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On Kontsevich’s Hochschild cohomology conjecture

Po Hu, Igor Kriz and Alexander A. Voronov

Abstract

Generalizing a conjecture of Deligne, Kontsevich proposed that there should be a notion
of Hochschild cohomology of algebras over the little cube operad (or its chain complex)
which in a natural way generalizes Hochschild cohomology of associative algebras. He
moreover conjectured that the Hochschild cohomology, in this new sense, of an algebra
over the little k-cube operad is an algebra over the little (k + 1)-cube operad. In this
paper, we precisely state and prove this conjecture.

1. Introduction

A conjecture of Deligne stated that the Hochschild cohomology complex of an associative
algebra has a natural structure of a 2-algebra, i.e. an algebra over the chain complex version of the
2-cube operad. This indicated a remarkable connection between the deformation theory of associa-
tive algebras, and the geometry of configuration spaces of points in the plane. There are several
known proofs of Deligne’s conjecture, see [Tam98, Tam03, Vor00, MS01, KS99]. The purpose of
the present paper is to prove a generalization conjectured by Kontsevich [Kon99], calling for an
analogue of Deligne’s conjecture for algebras over the little k-cube operad.

The first problem is to define a suitable generalization of the Hochschild cohomology complex.
Kontsevich [Kon99] proposes to do this by modifying the Quillen cohomology complex, but that
approach forces some restrictions (in fact, it only seems to work for the little k-cube operad and,
as stated, only in chain complexes over fields of characteristic 0). A key feature of our approach is
that we give a completely natural definition of the Hochschild cohomology complex, not restricted
to those situations. In fact, all of our constructions in principle work for any operad, and in a closed
symmetric monoidal category [Mac71]. Nevertheless, to avoid technical problems, we shall still stick
to specific cases. Namely, in the statement of our theorems, we shall assume that B is the category
of sets, or K-modules where K is a field (not necessarily of characteristic 0). There is at least one
substantially different case of interest, namely the case of spectra (S-modules [EKMM97]). However,
homotopical algebra in that case is more difficult, and will not be discussed here.

Now consider operads C in the category of simplicial sets. An example of special interest to us
is the operad Ck which is the set of singular simplices of the operad of little k-cubes [May72]. In the
beginning of the next section, we will introduce the notion of C-algebras R in the category sB,
and (C, R)-modules. Furthermore, for (C, R)-modules M,N , we will construct a ‘derived mapping
object’

RHom(C,R)(M,N)

in the homotopy category of sB. Then our main result can be stated as follows.
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Theorem 1. Let R be a cofibrant Ck-algebra (in sB as above). Then there is a functorial model of

RHom(Ck ,R)(R,R)

which is a Ck+1-algebra.

Tamarkin [Tam00] previously proved a purely algebraic version of Theorem 1 for the Quillen
cohomology complex [Qui68] (also known as the deformation complex), working in the category of
chain complexes rather than simplicial modules. His proof works over fields of characteristic 0, and
does not include the statement of Deligne’s original conjecture (the case of k = 1). It uses the fact
that the little cube chain operad in that case is formal and Koszul.

Theorem 1 is based on the geometry of the little k-cube operad. Its proof will be completely
‘derived’ and based on a general principle (cf. [Dun88]) that ‘commuting Ck- and C1-structures give
a Ck+1-structure’. In the case of Hochschild cohomology of R, the Ck-structure is induced by the
Ck-structure of R, the C1-structure from the Yoneda product. Our proof applies to modules over
fields of any characteristic (as well as sets), and does include the case k = 1. In the statement of
the theorem, the assumption that R be cofibrant should not be regarded as a restriction, since for
non-cofibrant algebras the correct notion of Hochschild cohomology is obtained by first taking a
cofibrant replacement: this leads to the right notion of Hochschild cohomology in the case k = 1.

The present paper is organized as follows. In the next section, we shall reduce Theorem 1 to
a much more general context, which may be of independent interest as a generalization of the
Kontsevich conjecture. We will introduce the notion of operads fibered over a given operad C in
simplicial sets. Using Boardman–Vogt’s �-product of operads [BV73], we will state in Theorem 3
that for a certain class of operads Q fibered over C, which we call special, there is a notion of
Hochschild cohomology object constructed from Q, and that moreover this object has the structure
of a C�C1-algebra. We also prove a simplicial version of the theorem of Dunn [Dun88] comparing
Ck�C� with Ck+�.

There are three facts which together will reduce the proof of Theorem 1 to Theorem 3. First,
a Ck-algebra gives rise to an example of a special operad fibered over Ck. Second, the two ensuing
notions of Hochschild cohomology coincide. Third, we have Ck�C1 � Ck+1. All of these statements
are proven in § 2 with the exception of the ‘special’ property: that is technical, and left to § 6.

In §§ 3 and 4, we will describe the technical machinery used to prove Theorem 3. This technique
can be separated into two steps. First, in § 3, we shall consider ‘lax algebras’ over an operad C and
show how they may be turned into strict algebras over a different, but weakly equivalent, operad C.
In § 4, we shall introduce an additional, ‘vertical’ category structure on a lax algebra, which will
allow us to get a C�C1-algebra. Both constructions must be discussed also in categories ‘enhanced’
over a given category B (we deliberately choose a different name than ‘enriched’ which is a different
notion, although also related to our considerations). In § 5, we will apply the techniques of §§ 3
and 4 to our main example, which will give the proof of Theorem 3.

2. Special operads fibered over C
In this section, we shall reduce Theorem 1 to another statement, which can be phrased in a
more general context. However, we begin by filling in the missing definitions in the statement
of Theorem 1.

Recall [Mac71] that a closed symmetric monoidal category is a category B with a symmetric
monoidal structure � and an ‘internal Hom’ functor Hom : BOp × B → B with a natural bijection

Mor(A�B,C) ∼= Mor(A,Hom(B,C)), (1)

satisfying certain axioms. We shall work in the category sB of simplicial objects in B.
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For a set S and an object (or morphism) X of B, let

S ⊗X =
∐
S

X.

We say that an object R of B is a C-algebra for an operad C in sets if there are structure maps

C(n)⊗ (R � · · ·�R)→ R (2)

satisfying the usual axioms (see, e.g., [KM95]). Now an important point is that here (and analogously
in other places below), the same definition may be used for an operad in simplicial sets and an object
of sB (this simply means that maps (2) exist on each simplicial level, and are natural with respect
to simplicial structure). For a C-algebra R, a (C, R)-module is an object M of B together with
structure maps

C(n)⊗ (M �R� · · ·�R)→M (3)

satisfying the usual axioms (cf. [KM95]). If CR is the monad in sB defining free (C, R)-modules,
then define for (C, R)-modules M,N ,

Hom(C,R)(M,N)

as the equalizer of the two obvious maps

Hom(M,N)
→
→ Hom(CRM,N).

(One is induced by CRM → M , the other by the natural map Hom(M,N) → Hom(CRM,CRN),
composed with the map induced by the map CRN → N .)

