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Abstract

Small isolated plant populations are one of the consequences of fragmentation of natural habi-
tats by humans. We asked what effect does the creation of smaller populations from larger
ones has on the plant fitness-related trait seed germination. Using information on 119 species
(142 species entries) in 50 families, we found that seeds in only 35.2% of the species entries
from larger populations germinated to higher percentages than those from smaller popula-
tions. In the other entries, seeds from large and small populations germinated equally well
(57.7% of total entries) or seeds from small populations germinated better (7.0% of total
entries) than those from large populations. These results indicate that population size is
not a reliable predictor of seed germinability. Furthermore, there was little relationship
between seed germination and either seed mass, genetic diversity or degree of population iso-
lation, or between population size and genetic diversity.

Introduction

Fragmentation of the Earth’s natural terrestrial ecosystems by humans has resulted in small,
isolated populations of many species. Three genetic consequences of these small populations
are genetic drift (random loss of alleles from a population and long-term accumulation of
recessive deleterious alleles [genetic drift load]), inbreeding (resulting in inbreeding depres-
sion) and isolation (resulting in reduced gene flow, or lack thereof, between populations)
(Barrett and Kohn, 1991; Ellstrand and Elam, 1993; Young et al., 1996; Keller and Waller
2002; Lienert, 2004; Honnay et al., 2005; Aguilar et al., 2008; Jacquemyn et al., 2012;
Haddad et al., 2015). Thus, theoretically, these genetic consequences of fragmentation increase
homozygosity, resulting in the loss of fitness. The primary aim of this paper was to review the
effect of habitat fragmentation/population size on seed germination, a fitness-related trait (e.g.
Reed and Frankham, 2003; Reed, 2005; Angeloni et al., 2011). We hypothesized that seeds of
the same species from large populations generally germinate to higher percentages than those
from small populations.

Methods

During the past 10 years or so, we have collected information from the scientific literature on
the effect of habitat fragmentation/small population size on the fitness trait seed germination.
Here, we summarize the results for 119 species (142 species entries). Compared with germin-
ation responses of seeds from large populations (‘control’, Wl), we placed the germination
responses of seeds from small populations (‘treatments’, Ws) into three categories: (1) negative
effect, seeds from small populations (fragments) germinated to lower percentages than those
from large populations (continuous vegetation type/large fragments) (Wl >Ws), or percentage
of germination was positively correlated (related) to population size; (2) no effect (none), seeds
from small populations germinated equally as well as those from large populations (Wl =Ws),
or no correlation (relationship) between germination percentage and population size and (3)
positive, seeds from small populations germinated better than those form large populations
(Wl <Ws), or germination percentage was negatively correlated (related) with population
size. To determine to which of the three responses categories (i.e. negative, none or positive
effect) seeds of a small population belonged (i.e. the effect of germination of a large population
on germination of small population), we used the significant/non-significant results of statis-
tical tests reported by the authors of the papers. Plant nomenclature follows Plants of the
World Online.

Results and conclusions

We found information on population size and germination for 119 species in 50 families
(Table 1). Sixteen of the species were included in more than one study, making a total
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Table 1. Effect of habitat fragmentation (larger→ smaller population size) on seed germination

Taxon Effect References

Acanthaceae

Ruellia humilis Negative Soto et al. (2023)

Anacardiaceae

Lithraea molleoides None1 Chiapero et al. (2021)

Schinus fasciculataa None2 Ashworth and Martí (2011)

Spondias mombin Negative Nason and Hamrick (1997)

Arecaceae

Astrocaryum aculeatissimuma None3 Portela and Santos (2014)

Euterpe edulis None3 Portela and Santos (2014)

Geonoma schottiana None3 Portela and Santos (2014)

Asparagaceae

Anthericum liliago None Rosquist (2001)

Anthericum liliago None4 Peterson et al. (2008)

Anthericum ramosum Negative Rosquist (2001)

Ornithogalum thyrsoides None Donaldson et al. (2002)

Asteraceae

Arnica montana Negative5 Kahmen and Poschlod (2000)

Arnica montanaa None6 Luijten et al. (2000)

