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A RELATION BETWEEN POSITIVE
DEPENDENCE OF SIGNAL AND THE
VARIABILITY OF CONDITIONAL
EXPECTATION GIVEN SIGNAL

TOSHIHIDE MIZUNO,∗ University of Hyogo

Abstract

Let S1 and S2 be two signals of a random variable X, where G1(s1 | x) and G2(s2 | x) are
their conditional distributions given X = x. If, for all s1 and s2, G1(s1 | x)−G2(s2 | x)

changes sign at most once from negative to positive as x increases, then the conditional
expectation of X given S1 is greater than the conditional expectation of X given S2 in the
convex order, provided that both conditional expectations are increasing. The stochastic
order of the sufficient condition is equivalent to the more stochastically increasing order
when S1 and S2 have the same marginal distribution and, when S1 and S2 are sums of X

and independent noises, it is equivalent to the dispersive order of the noises.
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1. Introduction

A simple Bayesian signal extraction model assumes that S = X + U , where X is a real
random variable that is unobservable, U is a random variable that represents noise, and S is
a noisy signal of X. Suppose that X and U are independent, X has a normal distribution
with mean µX and variance σ 2

X, and U has a normal distribution with variance σ 2
U . Then the

conditional expectation of X given S = s is

σ 2
X

σ 2
X + σ 2

U

(s − µX) + µX,

which is strictly increasing in s. Its variance, σ 4
X/(σ 2

X + σ 2
U), is decreasing in the variance of

the noise, σ 2
U . When the variance of the noise is smaller, S becomes more dependent on X.

Hence, the variability of the conditional expectation of X given S increases as S becomes more
dependent on X.

When S is less dependent on X, it is a bad signal, so the conditional expectation should be
more concentrated on the ex ante mean. We extend this relation and show that if a signal of a
random variable becomes more dependent on the random variable in a dependence stochastic
order, then the dispersion of the conditional expectation of the random variable given the signal
increases in a variability stochastic order. This result can be used to analyze how changes in
the reliability of a signal affect the behaviour of risk-neutral Bayesian decision makers.
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For variability stochastic order, we use the convex order, which is a weak variability stochastic
order between random variables that have the same mean. For dependence order, we use the
condition that G1(s1 | x)−G2(s2 | x) changes sign at most once from negative to positive as x

increases for all s1 and s2, where S1 and S2 are two signals of X and G1(s1 | x) and G2(s2 | x)

are the respective conditional cumulative distributions of S1 and S2 given X = x. We show
that the latter dependence order is sufficient for the conditional expectation of X given S1 to be
greater than the conditional expectation of X given S2 in the convex order, provided that both
conditional expectations are increasing.

When S1 and S2 have the same marginal distributions, the dependence order of the sufficient
condition coincides with the more stochastically increasing order, and when signals are sums
of the random variable and independent noises, the order is equivalent to the dispersive order
of the noises.

We summarize the definitions and properties of variability stochastic orders and dependence
orders in Section 2. Section 3 includes our main proposition and its proof.

2. Variability and dependence orders

This section summarizes the definitions and properties of univariate variability orders and
bivariate dependence orders that we use in Section 3. Standard references are Shaked and
Shanthikumar (1994), Müller and Stoyan (2002), and Joe (1997).

Let X1 and X2 be two real random variables. We say that X2 is larger than X1 in the
convex order (i.e. X1 ≤cx X2) if E[φ(X1)] ≤ E[φ(X2)] for all convex functions φ provided
that the expectations exist (see Shaked and Shanthikumar (1994, p. 55) and Müller and Stoyan
(2002, p. 15)). Since φ(x) = x and φ(x) = −x are both convex, X1 ≤cx X2 implies that
E[X1] = E[X2] if both X1 and X2 have expectations. When E[X1] = E[X2], X1 ≤cx X2 if
and only if E[max(X2 − y, 0)] ≥ E[max(X1 − y, 0)] for all y (see Shaked and Shanthikumar
(1994, p. 57)). We use this property in the proof of Proposition 1, below.