We will be considering Quillen (closed) model structures on certain categories, which will be
needed for homotopy theory in those categories. A (closed) model structure on a complete cocom-
plete category consists of three classes of morphisms called fibrations, cofibrations and equivalences.
(The word closed may be omitted as it carries no meaning.) All of the information on closed model
structures needed in this paper, and all the methods of constructing closed model structures we shall
need can be found in [Qui67, DS95]. One should remark that on many categories there are many
closed model structures which have the same equivalences and hence lead to the same homotopy
theory. However, when doing constructions, one typically needs to fix a closed model structure in
order to control the homotopy behavior of the objects produced by the construction.

The most basic case needed is the category of simplicial sets (see [DS95, § 11.1]). In this category,
there is a closed model structure where cofibrations are injective maps (more precisely sequences of
injective maps), and equivalences are maps of simplicial sets which produce homotopy equivalences
after simplicial realization. (It then follows that fibrations are so-called Kan fibrations, but that is
less important to us.) Next, recall [DS95, § 11.2] that a Quillen model structure in sB is obtained
as follows. Let U be the forgetful functor from sB to simplicial sets. Then a morphism f in sB is
a fibration or equivalence if and only if Uf is a fibration (equivalence). We say that fibrations and
equivalences are created by the forgetful functor U .

Remark. Actually, it turns out that in the two cases we consider in this paper that f is a cofibration
if and only if Uf is a cofibration also, i.e. cofibrations are also created by U : the case of simplicial
sets is tautological, and in the case of simplicial vector spaces that category is an abelian category,
equivalent to the category of �0-graded chain complexes by functors which preserve injections
and surjections, and hence every injection or surjection which induces an equivalence splits. In
addition, all simplicial surjections are fibrations, but cofibrations are characterized as maps having
the left lifting property with respect to fibration equivalences, so cofibrations are also simplicial
injections.
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There is also a canonical Quillen model structure on the category of C-algebras (with equiv-
alences and fibrations same as in sB, i.e. created by the forgetful functor), and for a cofibrant
C-algebra R, there is a canonical Quillen model structure on the category of (C, R)-modules (again
with equivalences and fibrations same as in sB). This is proven by a ‘small object argument’, and
the proof works for categories of algebraic structures in sB of very general kinds. (The small object
argument is described in [DS95, § 7.12]). We shall refer to representatives of an sB-equivalence class
as models.

With the Quillen model structure established, now recall that an object X is called cofibrant
(respectively, fibrant) if the map from the initial object to X (respectively, from X to the termi-
nal object) is a cofibration (respectively, fibration). A cofibrant replacement (respectively, fibrant
replacement) of an object M (respectively, N) is a map

M ′ →M

(respectively, N → N ′) which is a fibration equivalence (respectively, cofibration equivalence) and
M ′ (respectively, N ′) is cofibrant (respectively, fibrant). We define

RHom(C,R)(M,N) (4)

as Hom(C,R)(M ′, N ′) where M ′ is a cofibrant replacement of M and N ′ is a fibrant replacement
of N . In our cases, cofibrant and fibrant replacement can be made functorial, so (4) is well defined.
Nevertheless, cofibrant and fibrant replacements are not canonical, and hence it is appropriate to
address the question of comparing the different RHom when different selections are made.

To this end, one uses the following technique. Let I be the standard simplicial model of the unit
interval. Then we have objects of the form

I ⊗M
which are cylindrical objects (see [DS95, § 4.1]) in the sense that the two maps

i0, i1 : M → I ⊗M
induced by the inclusions of the endpoints to I are equivalences and i0

∐
i1 : M

∐
M → I ⊗M is

a cofibration. We define a homotopy of two maps f0, f1 : M → N to be a map I ⊗M → N which,
when composed with ij, gives fj. This is a particular example of what is known as a Quillen left
homotopy, but the present notion has more features which we will find useful. In particular, the
functor I⊗? has a right adjoint which we will denote by F (I, ?), and also the internal Hom-functor
Hom(C,R) obeys the relation

Hom(C,R)(I ⊗M,N) ∼= Hom(C,R)(M,F (I,N)) ∼= F (I,Hom(C,R)(M,N)). (5)

To be precise, the F (I, ?) on the right-hand side of (5) is in sB rather than the category of (C, R)-
modules. Note, however, that since F (I, ?) is a limit, the forgetful functor from (C, R) to sB preserves
F (I, ?), so it is given by the same construction in sB as in (C, R)-modules. All of this is formal.
In addition, it is true in our case that F (I,N) is a co-cylindrical object (satisfying properties dual
to cylindrical object; also known as path object, see [DS95, § 4.12]) if N is fibrant (since, again, this
is true in sB). It follows that for any other cofibrant replacement M ′′ → M there is a comparison
map

M ′ →M ′′ (6)

commuting with the specified maps into M and, moreover, unique up to homotopy (in our sense).
Hence, by the same principle, we also obtain a map

M ′′ →M ′,
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and the compositions are homotopic to the identity. We call this a homotopy equivalence of (C, R)-
modules. However, then applying Hom(C,R)(?, N ′), we obtain a homotopy equivalence in sB, which
is an equivalence. The treatment of fibrant replacements is adjoint.

We shall now turn to the reduction of Theorem 1 to another statement.

Definition. Let S be a simplicial set, i.e. a functor ∆Op → Sets. Then S can also be viewed as a
category S with objects

∐
n Sn, and morphisms φ : s→ t where φ ∈ Mor(∆Op), s ∈ Sn for some n,

and φ(s) = t. Let Γ be any category. Then a sΓ-object fibered over S is, by definition, a functor

F : S → Γ.

We shall write Fs = F (s) for s ∈ Sn. For a map i : S → T of simplicial sets, we have a functor i∗

from sΓ-objects over T to sΓ-objects over S, given by

i∗(F ) = F ◦ i.
We shall also make use of the left adjoint to i∗, which we shall denote by i�.

Note that sΓ-objects fibered over the constant simplicial set ∗ are precisely sΓ-objects, which
helps justify the terminology.

Specifically, we will now be interested in the case Γ = sB as above. Clearly, for every pair of
objects X,Y of sB fibered over simplicial sets S, T , there is a canonical object X � Y fibered over
S × T .

Remark. Simplicial realization | · | : ssB → sB is defined as the diagonal functor [KM95]:

|X|n = Xnn.

By definition, we have

|X � Y | = |X|� |Y |.
We will sometimes drop the symbol | · | from our notation.

Let C be an operad in simplicial sets. Then an operad Q in sB fibered over C consists of objects
Q(n) of sB fibered over C(n), with Σn-action, and unity for n = 1 and, for each of the compositions

γ : C(k)× C(n1)× · · · × C(nk)→ C(n1 + · · ·+ nk),

a composition

γ�(Q(k) �Q(n1) � · · · �Q(nk))→ Q(n1 + · · · + nk)

satisfying the obvious axioms analogous to the operad axioms [May72].
Now simplicial sets fibered over a simplicial set S are precisely simplicial sets X over S, i.e.

arrows X → S. A morphism in this category is a fibration, cofibration of equivalence if and only if
it has the corresponding property in simplicial sets. If US is the forgetful functor from objects and
morphisms of sB fibered over S to simplicial sets fibered over S, then we say that a morphism f in
sB fibered over S is a fibration or equivalence if and only if USf is a fibration or equivalence. By
[DS95], again, this defines a Quillen model structure on the category of objects of sB fibered over S.