Carduus defloratus None7 Vaupel and Matthies (2012b)

Centaurea jacea Negative8 Soons and Heil (2002)

Cheirolophus uliginosus Negative Vitales et al. (2013)

Cirsium dissectum None9 de Vere et al. (2009)

Cirsium dissectum Negative8 Soons and Heil (2002)

Hypochaeris radicata Negative8 Soons and Heil (2002)

Hypochaeris radicata None10 Mix (2006)

Jacobaea paludosaa Negative11 Winter et al. (2008)

Lamyropsis microcephala None12 Mattana et al. (2012)

Leucochrysum albicans subsp.
albicans var. tricolor

None13 Costin et al, (2001)

Leucochrysum albicans subsp.
albicans

Negative14 Morgan et al. (2013)

Rutidosis leptorrhynchoidesa None15 Morgan (1999)

Solidago albopilosa Negative Albrecht et al. (2020)

Tephroseris integrifolia None Widén (1993)

Tragopogon pratensis subsp.
pratensis

None16 van Mölken et al. (2005)

Boraginaceae

Echium wildpretii None17 Sedlacek et al. (2012)

Brassicaceae

Cochlearia bavaricaa Negative18 Paschke et al. (2002)

Cochlearia bavaricaa Negative Fischer et al. (2003)

Cochlearia bavarica Negative Paschke et al. (2003)

Cochlearia bavarica Negative Paschke et al. (2005)

(Continued )

214 Jerry M. Baskin and Carol C. Baskin

https://doi.org/10.1017/S0960258523000247 Published online by Cambridge University Press

https://doi.org/10.1017/S0960258523000247


Table 1. (Continued.)

Taxon Effect References

Cannabaceae

Celtis iguanaeaa None2 Ashworth and Martí (2011)

Campanulaceae

Campanula cervicaria None19 Eisto et al. (2000)

Campanula glomerata None20 Bachmann and Hensen (2007)

Phyteuma spicatuma None21 Kolb (2005)

Caprifoliaceae

Scabiosa columbaria None Angeloni et al. (2014)

Succisa pratensis Negative8 Soons and Heil (2002)

Succisa pratensis None22 Hooftman et al. (2003)

Succisa pratensis Negative23 Vergeer et al. (2003)

Succisa pratensisa Negative10 Mix (2006)

Succisa pratensis None24 Picó et al. (2007)

Caryophyllaceae

Silene chlorantha None25 Lauterbach et al. (2011)

Silene flos-cuculi None26 Galeuchet et al. (2005)

Silene flos-cuculi None27 Hauser and Loeschcke (1994)

Silene regiaa Negative28 Menges (1991)

Viscaria vulgarisa None29 Lammi et al. (1999)

Crassulaceae

Rhodiola integrifolia subsp. leedyi Negative30 Olfelt et al. (1998)

Cupressaceae

Callitris columellaris None31 Lawes et al. (2013)

Juniperus thurifera Negative32 Santos and Tellería (1994)

Widdringtonia whytei None33 Chanyenga et al. (2011)

Cyperaceae

Carex davallianaa None22 Hooftman et al. (2003)

Elaeocarpaceae

Aristotelia chilensisa Negative34A Valdivia and Simonetti (2007)

Aristotelia chilensis Positive Guerrero and Bustamante (2009)

Tetratheca paynterae subsp. paynterae None34B Butcher et al. (2009, 2011)

Euphorbiaceae

Croton lachnostachyusa Negative35 Ashworth and Martí (2011)

Euphorbia palustrisa None11 Winter et al. (2008)

Mercurialis perennis None Vandepitte et al. (2009)

Fabaceae

Acacia dealbataa Positive36 Broadhurst et al. (2008)

Enterolobium cyclocarpuma Negative37 Rocha and Aguilar (2001)

Genista anglica None38 Tsaliki and Diekmann (2010)

Genista pilosa Negative39 Tsaliki and Diekmann (2010)

Lathyrus palustris None11 Winter et al. (2008)

Lupinus perennisa None40 Michaels et al. (2008)
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Table 1. (Continued.)

