH − ε)/γ , for ε > 0 sufficiently
small so that 2αH − ε > 1.

Since in this case we have γp = min{αp, αpβp} = min{γ, (2αH − ε)} > 1, we can conclude
the proof using Corollary 1 and Remark 4.
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Case 2: PHRG. The function κPHRG,∞ can be bounded from above as

κPHRG,∞(t, x, y) ≤ C1

(
1 ∧ a1

(xy

t

)1/TH
)

, (125)

for some constants C1, a1 > 0. To see this, combine [24, (9.14)], [24, (9.16)], and Assumption
3(1). Using the fact that κPHRG,∞(t, x, y) is a probability, and hence ≤ 1, we can further get an
upper bound from (125) as

κPHRG,∞(t, x, y) ≤ 1 ∧ C1a1

(xy

t

)1/TH
.

Note that this is a PSIRG connection function, with f (t) = C1a1
t1/TH

and g(x, y) = (xy)1/TH .
Recall from the statement of Corollary 3 that 0 < TH < 1. Note that f (t) then satisfies
Assumption 4(1) with αp = 1/(TH − ε1), for some ε1 > 0 sufficiently small so that 1/TH −
ε1 > 1. Also note that from (121), the limiting weights are i.i.d. and have a power-law dis-
tribution with exponent 2αH + 1. So if we let W(1) and W(2) be i.i.d. copies of the limiting
weight distribution, then by Breiman’s lemma [26, Lemma 1.4.3], g(W(1), W(2)) is regularly
varying with exponent 2αHTH . Hence, applying Potter’s bounds, we note that g(W(1), W(2))
satisfies Assumption 4(2) with βp = (2αH − ε2)TH , for some ε2 > 0 sufficiently small so that
2αH − ε2 > 1. Since in this case also we have γp = min{αp, αpβp} = min{1/(TH − ε1), (2αH −
ε2)TH/(TH − ε1)} > 1, we can conclude the proof using Corollary 1 and Remark 4. �

Proof of Corollary 4. We apply Corollary 1, using Remark 4. Note that Assumptions 1
and 2 are immediate. Since Assumption 3(1) is immediate for κn with limit κ , we only need to
check that κ is dominated by a PSIRG connection function which satisfies Assumption 4.

We use the easy bound

1 − exp

(
−λxy

tα

)
≤ 1 ∧ λxy

tα

to observe that the limiting connection function κ is dominated by the PSIRG connection
function 1 ∧ f (t)g(x, y), where f (t) = 1/tα and g(x, y) = λxy.

Note that for i.i.d. copies W1 and W2 of the weight distribution W as in (19), for any ε > 0,
the tail P (g(W1, W2) > t) of the random variable g(W1, W2) is dominated by a regularly vary-
ing function with exponent β − ε > 0 by Breiman’s lemma [26, Lemma 1.4.3], which implies
that g satisfies Assumption 4(2) with βp = β − ε. Also, clearly f satisfies Assumption 4(1) with
αp = α. For ε > 0 sufficiently small so that β − ε > 1, since we have γp = min{αpβp, αp} =
min{α(β − ε), α} > d, the proof of Corollary 4 is complete using Remark 4 and
Corollary 1. �

3.8. Proofs of degree results

Proof of Proposition 1. We argue by showing that the moment generating function converges
to the moment generating function of the claimed limit. Also, we write interchangeably the
vertex set V(G∞) and N∪ {0}. In particular, the set of all vertices of G∞ other than 0 is N.

Note that we have to show that for all t ∈R,

E
[

etD
∣∣W0

] a.s.= exp

(
(et − 1)

∫
Rd

E

[
κ(‖z‖, W0, W(1))

∣∣∣W0

]
dz

)
. (126)

https://doi.org/10.1017/apr.2022.61 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.61


836 R. VAN DER HOFSTAD ET AL.

Recall that E(G∞) is the edge set of G∞. For any r > 0, we define D≤r as

D≤r :=
∑
i∈N

1{{0,i}∈E(G∞)}1{‖Yi‖≤r}. (127)

Clearly, D≤r increases to D as r → ∞. So, applying conditional monotone convergence
when t ≥ 0 and conditional dominated convergence when t < 0, for any t ∈R we have

lim
r→∞ E

[
etD≤r

∣∣W0
] a.s.= E

[
etD
∣∣W0

]
. (128)

Let Br
0 = {y ∈R

d : ‖y‖ < r} denote the open Euclidean ball of radius r in R
d, centered at 0.

