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Abstract. The eigenmodes of the adiabatic oscillations of stars are 
usually calculated numerically by solving the system of the four linear 
first-order differential equations using either the relaxation method or 
the shooting method. Finding some shortcomings in these conventional 
methods, we adopt another method, namely the Riccati method, in which 
it is not the system of the linear differential equations but the nonlinear 
matrix Riccati equation that is solved numerically. After describing the 
method, we discuss its advantages and give some demonstrations. 

1. Introduction 

In stellar oscillation problems, it is necessary to calculate a variety of eigenmodes 
of stellar models whose radial and angular orders generally range from very 
low to very high values. This is particularly true when we perform numerical 
inversions for the solar structure, in which a large number of modes must be 
calculated very accurately. Conventionally the relaxation method is used to 
solve this problem (cf. Christensen-Dalsgaard & Mullan 1994). In order to get 
reliable answers by this method, we need, however, to invoke various techniques 
like adjusting the mesh allocation to achieve the desired accuracy or truncating 
the mesh points where the eigenfunctions become extremely small, typically in 
the central region of the star. For these reasons the relaxation method is rather 
tedious and troublesome to implement. 

As an alternative, we adopt the Riccati method, in which systems of linear 
equations are transformed into a nonlinear matrix Riccati equation. The depen­
dent variable of this new equation does not retain the dependent variables of the 
original linear equations themselves, but keeps the relations among them. Note 
that this method has already been used in the case of nonadiabatic oscillations 
of stars (Gautschy & Glatzel 1990a,b; Glatzel & Gautschy 1992). 
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2. Riccati method applied to the linear adiabatic oscillations of stars 

The system of equations for the linear adiabatic oscillations of stars is composed 
of four linear first-order differential equations with four dependent variables as 
well as two linear boundary conditions each at the center and the surface (e.g. 
Unno et al. 1989). We show in the following that this system can be transformed 
to a nonlinear 2 x 2 matrix differential equation with the appropriate boundary 
conditions. 

Since the order of the original system of differential equations is four, there 
exist four linearly independent solutions. From these we can construct at most 
two linearly independent solutions that satisfy the two central boundary condi­
tions. Let us denote these solutions by j / 1 ' and y^2\ where y = (y\ yi y% 2/4) 
is a four-component vector. Suppose that we decompose these vectors as y(l> = 
(uW «W )T (i = 1,2), where u^ = {y\ 3/2) and »W = (3/3 3/4) are two-
component vectors each containing two components of $/W. Then we can define 
a 2 x 2 matrix R by the following relation: 

R=(uW u(2) ) ( « W t>C0 y1 . (1) 

Using the original system of the four differential equations, we can show that 
this matrix R satisfies the differential equation, 

x—=B + AR-RD- RCR, (2) 
dx 

where x is the fractional radius. A, B, C, and D are the 2 x 2 submatrices of 
the 4 x 4 coefficient matrix of the original system of differential equations, which 
result from the decomposition of yW. 

In the same manner we can derive a second matrix similar to the one given 
by Eq. (1) based on the two independent solutions satisfying the outer boundary 
conditions. This second matrix obeys the same type of matrix equation as given 
inEq. (2). 

The boundary values of the matrix R are directly derived from the bound­
ary conditions of the original system and contain at most one free parameter 
corresponding to the eigenvalue ui2. Assuming a trial value for w2, we can start 
the integration of Eq. (2) outward from the center and inward from the surface. 

The outwards and inwards integrated solutions should be matched at a 
certain point (fitting point) between the center and the surface. If we denote 
the results of the outwards and inwards integrations by R0 and Ri, respectively, 
it can be shown that the matching condition at the fitting point is given by 
det (R{ — R0) = 0, which determines the eigenvalue CJ2. Thus, this method is a 
kind of shooting method. A more detailed description of this so-called Riccati 
method can be found in, e.g., Ascher et al. (1995). 