Finally, on operads (similarly as any type of algebraic structure) in objects and morphisms of sB
fibered over C we consider the closed model structure taking as fibrations (respectively, equivalences)
sequences of maps (A(n) → C(n))n which are fibrations (equivalences) in the category of objects
and morphisms of sB fibered over C(n).

Definition. For any simplicial set S, let h = hS : S → ∗ be the collapse map, and let

Z = B(C(�), C(1)×�, C(0)×�).
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We shall call an operad Q fibered over C special if, for every �, the map

B(Q(�), Q(1)��, Q(0)��)→ h∗ZQ(0) (7)

(where B is the two-sided bar construction), induced from the composition map

hZ�B(Q(�), Q(1)��, Q(0)��)→ Q(0)

is an equivalence.

Remark. If Q is fibrant in the category of sB-operads fibered over C such that C(0) = ∗, C(1) � ∗,
and the unit inclusion

i : {∗} → C(1)
is a cofibration equivalence (which we are assuming), then the counit map

i∗Q(1) = h�i�i
∗Q(1)→ h�Q(1) (8)

is an equivalence. We note that (8) is a map of monoids in sB. We shall denote

Q1 = i∗Q(1).

Thus, for fibrant operads Q over C, we can replace Q(1) by Q1 in (7). Of course, every operad in
sB over C can be replaced by a fibrant model. We shall make use of this below.

Now for a monoid R in sB, a module over R is an object M of sB with a map

R�M →M

satisfying the usual axioms. Clearly, R-modules are precisely algebras over a monad CR of the form

CR(X) = R�X.

Thus, we have a canonical closed model structure on R-modules for any monoid R. As before, we
define

HomR(M,N)
as the equalizer of the two obvious maps

Hom(M,N)
→
→ Hom(CRM,N),

and define RHomR(M,N) = HomR(M ′, N ′) where M ′ is a cofibrant replacement of M and N ′ is a
fibrant replacement of N (with derived independence on the choice of M ′ and N ′, for sB as above).
Note that an example of a Q1-module in the preceding remark is Q(0).

Now for two operads C,D in simplicial sets, following [BV73], define an operad C�D as the
quotient of the free operad F on C∐D = (C(n)

∐D(n))n modulo identifying the F-operad opera-
tions on objects of C, D with the corresponding operations in C, D, (this includes units), and the
following key relation: for α ∈ C(m), β ∈ D(n),

α(β, . . . , β︸ ︷︷ ︸
m times

) = β(α, . . . , α︸ ︷︷ ︸
n times

)σ (9)

where σ is a certain permutation reordering terms. To describe this permutation, consider the
‘row-by-row’ lexicographical bijection

ρ1 : {1, . . . ,m} × {1, . . . , n} → {1, . . . ,mn}
(i.e. (11 �→ 1, 12 �→ 2, . . . , 1n �→ n, 21 �→ n + 1, . . . )), and the ‘column-by-column’ lexicographical
bijection

ρ2 : {1, . . . ,m} × {1, . . . , n} → {1, . . . ,mn}
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(i.e. (11 �→ 1, 21 �→ 2, . . . ,m1 �→ m, 12 �→ m+1, . . . )). The point is that on the left-hand side of (9),
the entries are ordered ‘row by row’ whereas on the right-hand side they are ordered ‘column by
column’. Since permutations on operads act on the right, we conclude that

σ = ρ2 ◦ (ρ1)−1.

Proposition 2. There is a canonical map of operads

φ : Ck�C� → Ck+�, (10)

which, in the nth term

φ : (Ck�C�)(n)→ Ck+�(n),

is a Σn-equivariant homotopy equivalence (Σn denotes the symmetric group on n elements). An
analogous result also holds if we work in the category of topological spaces (rather than simplicial
sets).

Remark. Note that the proposition implies that both in the topological and simplicial cases, the
map φ induces an equivalence of monads in the sense of [May72].

We shall prove this at the end of this section. The second statement of the proposition is a
theorem of Dunn [Dun88, Theorem 2.9]. We give a proof of the first statement, which we need
for technical reasons, at the end of this section. To this end, to fix notation, we will also need to
briefly recall the main ideas of Dunn’s argument. The simplicial extension of Dunn’s result contains
no substantially new idea, but due to subtleties must be handled with care. We will now restate
Theorem 1 as follows.

Theorem 3. Let Q be a special cofibrant fibrant operad in sB fibered over C where sB is as above
and C is an operad in simplicial sets with C(0) = ∗, C(1) � ∗, and such that the Σn-action on
(C�C1)(n) is free. Then there is a model of

RHomQ1(Q(0), Q(0)) (11)

which has a natural structure of a C�C1-algebra.

A discussion is needed to see how Theorem 3 implies Theorem 1. Recall that, in general, for a
monad C, a C-functor D (i.e. a functor with a structure map DC → D satisfying the usual axioms)
and a C-algebra X, we can define

D ⊗C X

as the coequalizer of the two maps

DCX
→
→ DX

given by the structure maps DC → D, CX → X. Now for an operad C in the category of simplicial
sets, C-algebras are algebras of the monad

CX =
∐
n�0

C(n)⊗Σn X
�n.

We shall define C-functors D� as follows:

D�X =
∐
n�0

C(n+ �)⊗Σn X
�n. (12)

The following statement is obvious upon a moment’s reflection.
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Proposition 4. Let C be an operad in simplicial sets and assume in addition C(0) = ∗ (the
one-point simplicial set). Let R be a C-algebra. Then the object

A(n) = Dn ⊗C R

has the natural structure of an operad in sB fibered over C.
Proof. Recall that because the functor ? �X in B has a right adjoint, � is distributive under

∐
.

Now we need to construct structure maps

C(n+ �)⊗Σn R
�n�

(C(n1 +m1)⊗Σn1
R�n1) � · · ·� (C(n� +m�)⊗Σn�

R�n�)

��
(C(n+ n1 + · · · + n� +m1 + · · · +m�)⊗Σn1+···+n�

R�n+n1+···+n�)

(13)

compatible with ⊗C . However, realizing that ⊗ is nothing but coproducts over various sets, dis-
tributivity also applies to this case, and we see that the map (13) is obtained just by applying operad
composition in C, and grouping the �-powers of R. Compatibility with ⊗C is obvious from
operad axioms. In addition, the fibered structure is obtained by taking, for an element

x ∈ C(n)i

(i denotes the simplicial index) A(n)x to be the coproduct of all

{y} ⊗Σ�
R��

where y ∈ C(n+ �) is such that

γ(y, 1, . . . , 1, ∗, . . . , ∗) = x (14)

where γ is operad multiplication, and in (14), there are n 1s and � ∗s.
The reduction from Theorem 1 to Theorem 3 then follows from the following two results.

