Canad. Math. Bull. Vol. 18 (2), 1975

SEPARATION PRINCIPLES AND BOUNDED QUANTIFICATION

BY M DAY

A. M. DAWES¹

This note is concerned with the implication $\operatorname{Sep}_{II}(Q) \rightarrow \operatorname{Sep}_{I}(Q)$ where Q is a class of subsets of some set S.

DEFINITION.

$$Sep_{I}(Q) \equiv \forall X, Y \{X, Y \in Q \& X \cap Y = \emptyset$$

$$\rightarrow \exists Z(Z, cZ \in Q \& X \subset Z \& Y \subset cZ) \}$$

 $\begin{aligned} & \operatorname{Sep}_{II}(Q) \equiv \forall X, \, Y \{ X, \, Y \in Q \to \exists U, \, V(cU, \, cV \in Q \, \& \, U \cap V = \varnothing \\ & \& \, X - Y \subset U \, \& \, Y - X \subset V) \end{aligned}$

where cZ denotes S-Z.

It is well-known that in general the above implication is false (e.g. let Q be the closed subsets of the reals). However in many cases of interest the class Q is separable_{II} by a special mechanism dependent on the underlying structure of Q. These cases all fall into a common pattern (for a complete discussion of these examples and the analogies between them, see Addison's paper [1]). We have an index set I, a class Γ of relations on $I \times S$, and Q is the class of sets formed from Γ by universal quantification (intersection) over I. That is, for $X \subset S$,

 $X \in Q$ iff there is some R in Γ for which

$$x \in X \equiv \forall i \in I \ R(i, x).$$

Furthermore, we have a binary relation < on I, and Γ has properties:

(A) $R \in \Gamma \rightarrow \sim R \in \Gamma$

- (B) $R, T \in \Gamma \rightarrow R \lor T \in \Gamma$
- (C) $R \in \Gamma, i \in I \rightarrow \forall j < iR(j, x) \in \Gamma$

For example if Q is the class of G_{δ} sets of reals, Γ may be defined by

 $R \in \Gamma$ iff $\forall i \in N(\{x : R(i, x)\})$ is in the

Boolean algebra generated by the open sets)

where N is the natural numbers. Two sets X, Y in Q are normally separated_{II} by reducing the sets cX, cY under the assumption that < is a well-order. That is,

295

⁽¹⁾ The result in this note appeared in the author's Ph.D. thesis [2].

we have R, T in Γ for which

(1)
$$x \in X \equiv \forall i R(i, x), \quad x \in Y \equiv \forall i T(i, x)$$

and we define U, V by

$$x \in U \equiv \exists i (\sim T(i, x) \& \forall j < iR(j, x))$$
$$x \in V \equiv \exists i (\sim R(i, x) \& \forall j \le iT(j, x)).$$

It follows from (A)-(C) that cU, cV are in Q, and obviously $X - Y \subset U$, $Y - X \subset V$. The only remaining requirement for U, V to separate_{II} X, Y is disjointness: (D) For any R, T in Γ ,

$$\exists i (\sim T(i, x) \& \forall j < iR(j, x)) \to \sim \exists i (\sim R(i, x) \& \forall j _ iT(j, x)).$$

We note (i) if < is a linear order, then (D); (ii) if < is a well-order, then cQ is reducible (as is well-known).

THEOREM. If Q is formed from Γ as above, and Q is separable_{II} in the standard fashion, i.e. (A)–(D) hold, then Q is separable_I.

Proof. Let X, Y be as in (1) with $X \cap Y = \emptyset$. Let W(i, x) be the relation $\sim T(i, x) \rightarrow \exists j < i \sim R(j, x)$. Then W is in Γ , and so the set Z defined by $\forall i W(i, x)$ is in Q. It is clear that $Y \subset Z$ and furthermore using $X \cap Y = \emptyset$ we can show $X \cap Z = \emptyset$. Using (A)-(D) we separate_{II} X and Z by U, V where

$$x \in U \equiv \exists i (\sim W(i, x) \& \forall j < iR(j, x))$$
$$x \in V \equiv \exists i (\sim R(i, x) \& \forall j \le iW(j, x)).$$

Expanding, we find that

$$x \in U \equiv \exists i (\sim T(i, x) \& \forall j \leq i R(j, x))$$

i.e. $x \in U \equiv x \notin Z$. Since $X \cap Z = \emptyset$ we must have $X \subset U, Z \subset V$ and it follows that V = Z. This shows that $cZ \in Q$ and so Z is a separating set for X and Y.

References

1. J. W. Addison, Separation principles in the hierarchies of classical and effective descriptive set theory. Fundamenta Mathematicae XLVI (1958) pp. 123–135.

2. A. M. Dawes, First-order hierarchies in general models and in models of Peano arithmetic. Ph.D. thesis, University of Toronto, Toronto, 1972.

THE UNIVERSITY OF WESTERN ONTARIO

296