Taxon Effect References

Lupinus sulphureus Negative41 Kaye and Kuykendall (2001) and Severns et al. (2011)

Neltuma caldeniaa None42 Aguilar et al. (2012)

Samanea samana Negative43 Cascante et al. (2002)

Senna didymobotrya None44 van Kleunen and Johnson (2005)

Swainsona rectaa Negative45 Buza et al. (2000)

Vachellia caven None35 Ashworth and Martí (2011)

Fagaceae

Quercus ilex Negative46 Santos and Tellería (1997)

Gentianaceae

Gentiana luteaa None47 Kéry et al. (2000)

Gentiana pneumonanthe Positive Oostermeijer et al. (1992)

Gentiana pneumonanthe Positive Oostermeijer et al. (1992)

Gentiana pneumonanthe None48 Oostermeijer et al. (1994)

Gentianella austriaca Positive49 Griemler and Dobeš (2000)

Gentianella germanicaa None50 Fischer and Matthies (1998)

Gentianella germanicaa None51 Paland and Schmid (2003)

Swertia perennis None52 Lienert and Fischer (2004)

Swertia perennis None53 Lienert et al. (2002)

Haemodoraceae

Anigozanthos flavidusa None Phillips et al. (2014)

Heliconiaceae

Heliconia acuminataa Negative Bruna (1999, 2002)

Hypericaceae

Hypericum cumulicola None (self)54 Oakley and Winn (2012)

Hypericum cumulicola Negative (cross)54 Oakley and Winn (2012)

Iridaceae

Babiana ambigua Positive Donaldson et al. (2002)

Lacistemataceae

Lacistema aggregatum Positive55 Sugiyama and Peterson (2013)

Lamiaceae

Betonica officinalisa None56 Rusterholz and Baur (2010)

Salvia pratensis None57, 58 Ouborg and Van Treuren (1994)

Salvia pratensis None59 Ouborg and Van Treuren (1995)

Lauraceae

Cryptocarya albaa None Guerrero and Bustamante (2009)

Malvaceae

Craigia yunnanensisa None60 Gao et al. (2010)

Dombeya acutangulaa None61 Gigord et al. (1999)

Leptonychia usambarensisa None Cordeiro et al. (2009)

Moraceae

Brosimum alicastrum None62 Aguilar-Aguilar et al. (2023)

Myrtaceae

Decaspermum blancoia None63, 64 González-Varo et al. (2010)
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Table 1. (Continued.)

Taxon Effect References

Eucalyptus aggregataa Negative65 Field et al. (2008)

Eucalyptus benthamiia Negative66, 67 Butcher et al. (2005)

Eucalyptus gomphocephala None68 Bradbury and Krauss (2013)

Eucalyptus melliodora Negative69 Burrows (2000)

Eucalyptus paucifloraa Negative Gauli et al. (2013)

Eucalyptus salmonophloiaa None70 Krauss et al. (2007)

Eucalyptus salubrisa None70 Krauss et al. (2007)

Melaleuca quadrifidaa None71 Gibson et al. (2012)

Melaleuca quadrifidaa None72 Yates et al. (2007)

Nothofagaceae

Nothofagus glaucaa None73 Burgos et al. (2008)

Nothofagus glauca Positive Guerrero and Bustamante (2009)

Nothofagus obliquaa None Guerrero and Bustamante (2009)

Oleaceae

Ligustrum lucidum None74 Aguirre-Acosta et al. (2014)

Onagraceae

Clarkia concinna var. concinnaa None75 Groom and Preuninger (2000)

Clarkia pulchella Negative76 Newman and Pilson (1997)

Orchidaceae

Neottia ovata Negative Jacquemyn et al. (2015)

Ophrys x flavicans None77 Pierce et al. (2010)

Orchis purpurea Negative78 Jacquemyn et al. (2007)

Platanthera blephariglottis None79 de Vriendt et al. (2017)

Orobanchaceae

Agalinis auriculata Negative80 Molano-Flores et al. (2007)

Pedicularis palustris Negative81 Schmidt and Jensen (2000)

Petiveriaceae

Rivina humilisa Negative35 Ashworth and Martí (2011)