Lemma 5. The category of (C, R)-modules is equivalent to the category of h�A(1)-modules. This
equivalence of categories carries R to A(0). Moreover, if R is a cofibrant C-algebra (with sB as above),
this is a Quillen equivalence, i.e. passes on to an equivalence of Quillen homotopy categories.

Proof. The equivalence of categories is established by the fact that both categories consist of algebras
over the same monad:

X �→ h�A(1) �X. (15)

Indeed, it suffices to consider the case when R is a free C-algebra, i.e. R = CX. Then

A(1) = D1 ⊗C R = D1X

=
∐
n�0

C(n + 1)⊗Σn X
�n.

Now the free (C, R)-module on M is∐
n�0

C(n+ 1)⊗Σn (X�n �M) = A(1) �M.

(By abuse of notation, we treat h� as the forgetful functor, so this is the same as (15).)
Now if R is a cofibrant C-algebra, both Quillen model structures on the respective categories are

defined in the same way.
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Remark. Note that this is analogous to a method used by Zhu [Zhu96] for vertex operator algebras
(see also [DLM98]). Concretely, vertex operator algebras are close to the notion of algebra over a
certain modification to the little 2-disk operad D (see [Hua97]). One could elaborate a lot more on
that, but in the rough analogy, the notion of module over a vertex operator algebra V corresponds
to the notion of (D, V )-module. Now Zhu [Zhu96] describes an associative algebra A with the
property that, for a rational vertex operator algebra V , irreducible V -modules M are in bijective
correspondence with irreducible A-modules. However, the algebra A is not a precise analogue of
h�A(1): in [Zhu96], the algebra A is finite-dimensional and only acts on the top weight part of M .

Theorem 6. Let C = Ck be the little cube operad, and let R be a free Ck-algebra. Let A be defined
as above in Proposition 4. Then A is special (although not fibrant).

We shall prove this theorem in § 6.

Remark. There are other examples of special operads. For example, working in spaces (one can
get to simplicial sets by applying the singular set functor), let, for e ∈ Ck(n), and a based CW
complex X,

(Φk(X))e = Map((e, ∂e), (X, ∗)).
Then there is a standard way to put a topology on

Φk(X)(n) =
⋃

e∈Ck(n)

Φk(X)e,

making Φk(X) an operad fibered over the topological version of Ck. It can be shown that Φk(X) is
special if X is (k − 1)-connected.

On the other hand, it is easy to construct operads C in simplicial sets such that, for R = CX
the associated operad A fibered over C is not special: it suffices to take a free operad on a set (in
the category of operads C with unit and C(0) = ∗).

We shall conclude this section with a proof.

Proof of Proposition 2. We shall first prove the statement for the category of topological spaces,
reviewing essentially the ideas of Dunn [Dun88]. In this case, let Ck denote the original topological
space models of the little cube operads rather than the singular set model. In this setting, the map
(10) is obtained by sending a configuration of n little cubes

(c1, . . . , cn) ∈ Ck(n)

to
(c1 × I�, . . . , cn × I�) ∈ Ck+�(n),

and a configuration of n little cubes

(d1, . . . , dn) ∈ C�(n)

to
(Ik × d1, . . . , I

k × dn).
We will not construct a homotopy inverse of (10) on the whole Ck+�(n), but instead on a certain
subspace Ck+�(n)′ which is weakly equivalent. To define this subspace, put m = k+ �. We shall call
an n-tuple of little cubes

e = (e1, . . . , en) (16)
which is an element of Cm(n) small if the following condition is satisfied: there exists a p-tuple of
little cubes

f = (f1, . . . , fp)
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forming an element of Ck(p) and a q-tuple of little cubes

g = (g1, . . . , gq)

forming an element of C�(q) such that every little cube ei lies in the interior of precisely one set

fh × gj , (17)

and every set (17) contains at most one little cube ei. The space Cm(n)′ is the subspace of Cm(n)
consisting of precisely all small n-tuples. Now we claim that the inclusion Cm(n)′ ⊂ Cm(n) is a
homotopy equivalence. Indeed, let e be as in (16). Then, for λ ∈ (0, 1], define λe as the little cube
configuration obtained by scaling each little cube ei by a factor λ in its center. Then we know
that λe ∈ Cm(n), and if e is an element of Cm(n)′, then so is λe. Furthermore, it is easy to see
that for every e there exists a λ such that λe ∈ Cm(n)′ (the statement is true trivially if every little
cube is replaced by one point, namely its center). By the Lebesgue number theorem, for every
compact subset K ⊂ Cm(n), there exists a λ ∈ (0, 1] such that λK ⊂ Cm(n)′. Furthermore, t.Id,
t ∈ [λ, 1] is a homotopy between K and λK, which moreover stays in Cm(n)′ if K ⊂ Cm(n)′. Clearly,
this construction is Σn-equivariant. By the Whitehead theorem, the inclusion Cm(n)′ ⊂ Cm(n) is
a Σn-weak equivalence and, hence, in fact a Σn-homotopy equivalence, since Cm(n) is a Σn-CW
complex.

Now we will construct a right inverse ψ to the map φ when restricted to Cm(n)′. In fact, this
construction is obvious: simply compose f with p copies of g, and each entry with either ∗ or
the appropriate elements of Ck(1), C�(1) to ensure that φψ = IdCm(n)′ . It should be noted that the
map is well defined and continuous, because its value on an element e does not depend on the choice
of f , g: any two choices have a ‘common subdivision’, which produces the same element by the
fundamental relation (9). To be more precise, if A, B are two sets of disjoint little cubes in Ik,
the common subdivision of A, B is

{a ∩ b | a ∈ A, b ∈ B}.
(While ordering of the cubes of course matters in the operad structure, we do not have to specify it
in this definition, as any two orderings are related by the symmetric group action and, hence, any
ordering will do.)

Note that we are not yet done: we must still produce a homotopy left inverse to φ. However,
now let

(Ck�C�)(n)′ = φ−1(Cm(n)′).
First of all, note that the inclusion

(Ck�C�)(n)′ ⊂ (Ck�C�)(n)

is a weak equivalence by the same argument as above: we may emulate the homotopy corresponding
to multiplying e by t by composing an element of (Ck�C�)(n) with n copies of γ(t.1k, t.1�) where γ is
operad composition, and 1k ∈ Ck(1), 1� ∈ C�(1) are the unit elements. So we are done if we can show
that ψφ = Id on (Ck�C�)(n)′. However, this is just a refinement of the above argument that ψ did
not depend on the choice of f , g: one may form common subdivisions with the Ck and C� elements
ui figuring in the definition of an element of (Ck�C�)(n)′, and use the relation (9) to show that the
common subdivision produces the same element as using either f , g, or ui. Again, everything is
Σn-equivariant. This concludes the proof of our statement for the category of topological spaces.