Let Qr be a Poi
(
λd(Br

0)
)

random variable, and conditionally on Qr, make the following
definitions:

a. Let {Ri}Qr
i=1 be a collection of Qr i.i.d. uniform random variables on Br

0.

b. Let {Ui}Qr
i=1 be a collection of Qr i.i.d. uniform random variables on [0, 1].

c. Let {W(i)}Qr
i=1 be Qr i.i.d. copies of W0, independent of {Ri}Qr

i=1, {Ui}Qr
i=1, and W0.

Note then that

etD≤r

∣∣∣W0
d=

Qr∏
i=1

exp
(

t1{Ui≤κ(‖Ri‖,W0,W(i))}
)∣∣∣W0, (129)

and observe that the product on the right-hand side of (129) is, conditionally on W0, a product
of (conditionally) independent random variables.

We compute that

E

[
exp

(
t1{Ui≤κ(‖Ri‖,W0,W(i))}

)∣∣∣W0, W(i),Ri

]
a.s.= 1 − κ(‖Ri‖, W0, W(i)) + etκ(‖Ri‖, W0, W(i)), (130)

so that

E

[
exp

(
t1{Ui≤κ(‖Ri‖,W0,W(i))}

)∣∣∣W0

]
a.s.= 1 − 1

λd(Br
0)

∫
Br

0

E

[
κ(‖z‖, W0, W(i))

∣∣∣W0

]
dz

+ et 1

λd(Br
0)

∫
Br

0

E

[
κ(‖z‖, W0, W(i))

∣∣∣W0

]
dz

a.s.= (et − 1)
1

λd(Br
0)

∫
Br

0

E

[
κ(‖z‖, W0, W(1))

∣∣∣W0

]
dz + 1. (131)

Hence, by (129),

E
[

etD≤r
∣∣W0

]
a.s.= E

⎡
⎣
(

(et − 1)
1

λd(Br
0)

∫
Br

0

E

[
κ(‖z‖, W0, W(1))

∣∣∣W0

]
dz + 1

)Qr
∣∣∣∣∣∣W0

⎤
⎦

a.s.= exp

(
(et − 1)

∫
Br

0

E

[
κ(‖z‖, W0, W(1))

∣∣∣W0

]
dz

)
, (132)
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since Qr has a Poisson distribution with parameter λd(Br
0). Now, we let r → ∞ on both sides

of (132) and use (128) to establish (126), which concludes the proof of Proposition 1. �
Proof of Proposition 2. Recall that Dn is the degree of the uniformly chosen vertex Un of

Gn. Fix ε > 0, and note that the target is to show that there exist M0, N ∈N such that for all
M > M0 and n > N = N(M0),

E
[
Dn1{Dn>M}

]
< ε. (133)

For any r > 0, we can write
Dn = Dn,<r + Dn,≥r, (134)

where (recall that E(Gn) is the edge set of Gn)

Dn,<r :=
∑
j∈[n]

1{{j,Un}∈E(Gn),‖Y(n)
Un

−Y(n)
j ‖<r

}, (135)

Dn,≥r :=
∑
j∈[n]

1{{j,Un}∈E(Gn),‖Y(n)
Un

−Y(n)
j ‖≥r

}. (136)

By applying the case j = 1 of (34), it is not hard to see that we can choose and fix r0 =
r0(ε) > 0 and n0 ∈N such that, whenever r ≥ r0 and n > n0,

E
[
Dn,≥r

]≤ ε/4. (137)

Splitting depending on whether Dn,<r0 or Dn,≥r0 is larger, we obtain

E
[
Dn1{Dn>M}

]≤E

[
Dn1{Dn>M}

(
1{Dn,<r0≤Dn,≥r0

} + 1{Dn,<r0>Dn,≥r0

})]
≤ 2E

[
Dn,≥r01

{
Dn,≥r0>M/2

}]+ 2E
[
Dn,<r01

{
Dn,<r0 >M/2

}]
≤ ε/2 + 2E

[
Dn,<r01

{
Dn,<r0>M/2

}] , (138)

where in the last step we have used (137).
Now observe that Dn,<r0 is stochastically dominated by Yn, where Yn is a

