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A linear mapping D of the algebra of polynomial functions P[0,1] into the
algebra of all continuous complex-valued functions C[0,1] is called a derivation
provided D{fg) = fD(g) + gD{ / ) for all polynomials / and g. The derivations
of P[0,1] into C[0,1] are easily seen to be all mappings of the form Dw where w
is a continuous function on [0,1] and Dw(f) — wf ( / ' denotes the ordinary
derivative of / ) . In fact, w = D(x) where x is the coordinate function. Let Dw

be such a derivation, and let | • | denote the supremum norm on C[0,1]. Then
Pw gives rise to an algebra norm | • ||w on P[0,1] denned by

+ K(/)« = I/I + ||w/'| for /eP[0,l].
In this paper we study the algebra of all continuous functions on [0,1]

which are || • ||w-approximable by polynomials; that is, those functions which
are pointwise limits of | • ||w-Cauchy sequences of polynomials. Let C^w) denote
the algebra of all such functions. For comparison purposes, we define two other
algebras of functions. For w e C[0,1] let 2£(w) denote the zero set of w. Let
Cl denote the subalgebra of C[0,1] consisting of all / such that (i) f'(y) exists
for each y e [0,1] \2£(w), and (ii) the function wf is continuous on [0,1] where
(w/')G0 = 0 if yeS{W), (wf')(y) = w(y)f'(y) if y e [0,1] \^(w). Finally, let
ACW be the subalgebra of C^ consisting of absolutely continuous functions.

The following are the main results of this paper. Two algebras ^(w^ and
Cl(w2) are equal if and only if there exists a bounded function h on [0,1] which
is bounded away from zero such that wz = hw1. The method of approximation
described in this paper generalizes both uniform approximation of continuous
functions and the familiar method of approximation of once continuously dif-
ferentiable functions, since C1(w) = C[0,1] if and only if w = 0, and
Cx(w) = C1^), 1] if and only if w is never zero. As the following results indicate,
the zero set of w plays an important role in what can be approximated. There
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[2] Norms defined by derivations 19

exists a non-constant function/ such that wf = 0 if and only if &(w) is un-
countable; C\w) = ACW if and only if I/we l}\0,l\. If the boundary of %(yi) is
countable, then C1^) = C,J. Finally, as an example shows, if ^°(w) is not
suitably simple, then we should not expect that (^(w) will equal C ,̂.

The author expresses appreciation for the suggestions made by the referees
in reading this paper; the present statement and proof of Theorem 6 are due to
them.

Preliminaries

In this paper we use the general theory of Banach algebras for two pur-
poses: to obtain norm estimates and to use localization. Let A be a semi-simple,
commutative Banach algebra over C with identity which we consider as an algebra
of complex-valued continuous functions on its maximal ideal space Jl{A) via
the Gelfand representation. A is called regular provided that for each closed set
F in Jt{A) and point p not in F, there exists an element fe A such that/(p) = 1
and / 1 F = 0 (where | denotes the restriction). If g is a continuous function on
*${A) and p e ^(A), we say that g belongs locally to A at p provided there exists
a neighborhood U of p and an element fe A such that / | U = g | U. It is well
known that if A is regular, then a continuous function g belongs to A if and only
if g belongs locally to A at each poibt of M(A) (see, for instance, page 224 of
Naimark (1964)). Another fact which will be useful gives a comparison between
the topologies of a Banach algebra and its subalgebras. Let At and A2 be commu-
tative Banach algebras with norms | • ̂  and || • ||2 respectively such that A2

is semi-simple and A1 £ A2. Then there exists a constant M such atht | a | | 2

^ M I a I j for all aeAv (This is a consequence of Theorem 2.5.17 of Rickart(1960).)

Let A and B be commutative algebras over C with the identity of A contained
in B and Be A. A linear mapping D of B into A is called a derivation if
D(fd) = fD(g) + gD(f) for all f,geB. Notice that since B contains the identity,
the kernel of D must contain the constants. We say that D is almost injective if
ker(D) = C.