There exists a problem if the inverse of the matrix (tr1' v@') in Eq. (1) does 
not exist. In this case, we can always redefine the vectors u and v by rearranging 
the components of y in such a manner that (v^ v®) becomes regular. This 
procedure of re-imbedding therefore guarantees that the Riccati matrices can 
always be defined. 
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After solving the matrix Riccati Eq. (2), the eigenfunctions can be computed 
by integrating 

di) 
x — = (CR + D)v and u = Rv (3) 

with the initial value given at the fitting point as the solution of the equation 
(R\ — Ro) v = 0. Note that we have to solve Eq. (3) twice, once from the fitting 
point inwards to the center and once from the fitting point outwards to the 
surface. 

3. Advantages of the Riccati method 

The Riccati method is particularly useful when solving the eigenproblem at very 
high radial orders or spherical degrees, where the amplitudes of the eigenfunc­
tions vary strongly over the star. In such a case, the relaxation method suffers 
from the drawback that it can no longer resolve the very small eigenfunction 
amplitudes deep inside the evanescent region (typically near the center of the 
star), whereas the shooting method tends to become numerically unstable due 
to the high amplitude contrast between the boundary conditions and the fitting 
point. 

Although there exist remedies for these insufficiencies of the conventional 
methods, such as, for example, the mesh truncation or the rescaling of the 
amplitude, we do not have to rely on such special techniques when using the 
Riccati method. The fact that the Riccati method can be applied without these 
special provisions irrespective of radial orders or angular degrees makes it very 
efficient, especially in the case where we have to compute a large variety of wildly 
different eigenmodes in a single stellar model, e.g. in the numerical inversion 
problem in helioseismology. 

We regard this kind of efficiency as the main advantage of the adiabatic 
Riccati method. 

4. Numerical demonstrations and discussion 

To demonstrate the numerical precision of the Riccati method, we list the eigen-
frequencies of selected modes of an n — 3 polytrope with eight significant digits 
(Table 1). Switching from double to quadruple precision shows that our poly-
tropic eigenfrequencies are numerically stable, not only in this case but also for 
n = 0, n = 1.5, and n = 4. 

It may be argued that this kind of high accuracy in the eigenfrequencies 
is meaningless because there probably exist much larger uncertainties in the 
stellar equilibrium models on which these frequencies are based. This is in fact 
true in the forward-problem, where observed eigenfrequencies are compared to 
theoretical ones based on the stellar models. 

However, if we consider the inverse problem where the observed frequencies 
are inverted for the stellar structure, matters are different. In this case the 
theoretical frequencies based on stellar models are at most used as references 
so that the inverted stellar structure is actually free from uncertainties in the 
stellar models on which the theoretical frequencies were based. Therefore, in the 
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Table 1. Dimensionless squared eigenfrequencies of a polytrope of 
index 3 calculated by the Riccati method. 

_n I = 0 l_=J. l = A I = 100 
-40 — 0.0092875187 0.086259638 6.1558068 
-20 — 0.034113781 0.29486627 8.1522986 

- 1 — 2.5159280 8.0029627 14.068287 
0 — — 10.052910 104.54425 
1 9.2547061 11.404375 20.752029 208.93919 

20 711.95699 743.47351 829.68797 2692.8889 
40 2656.3155 2717.9701 2891.9866 6695.2075 

inverse-problem approach, the theoretical frequencies have to be more accurate 
than the observed frequencies, which often have smaller errors than the stellar 
models. We believe that the Riccati method described in this paper is a suitable 
tool to accomplish this task. 

We finally note that the Riccati method is not only useful for numerical cal­
culations but also for the analytical investigation of boundary value problems, 
since it gives us a completely different point of view by treating the differential 
equation and the boundary conditions inseparably. This characteristic of the 
method could help to elucidate the mathematical structure of the linear adia-
batic oscillations of stars. The possible problems that could be attacked using 
the Riccati method include mode classification without assuming the Cowling 
approximation (cf. Lopes 2001) and the nondegeneracy of the eigenmodes with 
respect to the radial order n (cf. Unno et al. 1989). 
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