Bin

(
n − 1,

λd(B
r0
0 )

n

)
random variable, so that (Yn)n≥1 is uniformly integrable. Hence,

there exist M0 ∈N and n1 = n1(M0) ∈N such that, whenever M > M0 and n > n1, we have

2E
[
Dn,<r01

{
Dn,<r0 >M/2

}]< ε/2. (139)

Hence, using (139) and (138), we note that (133) holds for M > M0 and n > N =
max{n1(M0), n0}. �

3.9. Proofs of clustering results

Proof of Corollary 6. Parts 2 and 3 follow directly from using Theorem 2 with [22, Theorem
2.22] and [22, Exercise 2.31], respectively.

For Part 1, using [22, Theorem 2.21], we only have to verify the uniform integrability of
(D2

n)n≥1 and the fact that P (D > 1) > 0, where, as before, Dn is the degree of the uniformly
chosen vertex Un of Gn, and D is the degree of 0 in G∞. By Proposition 1, P (D > 1) > 0 is
trivial (we do not focus on the pathological case where

∫
Rd E

[
κ(‖z‖, W0, W(1))

∣∣W0
]

dz = 0,
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in which case it is not hard to see that Gn is an empty graph). So we need only verify that
α > 2d (where α is as in Assumption 3(3)) implies the uniform integrability of the sequence
(D2

n)n≥1.
Fix ε > 0. We want to show there exist M0 ∈N and N = N(M0) ∈N such that whenever

M > M0 and n > N,

E

[
D2

n1{D2
n>M}

]
< ε. (140)

Recall the decomposition (134). Note that

D2
n,≥r = 2

∑
i,j∈[n], i<j

1{{Un,i}∈E(G∞),‖Y(n)
Un

−Y(n)
i ‖≥r

}1{{Un,j}∈E(G∞),‖Y(n)
Un

−Y(n)
j ‖≥r

}

+
n∑

i=1

1{{Un,i}∈E(G∞),‖Y(n)
Un

−Y(n)
i ‖≥r

}. (141)

Taking expectations on both sides of (141), and after applying a routine change of variables,
we get the bound

E

[
D2

n,≥r

]
≤
∫
Rd\Br

0

∫
Rd\Br

0

E

[
κn

(
‖x‖, W(n)

Un,1
, W(n)

Un,2

)
κn

(
‖y‖, W(n)

Un,1
, W(n)

Un,3

)]
dxdy

+
∫
Rd\Br

0

E

[
κn

(
‖z‖, W(n)

Un,1
, W(n)

Un,2

)]
dz,

where Un,1, Un,2, Un,3 are i.i.d. uniformly distributed random variables on [n]; recall that
(W(n)

i )i∈[n] is the weight sequence corresponding to the random graph Gn.
Applying the Cauchy–Schwarz inequality on the integrand of the first term, and noting that

κn ≤ 1, we have the bound

E

[
D2

n,≥r

]

≤
(∫

Rd\Br
0

E

[
κn

(
‖x‖, W(n)

Un,1
, W(n)

Un,2

)]1/2
dx

)

×
(∫

Rd\Br
0

E

[
κn

(
‖y‖, W(n)

Un,1
, W(n)

Un,3

)]1/2
dy

)

+
∫
Rd\Br

0

E

[
κn

(
‖z‖, W(n)

Un,1
, W(n)

Un,2

)]
dz. (142)

Since α > 2d, we can choose and fix r0 = r0(ε) > 0 such that there exists n0 = n0(r0) ∈N such
that, whenever n > n0, by (142),

E

[
D2

n,≥r0

]
< ε/8. (143)
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Hence, by splitting according to which of Dn,<r0 and Dn,≥r0 is larger, we have

E

[
D2

n1{D2
n>M}

]
=E

[
D2

n1{D2
n>M}

(
1{Dn,<r0>Dn,≥r0

} + 1{Dn,<r0≤Dn,≥r0

})]
≤E

[
4D2

n,<r0
1{

4D2
n,<r0

>M
}]+ 4E

[
D2

n,≥r0

]

≤E

[
4D2

n,<r0
1{

4D2
n,<r0

>M
}]+ ε/2. (144)