Philesiaceae

Lapageria roseaa Negative82 Henríquez (2004)

Pinaceae

Picea laxa None O’Connell et al. (2006)

Picea rubens Negative83 Mosseler et al. (2000)

Pinus cembra Negative84 Salzer and Gugerli (2012)

Pinus chiapensis Positive85 del Castillo and Trujillo (2008)

Plantaginaceae

Collinsia parvifloraa None86 Kennedy and Elle (2008)

Veronica longifoliaa Negative11 Winter et al. (2008)

Poaceae

Festuca hallii None87 Qiu et al. (2010)

Polemoniaceae

Ipomopsis aggregata Negative82, 88 Heschel and Paige (1995)
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Table 1. (Continued.)

Taxon Effect References

Primulaceae

Primula elatior None89 Jacquemyn et al. (2001)

Primula verisa None90 Kéry et al. (2000)

Proteaceae

Banksia ilicifolia None Heliyanto et al. (2009)

Banksia sphaerocarpa var.
caesiaa

None91 Llorens et al. (2013)

Embothrium coccineuma Positive92 Mathiasen et al. (2007)

Ranunculaceae

Aquilegia canadensis None93 Mavraganis and Eckert (2001)

Rhamnaceae

Ceanothus herbaceous Negative94 Markham (2008)

Rosaceae

Sanguisorba officinalis None11 Winter et al. (2008)

Polylepis australisa None Seltmann et al. (2007)

Polylepis australis Negative56 Seltmann et al. (2009)

Rubiaceae

Psychotria suterella None95 Lopes and Buzato (2007)

Rutaceae

Dictamnus albus None96 Hensen and Wesche (2006)

Saxifragaceae

Saxifraga aizoides Negative Meier and Holderegger (1998)

Solanaceae

Datura stramonium None97 van Kleunen et al. (2007)

Ulmaceae

Ampelocera hottlei Negative González-Di Pierro et al. (2011)

1There was no effect of fragmentation on progeny performance.
2Seed mass was not significantly different between continuous forest and fragments.
3Population structure, i.e. proportions of seedling, infant, juvenile, immature and reproductive stages, was not affected in the smaller fragments.
4There was a significant correlation between log population size and the Shannon index of gene diversity.
5There was no significant relationship between population size and genetic variation. Percent germination was correlated with seed size and percent viable seeds.
6Neither percentage nor rate (speed) of germination was correlated with population size. Germination in nearly all populations was 100%. Neither fruit mass nor seedling characteristics was
correlated with population size.
7Seed germination was not influenced by population size, density or centrality, i.e. small peripheral populations did not differ from large central populations. Seed mass was higher in large
than in small populations.
8Seed germination percentage decreased with a decrease in population size (Ne), but time to germination was not affected by population or by site productivity.
9There was a positive relationship between population size (number of rosettes) and genetic diversity. Seedling survival was used as the measure of fitness.
10Germination percentage was not related to population isolation.
11Germination of Euphorbia palustris and Senecio paludosus was negatively affected by population isolation, but apparently isolation had no effect on germination of Lathyrus palustris,
Sanguisorba officinalis or Veronica longifolium. Mean seed mass was significantly higher in small than in large populations of L. palustris, but apparently population size had no effect on mean
seed mass of the other four species. In all five species, germination percentage was positively related to seed size.
12All seeds from both large and small populations germinated when sown in the field. Seeds germinated as soon as the snow melted in spring.
13Germination percentages were very high, and germination rate was rapid.
14Mean germination percentage was >65 in all 19 study populations, but there was a significant positive relationship between log population size and mean germination percentage in
laboratory trials. Some measures of genetic variation were positively correlated with population size. The relationship between measures of isolation and final germination percentage was
not significant.
15In two years of the three-year study, seed set was positively associated with population size.
16There was no effect of population size or degree of isolation on germination.
17There was no effect of population size on seed mass.
18Seed mass was greater in large than in small populations.
19Seed size was not related to germination percentage.
20There was no relationship between population genetic diversity and germination percentage.
21There was no effect of seed mass on germination.
22There was no effect of size or degree of isolation of local habitat islands on seed germination percentage.
23Seed mass was positively correlated with population size.
24Seed mass and germination percentage were not significantly affected by inbreeding levels.
25There was no significant correlation between population size and genetic diversity.
26Seed germination percentage increased with heterozygosity, i.e. seeds from more inbred populations germinated to lower percentages. Population of origin significantly affected
germination percentage.
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Table 1. (Continued.)