We say that X2 is larger than X1 in the dispersive order if

F−1
1 (β) − F−1

1 (α) ≤ F−1
2 (β) − F−1

2 (α),

for all α, β, 0 < α ≤ β ≤ 1, where F−1
1 and F−1

2 are the right-continuous inverses of F1
and F2, respectively, which are the cumulative distributions of X1 and X2, respectively. This
definition is equivalent to the condition that F1(x + c) − F2(x) changes sign from negative to
positive at most once for all c (i.e. if F1(x

′ + c) ≥ F2(x
′) then F1(x

′′ + c) ≥ F2(x
′′) for all

x′′ > x′, for all c); see Shaked and Shanthikumar (1994, p. 69) and Müller and Stoyan (2002,
p. 40).

Let (S1, X1) and (S2, X2) be two pairs of random variables that have the same marginal
distributions, and let Gi(s | x) be the conditional distribution of Si given Xi = x, i = 1, 2.
Then G2(s | x) is more stochastically increasing than G1(s | x) if G−1

2 (G1(s | x) | x) is
increasing in x (see Joe (1997, p. 40)). This is the case if and only if G1(s1 | x) − G2(s2 | x)

changes sign at most once from negative to positive as x increases, for all s1 and s2 (i.e. if
G1(s1 | x′) ≥ G2(s2 | x′) then G1(s1 | x′′) ≥ G2(s2 | x′′) for all x′′ ≥ x′, for all s1 and s2);
see Joe (1997, p. 41).

3. Our model and proposition

Let (X, S1, S2) be a random variable in R
3, where S1 and S2 can be interpreted as signals

of X. Let the marginal distribution function of X be F(x) and let Gi(s | x) be the conditional

https://doi.org/10.1239/jap/1165505217 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1165505217


Dependence between signal and variability of conditional expectation 1183

distribution of Si given X = x, for i = 1, 2. We assume that X has finite expectation. Let mi(s)

be the conditional expectation of X given S = s, i.e.

∫∫
s∈A

mi(s) dGi(s | x) dF(x) =
∫∫

s∈A

x dGi(s | x) dF(x),

for all real Borel sets A. If the conditional distributions are absolutely continuous and gi(s | x)

is the conditional density, then

mi(s) =
∫

xgi(s | x) dF(x)∫
gi(s | x) dF(x)

,

provided that the denominator is strictly positive.
If mi(s) is increasing then the distribution function of Si is

Hi(t) =
∫

Gi(m
−1
i (t) | x) dF(x), i = 1, 2,

where m−1
i is the inverse of mi . We now state our main proposition.

Proposition 1. Suppose that X has an expected value and m1(s) and m2(s) are increasing. If
G1(s1 | x) − G2(s2 | x) changes sign at most once from negative to positive as x increases,
then m1(S1) ≤cx m2(S2).

Proof. Since E[m1(S1)] = E[X] = E[m2(S2)], it is sufficient to show that

ϕ(y) := E[max(m2(S2) − y, 0)] − E[max(m1(S1) − y, 0)] ≥ 0, for all y.

Since

ϕ(y) =
∫∫

m2(s)≥y

(m2(s) − y) dG2(s | x) dF(x) −
∫∫

m1(s)≥y

(m1(s) − y) dG1(s | x) dF(x),

we have limy→∞ ϕ(y) = 0, and since E[m1(S1)] = E[m2(S2)], we have limy→−∞ ϕ(y) = 0.
Hence, if ϕ′(y) = 0 implies that ϕ(y) ≥ 0, we have ϕ(y) ≥ 0 for all y.

Since another expression for ϕ(y) is

ϕ(y) =
∫ ∞

y

(t − y) dH2(t) −
∫ ∞

y

(t − y) dH1(t)

= −
∫ ∞

y

{(1 − H2(t)) − (1 − H1(t))} dt,

we obtain

ϕ′(y) = H1(y) − H2(y)

=
∫

{G1(m
−1
1 (y) | x) − G2(m

−1
2 (y) | x)} dF(x).
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Hence, it is sufficient to show that
∫ {G1(m

−1
1 (y) | x) − G2(m

−1
2 (y) | x)} dF(x) = 0 implies

that ϕ(y) ≥ 0. But, since mi(s) is a conditional expectation, we obtain

ϕ(y) =
∫∫

m2(s)≥y

(m2(s) − y) dG2(s | x) dF(x) −
∫∫

m1(s)≥y

(m1(s) − y) dG1(s | x) dF(x)