We shall now study what changes when we work in the category of simplicial sets, using the
singular sets of Ck(n) etc. instead of the actual spaces. In this part of the proof, we will find it
convenient to display the simplicial set functor S explicitly, to prevent confusion. Much of the
idea is the same. For example, the construction of the map φ is obtained simply by applying
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the singular set functor to the space level φ (it is useful to note that there is always a canonical
map SC�SD → S(C�D)). However, when constructing the map ψ, we must adapt the definition of
Cm(n)′. In fact, we must introduce the notion of small singular simplex in SCm(n) as follows: if we
represent the singular simplex by an n-tuple of singular simplices

(e1, . . . , en)

in the space of little cube (i.e. for t ∈ ∆N , for some N , ei(t) is a little cube), then there must exist a
uniform (i.e. independent of t) choice of f , g such that ei(t) satisfy the above condition in place of
ei for each t. This means, roughly, that the value of a small singular simplex at each t is required to
be small, but also the values of the singular simplex must vary only by a ‘small’ amount. We take
SCm(n)′ as the simplicial set of small singular simplices in SCm(n). Then the map ψ may be define
completely analogously as in the case of spaces, by passing to singular sets.

It is, further, correct to think of ψ as a right homotopy inverse to φ, as it can be shown that
SCm(n)′ ⊂ SCm(n) is an equivalence: this is a special case of a general theorem stating that for
any open covering (Ui) of a space X, the inclusion of the sub-simplicial set of the singular set of X
consisting of singular simplices whose images are in one of the Ui is an equivalence. (In our case,
X is the topological SCm(n)′.)

However, we must still find a left homotopy inverse to φ. By barycentric subdivision of a simplicial
set T we shall mean the simplicial set which is the classifying space of the category whose objects are
non-degenerate elements of T and morphisms are faces. Denote the j-fold barycentric subdivision
of a simplicial set T by T (j). It is a well-known fact that if, for the moment, |?| denotes topological
simplicial realization, then there is a canonical homeomorphism

|T | ∼= |T (j)|.
On the other hand, it is a standard fact (used, for example, in proving Eilenberg–Steenrod axioms
for singular homology) that we have a canonical simplicial map

ιj : S(j)X → SX (18)

for any space X, sending the ‘algebraic barycenter’ to the ‘topological barycenter’ (obviously, it
suffices to consider j = 1). Now the simplicial operad SCk�SC� is not (at least a priori) the singular
set of any space, although, as pointed out above, there is a canonical map

SCk�SC� → S(Ck�C�).
However, we claim that there nevertheless is a canonical simplicial map

ι̃j : (SCk�SC�)(j) → SCk�SC� (19)

constructed in the same way as the map ιj for singular sets: the point is that any word in singular
simplices making up an element of (SCk�SC�)n can be written (and any relation among such ele-
ments remains valid) on restrictions of each of those singular simplices to the same simplex of an
(iterated) barycentric subdivision of the standard simplex. We further see that by the same argu-
ment as for spaces, upon applying simplicial realization, (19) becomes homotopic to the canonical
homeomorphism between the realization of a simplicial set and its iterated barycentric subdivision.
Hence, (19) is an equivalence.

Thus, we would be done if we could show that φ ◦ ι̃j applied to the nth space of the source
operads lands in SCm(n)′ for some j. While this is obviously too much to expect, it is, however, true
that for any finite simplicial subset T of SCk�SC� there exists a j such that the simplicial subset
T (j) of

(SCk�SC�)(j)
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consisting of j-fold barycentric subdivisions of simplices of T does have the property that

φ ◦ ι̃j(T (j)) ⊂ (SCm)(n)′.

By the Whitehead theorem, this is enough.

3. Lax algebras

This story is complex enough that it seems worth telling for the category of (simplicial) sets first.
We use essentially the ideas of [May72, KM95], but as far as we know, they have not been recorded
with the specific nuances needed here.

Consider the category Σ whose objects are finite sets {1, . . . , n}, n � 0, and morphisms are
permutations. Then an operad is, in particular, a functor on Σ.

Now for any operad C, a lax C-algebra is a category Γ where each n-ary operation µ of C
corresponds to a functor

µ : Γ×n → Γ, (20)

Further, for each µ ∈ C(n), µi ∈ C(ni), i = 1, . . . , n, we are required to have natural coherence
morphisms

φ : µ(µ
1
, . . . , µ

n
)→ γ(µ, µ1, . . . , µn), φ : 1→ 1 (21)

where γ is the composition in C, and also for κ : {1, . . . , n} → {1, . . . , n} ∈ Mor(Σ),

φ : κµ ∼= µκ∗ (22)

where κ∗ : Γ×m → Γ×n is the categorically induced map by κ. In addition, the coherence isomor-
phisms (21), (22) are required to satisfy coherence diagrams expressing a cocycle condition for the
isomorphisms (21). This means that for a three-fold composition, applying the coherence isos in
either order gives the same result

µ(µ
1
(µ

11
, . . . , µ

1m1
), . . . , µ

n
(µ

n1
, . . . , µ

nmn
))

φ�����������������������
φ

�����������������������

µ(γ(µ1, µ11, . . . , µ1m1),

. . . , γ(µn, µn1, . . . , µnmn))

φ

�����������������������

γ(µ, µ1, . . . , µn)

(µ
1
, . . . , µ

nmn
)

φ
������������������������

γ(µ, γ(µ1, µ11, . . . , µ1m1), . . . , γ(µn, µn1, . . . , µnmn))

The diagrams coming from operad unit axioms are the following.

1(µ)

φ(µ)

��

φ �� γ(1, µ)

µ

=

����������������������
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µ(1, . . . , 1) φ ��

µ(φ)

��

γ(µ, 1, . . . , 1)

µ

=

��������������������������

Regarding equivariance, there are two diagrams (associativity and unit) coming from the axiom
that C : Σ → Sets is a functor. If κ : {1, . . . , n} → {1, . . . , n}, λ : {1, . . . , n} → {1, . . . , n} and
ι = Id : {1, . . . , n} → {1, . . . , n}, the diagrams are as follows.