27There was no clear relationship between seed germination proportion (number of germinated seeds/total number of developed seeds) and population size or degree of isolation. There also
was no relationship between seed mass and population size.
28Seed germination percentages were higher in large than in small populations but were unrelated to population isolation. Non-germinated seeds were assumed to be dead, not dormant. If
this assumption is correct, then 100% of the viable seeds germinated across all population sizes, and there were many non-viable seeds in the smallest populations, which the author thought
might be due to inbreeding depression. The high percentage of (presumably) non-viable seeds from the smallest populations is surprising because the author says that he used ‘Full-sized,
healthy-looking seeds… ’ in his germination studies.
29There was no correlation between seed germination percentage and genetic diversity; however, population size was positively related to genetic diversity.
30Seed germination percentage was significantly lower in population MN1 than in populations MN2, MN3 and MN4. MN1 had a much lower Ne/N ratio [number of genetically effective
individuals (Ne)/total number of individuals (N)] than did the other three populations. Germination percentage was positively correlated with the Ne/N ratio.
31Seed germination percentage was significantly higher in large than in small (monospecific) stands due to a higher proportion of seeds with developed embryos in large than in small
stands. However, the proportions of seeds that were viable and that germinated were almost identical, regardless of stand size.
32The lower density of seedlings in small forest fragments than in large forests was the result of much higher seed consumption by wood mice in the small fragments.
33There was no relationship between seed germination percentage/seed viability (seed viability per cone = seed germination percentage + positive results with tetrazolium test for
non-germinated seeds). The authors concluded that ‘ … the proportion of viable seeds per cone in W. whytei is not affected by population fragmentation, tree diameter and crown position in
the forest canopy.’
34AFrugivory was 2.4 times higher in continuous forest than in forest fragments. Seeds eaten by birds germinated 1.7 and 3.7 times higher percentages than non-eaten seeds from continuous
forest and fragment, respectively.
34BGenetic diversity was higher in the large than in small populations, but germination of was not related to population size.
35Seed mass was not significantly different between continuous forests and fragments.
36Genetic diversity was higher in large than in small populations.
37Trees in continuous forest were more likely to set seeds than isolated trees in pastures. Seed mass and seedling vigour also were higher for trees in primary forest than in isolated trees.
38Seed mass increased significantly with population size.
39Seed mass did not increase significantly with population size.
40Strength of inbreeding depression did not differ with population size.
41Genetic diversity did not differ between very small, small, medium and large populations.
42Seed mass did not differ between fragment sizes.
43Germination of (scarified) seeds from continuous forest (75%) was significantly higher than that of (scarified) seeds from trees in isolation (58%). However, there was no significant
difference in days to emergence between seeds of continuous forest and isolated trees. Undamaged seeds were planted for the germination tests; thus, differences in germination
percentages were not due to inviable seeds. Genetic diversity was comparable for seeds from trees in continuous forest and isolated trees.
44There was no relationship between population size and seed mass. However, there was a positive relationship between seed mass and seed germination percentage.
45Seed germination percentages were high for all populations, but there were significant differences among the three inbred classes, with fewer seeds germinating in the most highly inbred
population than in the other two populations.
46Abundance of normal acorns was the same (or perhaps even higher in small than in large populations). However, acorn consumption by mice was much higher in the small than in large
populations, thus accounting for the lower seedling establishment in small than in large populations.
47There was a significant negative correlation between population size and seed mass.
48There was no correlation between seed germination percentage and either population size or genetic variation.
49Seed germination percentage was highest in the smallest population, which also had the highest genetic diversity.
50Seed mass was independent of population size.
51Total fitness of selfed progeny in small populations was 19% higher than that of selfed progeny in large populations.
52Seed germination percentage did not differ between island population types, i.e. considering size of population and distance (degree of isolation) from other populations.
53Seed germination percentage was not affected by either area or isolation (i.e. size or distance of island).
54Compared to large populations, small populations had lower individual fitness, and crosses between them produced offspring with greater heterosis (hybrid vigour); however, there was no