Let C[0,1] denote the algebra of all continuous, complex-valued functions
on [0,1] with the supremum norm | • | , and C^O, 1] the algebra of complex-
valued, continuously differentiable functions on [0,1] with the norm || • || t
defined by | | / | | i = | / | + | | / ' | where / ' denotes the derivative of / . Let
AC[0,1] denote the algebra of complex-valued, absolutely continuous functions
on [0,1] with the norm | • ||' denned by | | / | ' = | / | + J o | / ' | . These three
algebras are regular, semi-simple, commutative Banach algebras with identity
having [0,1] as their maximal ideal spaces and each containing the dense sub-
algebra P[0,l] of polynomials. (See pages 300-303 of Rickart (1960); also see
Theorem 2 of Loy (1970).)
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Derivations and Approximation

The derivation Dw of P[0,1] into C[0,1] has a natural extension Dw to the
algebra C ,̂: for each feCl, let Dw(f) = wf as defined earlier. Then it is easy
to see that Dw is a derivation of Cj, into C[0,1] which extends Dw. Define a norm
|| • ||w on Cl by 1 / ||w = I / I + 1 Dw{f) 1 = I / 1 + || w/' | . Since Dw is a de-
rivation, || • flw is submultiplicative. Hence, Cl is a normed algebra; furthermore,
it is easily verified that it is a Banach algebra and that Dw is a closed derivation
of Cl into C[0,1] . Let C V ) be the closure in Cl of P[0,1]; that is, C\w) con-
sists of those functions in C[0,1] which can be approximated in this norm | • ||w.
The algebras C\, and C\w) give examples of algebras of derivable elements
(seep. 310 of Loy (1970)). If we let M = max{l, | w ||}, then fl p | ^ | p ||w ^ M|| p ^
for all p e P[0,1]. The next theorem is a simple consequence of this inequality.

THEOREM 1. C^O.l] £ C^w) £ Ci £ c [0 , l ] .

Furthermore, each of these algebras is semi-simple and regular, and each
has [0,1] as its maximal ideal space.

Notice that Cl(w) = C^lw)), C^ = C]M, and 4CW = AC]w]. Hence, when
it is convenient for computing these algebras, we may assume that w § 0 . The
remainder of this paper will be devoted to comparing and describing these al-
gebras.

LEMMA 2. If C V i ) £ C\w2), then jr(Wl) s &(w2)-

PROOF. If there were a point x0 in ^(wj) but not in £^(w2), then, because
x0 is not in &(w2), every function in Ci(w2) would be continuously differentiable
in some neighborhood of x0. We show that this leads to a contradiction if
CHwjJ £ Cl(w2)- More generally, suppose that f'(x) exists for all / in C1^)
but that w(x) = 0. Since/'(x) = lim(/(xn) -f(x))l(xn - x) when limxn = x, the
uniform boundedness principle yields the existence of a constant M such that
| f'(x) | g M(|| / 1 + || wf ||) for all / in C\w). Let U be a neighborhood of x
for which sup^ | w I < 1/2M. Then for all/in C^O, 1] which are constant outside
U, we have |/ '(x)
such/with/'(x) =

g M I / I + (1/2) I / ' I; but it is easy to see that there are
| / ' fl and |[ / fl arbitrarily small, thus reaching a contradiction.

THEOREM 3. C^vv^ s C1^^ if and only if there exists a bounded function
h on [0,1] such that h \ ^(w^ = 1 and w2 = /iWi.

PROOF. Suppose that w2 = hw± where h is bounded by M ^ 1. If
p e P[0,1], then || p \\W2 g M | p ||Wl. Hence C\Wl) E Cl(w2).

Now suppose that ^(wi) £ C1(w2). By semisimplicity there exists a constant
M > 1 such that | / |W2 g M | / |Wl for all / in CJ[0,1]. We claim that w2lwl

is bounded by M outside ^(wt) . If not, there exists an interval / , disjoint from
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^(wt), such that | w2fwi | ^ N on / , where N>M. Then, for any/in C^O, 1]
which is constant outside / , we have

I / I k = «/1 + I ^(w./w,) / I ^ | | / f l + i V I w x / ' I
and thus

or

|w,/ ' | | g (M-l)/(N-Af)||/|| for all such/.

It then must be true that

fl/'fl g ( M - l ) / ( ( N - M ) m i n / | w 1 | ) j | / | = K | / | ]
which is clearly impossible. Thus w2lwy is bounded and the conclusion of the
theorem follows since ^(wj) £ ^(w2).