As argued previously in the proof of Proposition 2, Dn,<r0 is stochastically dominated

by a Bin

(
n − 1,

λd(B
r0
0 )

n

)
-distributed random variable. Hence, by standard arguments, the

sequence
(
4D2

n,<r0

)
n≥1

is uniformly integrable. Hence there exist M0 ∈N and n1 = n1(M0) ∈N

such that, whenever M > M0 and n > n1, the first term on the right-hand side of (144) is smaller
than ε/2. We conclude that (140) holds whenever M > M0 and n > N(M0) = max{n0, n1}. This
finishes the proof of Part 1. �

Acknowledgements

N. M. thanks Joost Jorritsma and Suman Chakraborty for helpful discussions and pointers to
the literature, and Martijn Gösgens for help with the pictures. The authors thank the anonymous
reviewers for their helpful comments, which greatly improved the presentation of the paper,
and especially for pointing out the confusions regarding the statement of Corollary 3 and the
error in Conjecture 2 in the first version of the paper. We also thank Peter Mörters for his input
on the reformulation of Conjecture 2.

Funding information

The work of R. v. d. H. was supported in part by the Dutch Research Council (NWO)
through the Gravitation grant NETWORKS-024.002.003.

Competing interests

There were no competing interests to declare which arose during the preparation or
publication process of this article.

References

[1] ATHANASIOU, R. AND YOSHIOKA, G. A. (1973). The spatial character of friendship formation. Environm.
Behavior 5, 43–65.

[2] ALDOUS, D. AND STEELE, J. M. (2004). The objective method: probabilistic combinatorial optimization and
local weak convergence. In Probability on Discrete Structures, Springer, Berlin, pp. 1–72.

[3] BENJAMINI, I., KESTEN, H., PERES, Y. AND SCHRAMM, O. (2011). Geometry of the uniform spanning forest:
transitions in dimensions 4, 8, 12, . . . . In Selected Works of Oded Schramm, Springer, New York, pp. 751–777.

[4] BENJAMINI, I. AND SCHRAMM, O. (2001). Recurrence of distributional limits of finite planar graphs. Electron.
J. Prob. 6, paper no. 23, 13 pp.

[5] BOLLOBÁS, B., JANSON, S. AND RIORDAN, O. (2007). The phase transition in inhomogeneous random
graphs. Random Structures Algorithms 31, 3–122.

[6] BRINGMANN, K., KEUSCH, R. AND LENGLER, J. (2016). Average distance in a general class of scale-free
networks with underlying geometry. Preprint. Available at https://arxiv.org/abs/1602.05712.

https://doi.org/10.1017/apr.2022.61 Published online by Cambridge University Press

https://arxiv.org/abs/1602.05712
https://doi.org/10.1017/apr.2022.61


840 R. VAN DER HOFSTAD ET AL.

[7] BRINGMANN, K., KEUSCH, R. AND LENGLER, J. (2017). Sampling geometric inhomogeneous random
graphs in linear time. In 25th Annual European Symposium on Algorithms (ESA 2017) (Leibniz International
Proceedings in Informatics (LIPIcs) 87), Schloss Dagstuhl, Leibniz-Zentrum für Informatik, Wadern, article
no. 20, 15 pp.

[8] BRINGMANN, K., KEUSCH, R. AND LENGLER, J. (2019). Geometric inhomogeneous random graphs. Theoret.
Comput. Sci. 760, 35–54.

[9] CHUNG, F. AND LU, L. (2002). The average distances in random graphs with given expected degrees. Proc.
Nat. Acad. Sci. USA 99, 15879–15882.

[10] CHUNG, F. AND LU, L. (2002). Connected components in random graphs with given expected degree
sequences. Ann. Combinatorics 6, 125–145.

[11] DALMAU, J. AND SALVI, M. (2021). Scale-free percolation in continuous space: quenched degree and
clustering coefficient. J. Appl. Prob. 58, 106–127.

[12] DEIJFEN, M., VAN DER HOFSTAD, R. AND HOOGHIEMSTRA, G. (2013). Scale-free percolation. Ann. Inst. H.
Poincaré Prob. Statist. 49, 817–838.

[13] DEPREZ, P. AND WÜTHRICH, M. V. (2019). Scale-free percolation in continuum space. Commun. Math.
Statist. 7, 269–308.