difference in inbreeding depression between small and large populations. The 68% lower individual fitness of within-population outcrosses in small than in large populations is consistent
with fixation of deleterious alleles by genetic drift.
55Seeds were larger in small than in large fragments.
56Six years after fragmentation, seed mass was higher in the fragments than in the continuous population.
57Mean seed mass was significantly correlated with seed germination percentage.
58Inbreeding load was not significantly different among populations, but it did differ among maternal families.
59Seed mass did not differ among populations.
60Seed mass differed significantly among populations and was highest in the largest population.
61The large population produced more seeds per fruit than the small populations.
62Vigour of progeny from continuous large forests was higher than that of progeny from fragmented forests, which the authors thought was associated with reduced number of sires in the
fragments. Genetic diversity of adult trees and their progeny did not differ between continuous forests and fragments. Seed mass had a positive effect on germination and seedling
emergence.
63Genetic diversity of the adult population was not associated with seed germination.
64There was no difference in seed mass between large and small populations.
65Genetic diversity was negatively correlated with relative population size (RPS) in Eucalyptus aggregata. RPS of E. aggregata = Actual population size (APS) values for E. aggregata/APS of E.
aggregata + E. rubicola + E. viminalis + E. dalympleana. Seed germination percentage of E. aggregata increased with RPS.
66There was no clear relationship between genetic diversity and population size.
67Seed size was smaller in large than in small populations.
68There was no significant difference in genetic diversity among the six populations.
69There was no difference in mean mass of seeds from trees in woodland and of those from isolated trees.
70Seed mass was independent of population size.
71There was no relationship between population size, degree of isolation or fragment size and seed germination percentage.
72There was a significant positive correlation between number of seeds produced per fruit and an increase in population size for each of the three study years.
73Seed germination percentage was low (<3%) and did not vary between seeds from continuous forest and fragment.
74Ligustrum lucidum is a non-native invasive evergreen tree in the Argentinian Chaco Serrano phytogeographical region, the study area. Reproductive success of this species was much lower
in fragments than in a continuous forest.
75This species is naturally patchily distributed. We considered central populations as large and isolated populations as small. Inbreeding depression of seed germination was not influenced
by population type, i.e. central versus isolated.
76Seed germination percentage (proportion of seeds planted that germinated and survived through the winter) was significantly higher in populations with high genetic effective population
size (21.1%) than in populations with low genetic effective population size (8.7%).
77Athough the relative performance index (RP) was –0.16, indicating that seeds from the small population germinated better than those from the large population (see Baskin and Baskin,
2015), the germination percentages for seeds from large and small populations were not statistically different.
78Fruiting success and seedling recruitment were not related to genetic diversity of the populations.
79Seed germination percentage decreased with increase in population isolation.
80The smallest and most isolated population in the study had the lowest seed germination percentage.
81Number of seedlings per flowering plant was significantly higher in populations with a high amount of genetic variation.
82Seed size was greater in large than in small populations.
83Although seed germination percentages between large (75) and small (72) populations were statistically significant, relative performance index was only 0.04, indicating that there was no
difference in germination of seeds from large and small populations (see Baskin and Baskin, 2015).
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of 142 species entries in Table 1. Surprisingly, for 82 of the 142
entries (57.7%) there was no effect (none) on the small population
(Wl =Ws), i.e. no difference in germination percentages of seeds
from large and small populations (or no relationship between ger-
mination percentage and population size). For 50 of the 142
entries (35.2%), the response was negative for the small popula-
tion (Wl >Ws), i.e. a higher germination percentage for seeds
from large than small populations (or germination was positively
related to population size). For 10 of the 142 entries (7.0%), the
response was positive for the small population (Wl <Ws), i.e. a
higher germination percentage for seeds from small than large
populations (or germination percentage was negatively related
to population size). Eight of the 16 species included in more
than one study responded differently to fragmentation (i.e.
same species, different effect); seven species none and negative
and one species positive and negative (Table 1).