COROLLARY 4. C 1 ^ ) = C1(w2) if and only if there exists a function h on
[0,1] which is both bounded above and bounded away from zero such that
w2 = hwt.

COROLLARY 5. C\w) = C[0,l] if and only if w = 0; C'(vv) = C ' p U ] if
and only if w is never zero.

Before comparing the algebras Cl(W), C^, and ACW, we characterize when
the derivation Dw is almost injective.

THEOREM 6. Bw is almost injective if and only if 3?(w) is countable.

PROOF. Suppose J°(w) is uncountable. Then it contains a perfect set K with
empty interior (see p. 228 of Sierpinski (1952)). Following Cantor, we can construct
a nonconstant continuous function/which is constant on each interval of the com-
plement of K, and for this/, we have wf = 0. Suppose now that 3T(w) is countable.
If wf = 0, then / is certainly constant on each interval of the complement of
&(w). Let U be the set of all points x such that/ is constant in some neighbor-
hood of x. Then the complement of U is a closed set without isolated points,
since/is continuous, and contained in JT(vv). Hence this set is empty or uncount-
able; but since 3£(w) is countable, it is empty. Thus/is constant.

Our last task will be to describe what these algebras are in many cases.

LEMMA 7. ACW s ^(w).

PROOF. Let g e ACW and s > 0. Since g e 4C[0,1], there exists / e C^O, 1]
such that || / - g || < e/4 and ft | / ' ~9' | < e/4. Let 8 be such that if S S [0,1]
and meas(S) < d, then J s | / ' | + \g'\ < e/8. Since w and wg' are zero on &(w),
there exists an open neighborhood U of J^w) such that (i) meas U\&(w) < S,
(ii) supv\w\< 6/(4(1 + / ) ) , and (iii) supj,| wg' \ < e/8. Let Vbe an open neigh-
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borhood of ^(w) such that V <= U. Choose a continuous function F such that
F = 1 on P, F = 0 outside U, and 0 ^ F ^ 1 everywhere. Let ft = F / ' +(1 -F)# ' .
Then h is continuous, h=f'onV, h = g' outside U, and |ft|S | / ' | + \g'\
everywhere off S(yi). Let

f
Jo

Then G is in C^O, 1], and it is routine to verify that || g — G ||w < e. The proof
is complete since C[0,1] £ C^w).

THEOREM 8. C^w) = ACW if and only if I/weL1{0,i].

PROOF. Assume that l/tveL'fO.l], and let M = max{l, Jo 11/wj}. Then
I / ' I ^ M I / |w for each/e C\0,1] where | • | ' is the standard norm on AC[0,l).
Hence C'(vv) s AC[0,1], and this in turn implies that C^w) = ACW by Lemma 7.

Now assume that C^w) = ACW. Hence, C^w) c AC[0,1] and there exists
a constant M > 1 such that || / II' g M II / L for al l /e C^w). Therefore,

r|
Jo

We may assume that w ^ 0. For each positive integer n, let vn e C[0,1] be
defined by vn = min{l/w,n} and let sn = j^vn. Then sn -» + oo if and only if
1/w is not in L^O, 1] . We claim that there exist {un} c C[0,1] such that | un \ ̂  t>n,

C \ « \ ^ s n - 1 ,
Jo '

and

< 1r,
Jo

for x e [0 ,1 ] and all n. To prove this, fix n, and let k be some integer larger than

sn. Subdivide [0 ,1 ] into k successive disjoint intervals Iu--,Ik such that

vn = sjk.
is

Let wn be defined by wn(x) = (-l)J+1vn(x) if xelj, and choose a continuous
function un with the same sign as wn such that | «„ | ^ | wn | = vn, and

f | « n | = f
fory.m = l,--,fc. It is clear that {«„} satisfy the claim. Let fneCl[0,1] be de-
fined by/„(>>) = Jo

vMn(0rff. Then/n' = «n; hence, ||w/n' || = || wun \\ ^ \\ wvn | g 1.
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Furthermore, by the claim, | /„ || ^ 1 and

Jo

Substituting in (*) gives that sn ^ 2M + 1. Hence {sn} is bounded, and thus

We now give an example of a large class of functions w such that (^(w)
properly contains ACW.

EXAMPLE. If weC[0,1] and w'(x0) = 0 at some point xoeJf(w), then
C^w) properly contains ACW. This is easily seen since, by using the definition
of w'(x0) = 0, one can show that 1/w is not in Llr_0, 1].