λκµ
∼=φ ��

∼=φ

��

κµλ∗

∼=φλ∗

��
µ(λκ)∗ = �� µκ∗λ∗

ιµ
∼=φ ��

=

��

µι∗

=

����
��

��
��

��
��

��
��

��

µ

Finally, one diagram comes from the commutation relation between composition and equivariance
in an operad. Let λ : {1, . . . , n} → {1, . . . , n}, κi : {1, . . . , ki} → {1, . . . , ki}, i = 1, . . . , n. Then
there is a permutation

λ � (κ1, . . . , κn) :
{

1, . . . ,
n∑

i=1

ki

}
→

{
1, . . . ,

n∑
i=1

ki

}

given by

(λ � (κ1, . . . , κn))
(j−1∑

i=1

kλ(i) + p

)
=

λ(j)−1∑
i=1

ki + κλ(j)(p)

for j = 1, . . . , n, p = 1, . . . , kλ(j). The diagram then reads

(λ � (κ1, . . . , κm))γ(µ, µλ(1), . . . , µλ(n))
φ �� γ(µ, µλ(1), . . . , µλ(n))(λ � (κ1, . . . , κm))∗

γ(λµ, κ1µ1, . . . , κmµm)

=

��

µ(µ
λ(1)

, . . . , µ
λ(n)

)(λ � (κ1, . . . , κm))∗
φ(λ�(κ1,...,κm))∗

��

λµ(κ1µ1, . . . , κmµm)

φ

��

φ(φ,...,φ)
�� µλ∗(µ

1
κ∗1, . . . , µm

κ∗m)

=

��

In another formulation, we may consider the free operad Op(C) on C (i.e. the operad obtained
by iterating the operations in C, and performing substitutions and insertions of unit), and assign a
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canonical iso to any two elements in Op(C)(n) whose images in C(n) coincide: these isos are required
to be transitive and compatible with substitution and composition. Note that these isos, together
with their iterations, now make each Op(C)(n) into a category G(n), whose fiber over each object
of C has a final object. Then Op(C) defines a 2-monad in the sense of Blackwell et al. [BKP89].
Lax C-algebras can then be identified with 2-algebras over the 2-monad Op(C).

Now let C be an operad. We define a simplicial operad C as

C(n) = BG(n) = BObj(G(n))(Obj(G(n)),Mor(G(n)),Obj(G(n)))

= BOp(C)(n)(Op(C)(n),Mor(G(n)),Op(C)(n)).

We have a canonical projection
|C| → C

which is an equivalence since the fiber of G(n) over every element in C has a final object.

Proposition 7. Let Γ be a lax C-algebra. Then BΓ is canonically a C-algebra.

Proof. Let

A =



a11 . . . a1n
...

...
...

am1 . . . amn




be a matrix of morphisms in Γ, Taij = Sai,j+1. (S, T mean source and target.) Let φ = (φ1, . . . , φn)
be a composable n-tuple in G(m),

φi : σi−1 → σi.

Then

φA =


φ1σ0



a11
...

am1


 , φ2σ1



a12
...

am2


 , . . . , φnσn−1



a1n
...

amn





 .

In an arbitrary symmetric monoidal ground category B with monoidal structure �, we can
analogously speak of C-algebra for an operad C (see also Ginzburg and Kapranov [GK94]).

Specifically, we introduce the following terminology: a category C enhanced in B consists of
objects

Obj(C),Mor(C) ∈ Obj(B),
and morphisms S, T, Id, γ ∈ Mor(B), S, T : Mor(C) → Obj(C), Id : Obj(C) → Mor(C), γ :
Mor(C)

∏
Obj(C) Mor(C)→ Mor(C) (the source of γ denotes a pullback), with the usual axioms.

Remark. Note that this differs from a more usual notion of B-enriched category Γ in which case
we have a set of objects, and for objects X,Y ∈ Obj(Γ), an object MorΓ(X,Y ) ∈ ObjB, with
morphisms

MorΓ(X,Y ) � MorΓ(Y,Z)→ MorΓ(X,Z).
Hence, the different terminology. Enriched categories, however, will also be relevant in the next
section.

We then have an object
BC ∈ Obj(sB)

defined by

BCk = Mor(C)
∏

Obj(C)

. . .
∏

Obj(C)

Mor(C)

︸ ︷︷ ︸
k times

.
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Now let C be an operad in (simplicial) sets. There is a notion of C-algebra X enhanced over B.
The structure maps are of the form

γ : C(n)⊗ (X � · · ·�X︸ ︷︷ ︸
n times

)→ X (23)

with the usual diagrams mimicking the diagrams defining a C-algebra.
Now a lax C-algebra enhanced over B is a category C enhanced over B together with functorial

structure maps (23) for X = Obj(C),Mor(C) and coherence morphism structure of the following
form:

For x ∈ C(n), yi ∈ C(ki), i = 1, . . . , n,

φx,y1,...,yn ∈Mor(B) : Obj(C)�
∑

ki → Mor(C)

with a commutative diagram

Obj(C)�n

γx

��

Obj(C)�
∑

ki
�γyi		

γγ(x,y1,...,yn)

��
Obj(C)

φx,y1,...,yn �� Obj(C)

and corresponding coherence diagrams, mimicking the coherence diagrams in the case of sets.
One also must not forget to include coherence isomorphisms corresponding to permutations
(the Σn-action on the nth space of an operad), and coherence diagrams corresponding to axioms
involving composition and equivariance (cf. [May72]). The fact that ‘the targets of φx,y1,...,yn are
iso’ is expressed, for example, by giving an ‘inverse’ map

ψx,y1,...,yn ∈ Mor(B) : Obj(C)�
∑

ki → Mor(C).

Thus, we get the following.

Proposition 8. Let Γ be a lax C-algebra enhanced over B. Then BΓ is canonically a C-algebra
in B.

4. Lax algebras enhanced over categories

We shall now need to consider an even further generalization. Let us, again, first work in the
context of simplicial sets, where the structure is simpler than in the B-enhanced case. In this case,
the appropriate notion is a lax C-algebra Γ enhanced over categories. This means that Γ has a
structure analogous to that of lax C-algebra, where both Obj(Γ), Mor(Γ) are categories (which we
will refer to as the vertical categories), and all structure maps of lax C-algebra are functors (and
coherence diagrams commute strictly, rather than just up to natural isomorphisms). Therefore, in
addition to the vertical categories, we get two lax C-algebras

(ObjObj(Γ),ObjMor(Γ)) (24)

and

(MorObj(Γ),MorMor(Γ)). (25)

(We use the subscript notation to distinguish this structure from the vertical categories.) In partic-
ular, then, (24), (25) are categories, and we will refer to them as the horizontal categories. To spell
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out our notation completely, the vertical categories then are

Obj(Γ) = (ObjObj(Γ),MorObj(Γ)),

Mor(Γ) = (ObjMor(Γ),MorMor(Γ)).

Now suppose we are given a lax C-algebra Γ enhanced over categories. Then performing the horizon-
tal bar construction (which we will denote by Bhor), we obtain a strict simplicial C-algebra enhanced
over categories (using the vertical structure):

Bhor(Γ) =
(
Bhor(ObjΓ)
Bhor(MorΓ)

)
.

Observe that Bhor(Γ) is ‘almost’ a C�C1-algebra: the C-algebra structure was just described, and
the ‘C1-structure’ can be pulled back from the (associative) categorical composition. The difficulty
with that is that the source of the categorical composition is not the product

Bhor(MorΓ)×Bhor(MorΓ), (26)

but the fibered product
Bhor(MorΓ)×Bhor(ObjΓ) Bhor(MorΓ). (27)

There is a natural inclusion of (27) to (26). We need a technique for extending the domain of the
composition product from (27) to (26).