Thirty-three of the 142 species entries contained useful infor-
mation on seed mass of plants from large (Wl) and small (Ws)
populations: 9, Wl >Ws; 18, Wl =Ws and 6, Wl <Ws. Thus, in
24 of the 33 entries (72.7%) seed mass of small populations was
equal to or greater than that of large populations (see footnotes
of Table 1). Various other aspects related to population size of
the 142 species entries are included in the footnotes of Table 1.
These include population genetic diversity and population size
(5, Wl >Ws; 9, Wl =Ws; 0, Wl <Ws), seed germination percentage
and genetic diversity (3, Wl >Ws; 9, Wl =Ws; 0, Wl <Ws) and
seed germination percentage and seed mass (10,Wl >Ws; 7, Wl

=Ws; 0, Wl <Ws). Furthermore, except in one study in which ger-
mination percentage decreased with an increase in population iso-
lation (footnote 79) and in another study in which germination
percentage decreased with isolation for two species and did not
change for three species (footnote 11), seed germination percent-
age showed no significant relationship to degree of population
isolation (footnotes 10, 14, 16, 22, 27, 28, 43, 52, 53, 71, 87 and
93 for Table 1). Thus, the great majority of these 14 studies (18
species) showed that population isolation had no effect on seed
germination.

Here, we also report the results (not in Table 1 or footnotes) of
15 studies (12 species) on germination of seeds from species at the
centre (Wc) versus the margin (Wm) of their geographical range:
3, Wc >Wm (Summerfield, 1973; Cerabolini et al., 2004;
Giménez-Benavides et al., 2007, 2008; Tsaliki and Diekmann,
2009); 7, Wc =Wm (Lammi et al., 1999; Groom and Preuninger,

2000; Mosseler et al., 2000; Castro et al., 2004, 2005; Vaupel
and Matthies, 2012; Tabassum and Leishman, 2018; Pelletier
and de Lafontaine, 2023) and 2, Wc <Wm (Yakimowski and
Eckert, 2007; Bartle et al., 2013). Thus, in nine of the 12 (75%)
entries seeds of plants at the range margin germinated equally
well or better than those at the centre of the range. Finally, we
report the results (not in Table 1 or footnotes) of seven papers
(10 species) on germination of seeds of species from the forest
(or other vegetation type) interior (Wi) versus those from the
edge of the forest or other vegetation type (We): 1, Wi >We

(Piechowski, 2007); 5, Wi =We (Restrepo and Vargas, 1999;
Ramos et al., 2007; Schmucki and de Blois, 2009; Christianini
and Oliveira, 2012) and 4, Wi <We (López-Barrera and Newton,
2005; Suzán-Azpiri et al., 2017). Thus, for nine of the 10 (90%)
entries seeds of plants at the edge of the population germinated
equally well or better than those of plants in the centre of the
population.

Creation of edge effects via forest fragmentation undoubtedly
will have negative effects on seed germination of recalcitrant spe-
cies, especially in the tropics (Wen and Cai, 2014; also see Wen,
2011), where many of the non-pioneer tree species have recalci-
trant seeds (Tweddle et al., 2003; Yu et al., 2008; Pritchard
et al., 2022).

Our hypothesis that seeds from large populations generally
germinate better than those from small populations is not sup-
ported. Seed germination percentage did not differ in the major-
ity of cases (57.7%) in which seeds from large and small
populations were compared, and in 7.0% of the comparisons
seeds from small populations actually germinated better than
those from large populations. Thus, population size is not con-
sistently and positively related to seed germination percentage,
i.e. not a reliable predictor of seed germination. Neither was
there an overall positive relationship between seed germination
and either seed mass or genetic diversity. In 12 of 14 studies
that included population isolation and germination, population
isolation had no effect on germination; in a 13th study isolation
had a negative effect on germination and in a 14th study isola-
tion had a negative effect on two species and no effect on three
species. Our limited information suggests that in the majority of
species seeds from marginal populations germinate about
equally well or better than those from central populations and
that seeds from the edge of a forest germinate about equally
well or better than those from the forest interior.