=
∫∫

m2(s)≥y

(x − y) dG2(s | x) dF(x) −
∫∫

m1(s)≥y

(x − y) dG1(s | x) dF(x)

=
∫

(x − y){{1 − G2(m
−1
2 (y) | x)} − {1 − G1(m

−1
1 (y) | x)}} dF(x)

=
∫

(x − y){G1(m
−1
1 (y) | x) − G2(m

−1
2 (y) | x)} dF(x)

=
∫

(x − y) sgn(G1(m
−1
1 (y) | x) − G2(m

−1
2 (y) | x))

× |G1(m
−1
1 (y) | x) − G2(m

−1
2 (y) | x)| dF(x), (1)

where

sgn(x) =
{

1 if x ≥ 0,

−1 if x < 0.

Expression (1) is the covariance between sgn(G1(m
−1
1 (y) | x) − G2(m

−1
2 (y) | x)) and

x − y, evaluated with the probability measure that has a density function proportional to
|G1(m

−1
1 (y) | x) − G2(m

−1
2 (y) | x)| with respect to the measure generated by F , because∫

sgn(G1(m
−1
1 (y) | x) − G2(m

−1
2 (y) | x))|G1(m

−1
1 (y) | x) − G2(m

−1
2 (y) | x)| dF(x)

=
∫

(G1(m
−1
1 (y) | x) − G2(m

−1
2 (y) | x)) dF(x)

= 0.

Since G1(s1 | x) − G2(s2 | x) changes sign at most once from negative to positive as x

increases, sgn(G1(s1 | x) − G2(s2 | x)) changes from −1 to 1 at most once as x increases; so
it is increasing. Since x − y is also increasing, their covariance is nonnegative.

We can obtain several corollaries by combining Proposition 1 with the following remarks.

Remark 1. It is easy to show that a tight sufficient condition for mi(s) to be nondecreasing
is that the conditional density function gi(s | x) is TP2, i.e. s′ ≥ s and x′ ≥ x imply that
gi(s | x)gi(s

′ | x′) ≥ gi(s
′ | x)gi(s | x′). Here, ‘tight’ means that mi(s) is nondecreasing for

any distribution of X. When the signal is the sum of a random variable and independent noise,
gi(s | x) is TP2 if the noise has log-concave density.

Remark 2. When S1 and S2 have the same margin, G1(s1 | x) − G2(s2 | x) changes sign at
most once from negative to positive as x increases if and only if G2(s | x) is more stochastically
increasing than G1(s | x).

Remark 3. When Si = X + Ui , where X and Ui are independent, G1(s1 | x) − G2(s2 | x)

changes sign at most once from negative to positive as x increases if and only if U1 is larger
than U2 in the dispersive order. When the distribution function of Ui is �i , we have

G1(s1 | x) − G2(s2 | x) = �1(s1 − x) − �2(s2 − x),
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so that G1(s1 | x) − G2(s2 | x) changes sign at most once from negative to positive as x

increases for all s1 and s2 if and only if �2(c + x) − �1(x) changes sign at most once from
negative to positive as x increases for all c, which is equivalent to U2 ≤disp U1.

If two random variables have the same expectation, then the dispersive order is a stronger
variability order than the convex order (see Shaked and Shanthikumar (1994, p. 74)). When
U1 and U2 have normal distributions with the same mean, both orders are equivalent to the
comparison using variance. The convex order is not always weaker than the dispersive order.
For example, if U1 and U2 do not have expectations, as is the case when both have Cauchy
distributions, then they cannot be compared by convex order, but they may be ordered by
dispersive order, and then Proposition 1 holds.

When both random variables have the same expectation, the dispersive order is stronger than
the convex order, and the more stochastically increasing order is stronger than the concordant
order, where (X, S2) is more concordant than (X, S1) if

P[(X, S2) ≥ (x, s)] ≥ P[(X, S1) ≥ (x, s)], for all (x, s).

In this sense, the proof of Proposition 1 uses a fairly strong assumption. We may be able
to obtain weaker sufficient conditions, especially when both signals have the same marginal
distribution, and therefore obtain other results by simultaneously strengthening the stochastic
variability order of the conditional expectation and the dependence order between the random
variable and the signal.
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