The technique we shall use is the two-sided bar construction of monads [May72]. The ground
category is the category G of graphs of C-algebras over B = Bhor(ObjΓ), which means C-algebras X
with two maps of C-algebras

S, T : X → B.

Then the monad in G which defines categories in C with objects B (where, as above, composition
commutes with C-algebra structure) is

DX =
∐
n�0

X ×B · · · ×B X︸ ︷︷ ︸
n times

. (28)

On the other hand, the monad which defines monoids in C-algebras (i.e. again, we require that the
C-algebra structure commutes with composition) is

EX =
∐
n�0

X × · · · ×X︸ ︷︷ ︸
n times

. (29)

Clearly, we have a map of monads D → E, and we can therefore consider the two-sided bar
construction of monads

B(E,D,X). (30)
Then (the realization of) (30) is a monoid in C-algebras, i.e. a C�C1-algebra by pull-back. Of course,
we would like to compare the homotopy type of (30) to the homotopy type of X. As usual, we have
the comparison map

X B(D,D,X)�		 �� B(E,D,X). (31)

When is the second map (31) an equivalence? An obvious condition is the following.

Condition A. The object B = Bhor(ObjΓ) is contractible.

However, Condition A per se unfortunately does not suffice, as we need some local condition.
In order to formulate the condition, we must slightly change our context: we shall actually assume
that (24), (25) are simplicial categories where the simplicial structure of (24) is constant (we will
see in the next section that such situation arises naturally). We may of course always realize to
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make objects simplicial, but for the purposes of the following condition, X, B are then bisimplicial
sets, where in one of the simplicial directions B is constant. The condition reads as follows.

Condition B. Considering the projection map S × T : X → B ×B, then for every b ∈ (B ×B)n,
and every face di (respectively, si), the face (degeneracy) (S×T )−1b→ (S×T )−1dib, (S×T )−1b→
(S × T )−1sib are equivalences.

Lemma 9. Assuming Condition B, every projection map

X ×B · · · ×B X︸ ︷︷ ︸
n times

→ B×(n+1) (32)

is a quasifibration.

Proof. It suffices to prove that S × T : X → B × B is a quasifibration. The Bousfield–Friedlander
theorem [BF78, Theorem B.4] implies that such map is a quasifibration provided that, in their
terminology:

(i) the vertical homotopy groups πv
n(X,x) satisfy the π∗-Kan condition for all n � 1;

(ii) the simplicial map p : πv
0(X)→ B ×B is a Kan fibration.

However, these assumptions follow from our Condition B.

So, if F is any fiber of (32), we have a diagram

X ×B · · · ×B X

��

F

�


������������

�
��												

X × · · · ×X
and hence the vertical map is an equivalence. It follows that the right-hand map (31) is an equiva-
lence. Note also that this implies that X is equivalent, via inclusion, to any fiber of any of the maps
S, T .

Now we need to translate Condition B to some condition on categories which could be applied
in the case when X = Bhor(MorΓ). The following condition is obviously sufficient (Homvert denotes
vertical Hom sets).

Condition C. Let M,N,M ′, N ′ ∈ ObjObj(Γ), let f : M → M ′, g : N → N ′ be horizontal mor-
phisms. Then the natural projections S : Homvert(f, g) → Homvert(M,N), T : Homvert(f, g) →
Homvert(M ′, N ′) are equivalences, and S is a fibration.

We shall call Γ distinguished if Conditions A and C are satisfied. We therefore have proven the
following.

Proposition 10. Let Γ be a distinguished lax C-algebra enhanced over categories. Then for each
M,N ∈ ObjObj(Γ), Homvert(M,N) are naturally equivalent to each other and, moreover, naturally

equivalent to a C�C1-algebra.

Remark. Recall that May’s two-sided bar construction of monads [May72] allows us, for any map
of operads in simplicial sets D1 → D2 which is an equivalence and such that for all n the action of
Σn on Di(n) is free and for any D1-algebra X, to construct the equivalent D2-algebra

B(D2,D1,X)
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where Di are the monads associated with the operads Di. Therefore, if in Proposition 10, C�C1(n)
is Σn-free, so is C�C1(n) (since it maps into C�C1(n)), and we are allowed to replace C�C1 with
C�C1.

Now to treat the case enhanced over a symmetric monoidal category B, we start by defining a
category Γ enhanced in B-categories. Such structure consists of the following data. First, we have
a ‘horizontal object category’

ObjΓ = (ObjObj(Γ),ObjMor(Γ))

which is an ordinary category (i.e. ‘enhanced’ only over Sets).
Next, we have a ‘vertical object category’ given by specifying, for each x, y ∈ ObjObj(Γ), a

Hom(x, y) ∈ Obj(B).

Further, there are specified maps

Id ∈ Mor(B) : 1� → Hom(x, x)
γ ∈ Mor(B) : Hom(x, y) � Hom(y, z)→ Hom(x, z)

with usual axioms of associativity and unity and a ‘vertical morphism category’ specifying, similarly,
for f, g ∈ ObjMor(Γ), a

Hom(f, g) ∈ Obj(B).

Further, there are specified maps

Id ∈ Mor(B) : 1� → Hom(f, f)
γ ∈ Mor(B) : Hom(f, g) � Hom(g, h)→ Hom(f, h)

with usual axioms of associativity and unity. (Note, we see that the vertical category is, in fact,
enriched over B in the usual sense – see the remark in the previous section.)

Next, we have a ‘horizontal morphism category’ MorΓ enhanced over B: For

x0
f1 �� x1

f2 �� x2

y0
g1 �� y1

g2 �� y2

in ObjΓ, morphisms T ∈ Mor(B) : Hom(f1, g1) → Hom(x1, y1), S ∈ Mor(B) : Hom(f2, g2) →
Hom(x1, y1) and

γ ∈Mor(B) : Hom(f1, g1)
∏

Hom(x1,y1)

Hom(f2, g2)→ Hom(f2f1, g2g1)

and also

Id ∈ Mor(B) : Hom(x, x)→ Hom(Idx, Idx).

Finally, there is a diagram of commutativity between vertical and horizontal composition. This
diagram expresses the equality of two maps from(

Hom(f1, g1)
∏

Hom(x1,y1)

Hom(f2, g2)
)

�
(

Hom(g1, h1)
∏

Hom(y1,z1)

Hom(g2, h2)
)

(33)

to

Hom(f2f1, h2h1). (34)

The first map maps (33) to

Hom(f2f1, g2g1) � Hom(g2g1, h2h1)
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by horizontal composition, and then maps to (34) by vertical composition. The second map maps
(33) to

(Hom(f1, g1) � Hom(g1, h1))
∏

(Hom(x1,y1)�Hom(y1,z1))

(Hom(f2, g2) � Hom(g2, h2))

using the limit properties of a pullback, followed by a map to

Hom(f1, h1)
∏

Hom(x1,z1)

Hom(f2, h2)

by vertical composition, and then to (34) by horizontal composition.

Now the axioms of a lax C-algebra Γ enhanced in B-categories consists of the following data.