Table 1. (Continued.)

84There was significantly lower seed production, lower seed mass, higher embryo abortion and lower seed germination percentages in the small fragmented than in the large continuous
population. Seed germination percentages was positively related to seed mass, and the differences between the large and small populations were still significant after accounting for seed
mass.
85Seed germination percentage was higher in small than in medium or large populations.
86Large-flowered plants produced seeds with greater mass than small-flowered plants.
87Seed germination percentage was not associated with population size, population isolation or genetic diversity.
88Mean seed germination percentage was positively correlated with seed size.
89In the smallest population (N = 11), there was a positive relationship between seed size and germination percentages. However, in the other three populations (N = 40, 1235 and 2291) there
was no relationship between seed size and germination percentage.
90There was a significant negative correlation between population size and seed mass.
91Both mean seed mass and number of fathers per seed crop influenced the proportion of seeds that germinated.
92There was no significant correlation between genetic variation of adult plants and population size.
93Seed mass in this naturally patchily distributed species did not differ significantly between islands in the St. Lawrence River and the mainland in eastern Ontario, Canada. Although there
was a negative correlation between population isolation and seed germination percentage, it was not significant.
94Although there was a significant positive exponential relationship between population size and seed germination percentage, germination was <20% in all populations (small→ large), and
it was ≤ca. 6% in all populations except the largest one.
95Neither seed germination percentage nor seed mass differed between non-fragments (NF), fragments (F) and fragments connected by corridors (F + C), i.e. WNF = WF = WF + C.
96There was no relationship between seed germination percentage and genetic diversity.
97Populations differed significantly in seed germination percentage, but population size was not related to germination percentage.
aThe species was included in the meta-analysis by Aguilar et al. (2019). See text for explanation of ‘effect’.
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The results of our ‘vote-counting’ method (see Gurevitch et al.,
2001) to determine the relationship between population size and
seed germination percentage do not agree with those of a
meta-analysis (M-A) by Aguilar et al. (2019), who found an over-
all negative habitat fragmentation effect (Hedges’ d about −0.6)
on seed germination. We think that an M-A may not be an appro-
priate way to get a reliable conclusion from our global dataset on
population size versus seed germination for two reasons (e.g.
Bailar, 1997; Lee, 2019). First, one of the statistical advantages
of M-A is that it increases the number of replicates in a study,
thereby increasing statistical power. Thus, to be used correctly
in an M-A the individual experiments (studies) that are pooled
in an M-A need to be similar (i.e. replicates of each other). In
doing an M-A of seed germination studies on a global scale, the
so-called replicates include different kinds of seed dormancy
and experimental procedures using seeds from plants that grow
in different climates and vegetation types.

A second concern about M-A is that one number (effect size)
summarizes the results of the whole field of research, in our case
the effect of fragmentation/population size on seed germination.
It seems to us that using a single number based on variable meth-
odology (inconsistent protocol and context-dependent source
experiments and different classes and degrees of dormancy) to
represent germination responses of numerous plant taxa may
convey the wrong impression to conservationists, ecologists and
seed biologists.

For the 49 species included in the Aguilar et al. M-A that we
include in our review, we tallied our designations of (1) no effect
(none), (2) positive effect and (3) negative effect of fragmentation/
population size on seed germination. For 31 of the 49 (63.3%)
species, we recorded no effect (none) of fragmentation/population
size on seed germination, and for 2 (4.1%) and 16 (32.7%) species
there was a positive and negative effect of fragmentation/popula-
tion size on germination, respectively. The percentages for the
three categories based on the 49 species are similar to those
reported for these three categories based on 119 species (142 spe-
cies entries), namely 57.7, 35.2 and 7.0% for none, negative and
positive, respectively.

We wonder if it is possible to get a reliable conclusion on seed
germination in relation to anything on a global scale via M-A
when there is wide variation in methodology in the individual
studies used in the M-A.

Competing interest. The authors declare that they have no competing
interests.
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