[14] VAN DEN ESKER, H., VAN DER HOFSTAD, R., HOOGHIEMSTRA, G. AND ZNAMENSKI, D. (2005). Distances
in random graphs with infinite mean degrees. Extremes 8, 111–141.

[15] FOUNTOULAKIS, N., VAN DER HOORN, P., MÜLLER, T. AND SCHEPERS, M. (2021). Clustering in a
hyperbolic model of complex networks. Electron. J. Prob. 26, 132 pp.

[16] GILBERT, E. N. (1961). Random plane networks. J. SIAM 9, 533–543.
[17] GRACAR, P., GRAUER, A. AND MÖRTERS, P. (2022). Chemical distance in geometric random graphs with

long edges and scale-free degree distribution. Commun. Math. Phys. 395, 859–906.
[18] GRACAR, P., HEYDENREICH, M., MÖNCH, C. AND MÖRTERS, P. (2022). Recurrence versus transience for

weight-dependent random connection models. Electron. J. Prob. 27, 31 pp.
[19] HEYDENREICH, M., HULSHOF, T. AND JORRITSMA, J. (2017). Structures in supercritical scale-free percola-

tion. Ann. Appl. Prob. 27, 2569–2604.
[20] VAN DER HOFSTAD, R. (2017). Random Graphs and Complex Networks, Vol. 1. Cambridge University Press.
[21] VAN DER HOFSTAD, R. (2021). The giant in random graphs is almost local. Preprint. Available at https://arxiv.

org/abs/2103.11733.
[22] VAN DER HOFSTAD, R. (2021+). Random Graphs and Complex Networks, Vol. 2. In preparation.
[23] KALLENBERG, O. (2017). Random Measures, Theory and Applications. Springer, Cham.
[24] KOMJÁTHY, J. AND LODEWIJKS, B. (2020). Explosion in weighted hyperbolic random graphs and geometric

inhomogeneous random graphs. Stoch. Process. Appl. 130, 1309–1367.
[25] KRIOUKOV, D. et al.et al. (2010). Hyperbolic geometry of complex networks. Phys. Rev. E 82, paper

no. 036106, 18 pp.
[26] KULIK, R. AND SOULIER, P. (2020). Regularly varying random variables. In Heavy-Tailed Time Series,

Springer, New York, pp. 3–21.
[27] LAST, G. AND PENROSE, M. (2018). Lectures on the Poisson Process. Cambridge University Press.
[28] LEE, B. AND CAMPBELL, K. (1999). Neighbor networks of black and white Americans. In Networks in the

Global Village, Routledge, New York, pp. 119–146.
[29] PENROSE, M. (2003). Random Geometric Graphs. Oxford University Press.
[30] POTTER, H. S. A. (1942). The mean values of certain Dirichlet series, II. Proc. London Math. Soc. 47, 1–19.
[31] WELLMAN, B., CARRINGTON, P. AND HALL, A. (1988). Networks as personal communities. In Social

Structures: A Network Approach, Cambridge University Press, pp. 130–184.
[32] WELLMAN, B. AND WORTLEY, S. (1990). Different strokes from different folks: community ties and social

support. Amer. J. Sociol. 96, 558–588.
[33] WONG, L. H., PATTISON, P. AND ROBINS, G. (2006). A spatial model for social networks. Physica A 360,

99–120.

https://doi.org/10.1017/apr.2022.61 Published online by Cambridge University Press

https://arxiv.org/abs/2103.11733
https://arxiv.org/abs/2103.11733
https://doi.org/10.1017/apr.2022.61

	Introduction and main results
	The space of rooted graphs and local convergence
	Model description and assumptions
	Statement of main results

	Consequences and discussion
	Examples
	Product SIRGs
	Geometric inhomogeneous random graphs.
	Hyperbolic random graphs.
	Continuum scale-free percolation.
	Weight-dependent random connection models

	Consequences of local convergence: degrees
	Consequences of local convergence: clustering
	Consequences of our local convergence proof: distance lower bound

	Proofs
	Notation and general proof strategy for Theorems 1 and 2
	Proof of Proposition
	Proofs of path-counting results: Lemma
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem
	Proofs of results on examples
	Proofs of degree results
	Proofs of clustering results

	Acknowledgements
	Funding information
	Competing interests
	References