We shall give a theorem guaranteeing that under certain very general con-
ditions on y(w), C!(vv) = Cl. First, we discuss this problem. In what now
follows, we use the result of Theorem 1 that C\w) is a regular algebra. Suppose
that fe Cl. Then fe C\w) if and only if/locally belongs to Cl(w) at each point
of [0,1]. httjV(f) be the set of all points of [0,1] at which / locally belongs to
C\vi) ,and y (/) = [0,1] \ JT(f) • Then fe C\w) if and only if S?(J) is empty.
But / is continuously differentiate in some neighborhood of each point of
[0,1] \#(w). Hence [0,1] \&(w) £ J/~{f). Furthermore, it is easily seen that
any continuous function on [0,1] locally belongs to Cl(w) at each point of the
interior of 3?(w). Thus the interior of 3£(yi) is contained in Jf ( / ) . Hence,
is a closed subset of the boundary of <3T(w).

LEMMA 9. 7/xoe[0,1] and if
point of [0,1] \{x0}, then fe C^w).

belongs locally to C\w) at each

PROOF. (We give the proof in case x0 = 0; from this one can see how to
proceed in the other cases.) Let g e C*, belong locally to Cl(w) at each y e(0,1],
and let £ > 0 . Choose /eC 'p . l ] and a,ce(0,1) such that (i)
(ii) a<c, (iii) sup,£[0,c] |(wg')(y) \ < e/12,(iv) sup,.[0,c] | |
and (v)

f-g\\ <e/12,

But g | [a, 1] is an element of the Banach algebra of restrictions of functions
in ^(w) to [a, 1] (where the norm of such a function is the infimum of the norms
of functions in Cl(w) agreeing with it on [a, 1]). Hence, since the Cx-functions
are also dense in this restriction algebra, there exists heCl[a,\~\ such that (vi)

sup \h(y)-g{y)\+ sup \(wh')(y) - (wg')(y)\ < e/12.
[ l ] { 1]

Let b, a < b < c, be chosen so that (vii) \£\h'
such that (viii) 4>{c) = h'(c), (ix) \<j>(y)

< e/12. Finally, choose § e C[0,c]
g | / ' O 0 | for Q^y<,b, and
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(x) | # 0 0 1 ^ \h'(y)\ for b ^ y ^ c . Let ij/(y) = </>(y) for 0 ^ y ^ c, and

•K}0 = J>'(jO f ° r c ^ y ^ 1 , and define

<?*O0=/(O) + fV(O*.
Jo

Then g*eC' [0 , l ] , and it is routine to check that | g—g* ||w < e. The proof
is complete.

LEMMA 10. IffeC*, then S?(f) is a perfect set.

PROOF. Suppose that x0 is an isolated point of £?(/). Then there is a neigh-
borhood of x0 in which / locally belongs to (^(w) at each point except x0. But
we may assume that / locally belongs to C1^) at each point of [0,1] \{x0}. (If
not, one can find an element in Cl agreeing with / in a neighborhood of x0

for which it is true.) Then / must belong to (^(w) at x0 by Lemma 9, and this
contradiction proves the lemma.

The following theorem is clear from Lemma 10, the discussion preceding
Lemma 9, and Theorem 120 of Sierpinski (1952).

THEOREM 11. If the boundary of 3f(w) is countable, then C'(vv) = C\,.

The result of Theorem 11 and its proof are analogous to a theorem of Ditkin
(see p. 226 of Naimark (1964)), although C\w) is not an ideal in Cl

w. In addition,
because there are nontrivial point derivations on Ĉ , at points where w is not zero,
we see that Ditkin's condition will not hold in C\, unless w is identically zero.

COROLLARY 12. If Dw is almost injective, then C\w) = Cj,.

PROOF. This follows from Theorem 11 and Theorem 6.
Theorem 11 says that C^w) = C« except possibly when &(w) is a

"complicated" set. We now give such an example where Cj # Cl(w).

EXAMPLE. Let T be the Cantor ternary set on [0,1], and let w be defined
by w(y) = (distance^,^))1/3. Then l/wel/p), 1]; hence, by Theorem 8,
^(w) = ACW. But since C\, contains the Cantor ternary function, we see that
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