(1) An ordinary lax C-algebra structure on ObjΓ.

(2) A structure of lax C-algebra enhanced in B on MorΓ, compatible with the fibering of MorΓ
over ObjΓ.

(3) Compatibility diagrams of (2) with vertical unit and composition.

Similarly as before, we can also make Γ a simplicial object in the kind of structures just described,
and for the homotopical part of our discussion we will find it advantageous to also assume that, in
addition to the horizontal category, ObjΓ is simplicially constant.

Now to obtain an analogue of Proposition 10 for lax algebras enhanced over B-categories, we
will examine the construction leading up to Proposition 10, noting along the way how they must
be changed in view of B-enrichment.

First, we examine Bhor(Γ). We see that Bhor(ObjΓ) is a C-algebra over sets, and Bhor(MorΓ) is a
C-algebra enhanced over B fibered over B = Bhor(ObjΓ). We further have associative composition,
which is a map of C-algebras,

Bhor(MorΓ) �B Bhor(MorΓ)→ Bhor(MorΓ)

(the symbol �B indicates � applied fiber-wise). Again, what we want is to be able to extend the
product in a way so that we can replace �B with �. Again, we have a category of B-enhanced
C-algebras fibered over B, and a map of monads D → E in this category,

DX =
∐
n�0

X �B · · ·�B X︸ ︷︷ ︸
n times

,

EX =
∐
n�0

X � · · ·�X︸ ︷︷ ︸
n times

,

may then form the two-sided bar construction of monads (30) and note that (30) is a B-enhanced
C�C1-algebra. Therefore, we must again find conditions when the second map (31) is an equivalence,
when X = Bhor(MorΓ). The conditions we arrive at are again Condition A and Condition C,
although while Condition A does not change, in Condition C the Homvert sets now denote objects
of sB. When these conditions are satisfied, we say, again, that Γ is distinguished. We therefore have
an enhanced analogue of Proposition 10.

Proposition 11. Let Γ be a distinguished lax C-algebra enhanced over B-categories. Then for
M,N ∈ ObjObj(Γ), Homvert(M,N) are all naturally equivalent, and naturally equivalent to a

C�C1-algebra enhanced over B.
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5. Proof of Theorem 3

In view of Proposition 11, it suffices to produce a distinguished lax C-algebra Γ enhanced in
B-categories, where for M,N ∈ ObjObj(Γ),

Homvert(M,N)

is naturally equivalent to (11).

Let Q be a cofibrant fibrant special operad in sB fibered over C, a cofibrant operad in simplicial
sets with C(0) = ∗, C(1) � ∗. Define the category Γ enhanced in sB-categories as follows: if B =
K-modules, the horizontal category ObjΓ has as objects all fibration equivalences of Q1-modules

M → Q(0) (35)

where M is cofibrant in the category of Q1-modules (note that Q(0) is fibrant). If B = Sets, drop
the requirement that (35) be a fibration. The (horizontal) morphisms in ObjΓ are commutative
diagrams

M ��

f

��

Q(0)

N

��













(36)

where the map f : M → N is a cofibration in the category of Q1-modules. The vertical Hom-sets
in Obj(Γ) (i.e. between two objects of the form (35)) are

HomQ1(M,M ′),

if B = K-modules.

When B = Sets, we could actually use the space

Map|Q1|(|M |, |M ′|). (37)

However, since we want to stay in the category of simplicial sets, we get back by applying the
singular set functor to (37).

The vertical Hom-sets in Mor(Γ) are groups of pairs (under addition) of

(u, v) ∈ HomQ1(M,N)
∏

HomQ1(M
′, N ′)

for K-modules and

(u, v) ∈Map|Q1|(|M |, |N |)
∏

Map|Q1|(|M ′|, |N ′|)
for sets which make the following diagram commutative.

M
f ��

u

��

M ′

v

��
N g

�� N ′

Note that the requirement that f be a cofibration implies (for K-modules) that the map induced
by f

Hom(M ′, N ′)→ Hom(M,N ′)
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is a fibration equivalence. Therefore,

Hom(f, g) = Hom(M,N)
∏

Hom(M,N ′)
Hom(M ′, N ′)

�
��

Hom(M,N)

is a fibration equivalence. Now we have the following diagram (where the arrows are induced maps).

Hom(f, g) ��

�

��

Hom(M ′, N ′)

�

��
Hom(M,N) � �� Hom(M,N ′)

The bottom row is an equivalence because N → N ′ is an equivalence, and by our hypothesis, N,N ′

are fibrant. Similarly for sets. This already proves condition Condition C.
Now Q being special implies that Γ is a lax C-algebra enhanced over sB-categories. In effect,

the lax C-algebra structure is defined as follows: for x ∈ C(n), and Q1-modules M1, . . . ,Mn, the
x-product of M1, . . . ,Mn is

Q(n)x �Q�n
1

(M1 � · · ·�Mn). (38)

If Q is special, cofibrant and fibrant, the canonical map from (38) to Q(0) is an equivalence (see (7)).
On morphisms, (38) preserves Q1-cofibrations if Q is cofibrant. For B = K-modules, (38) preserves
fibrations, because fibrations of simplicial K-modules are precisely onto maps. Note that this oper-
ation is functorial, and on morphisms carries cofibrations to cofibrations, with sB as above.

Thus, the proof of the statement that Γ is distinguished (and, hence, of Theorem 3) is reduced
to the following.

Proposition 12. We have

BObjΓ � ∗. (39)

Proof. To show (39), one chooses a particular object

M0 → Q(0).

For any object of ObjΓ
M → Q(0),

one can obviously choose an arrow NM → Q(0) in ObjΓ together with the following diagram in
ObjΓ.

M ��

�


��

��
��

��
NM

�
��

M0
		

�����
��

��
��

Q(0)

Similarly, for a (horizontal) morphism in ObjΓ

M
f ��

� ����
��

��
��

M ′

�����
��

��
��

Q(0)
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there is an Nf → Q(0) in ObjΓ such that, over Q(0), we have the following commutative diagram.

M ��

����
��

��
��

��

NM

��

M0
		

����
��

��
��

=

��

Nf

M ′ ��

����������
NM ′

��

M0
		

����������

To formalize the procedure this will give, recall the barycentric subdivision C ′ of a category C
(in our case, C = ObjΓ): the category C ′ is a partially ordered set whose objects are n-tuples of
composable arrows in C

x0
f1 �� x1 �� · · · fn �� xn, (40)

and a k-tuple of composable morphisms

· g1 �� · �� · · · gk �� ·
is said to be less than or equal to (40) if the gi are obtained by consecutive compositions (or
omissions from the beginning or end) of the fi. Then there is a canonical functor

Ψ : C ′ → C

which on objects is given by
(fn, . . . , f1) �→ Tfn

(and by the obvious formula on morphisms). The functor Ψ induces an equivalence upon applying
B (the bar construction).

Now repeating the procedure we described constructs a functor

N : (ObjΓ)′ → ObjΓ,

together with natural transformations

Ψ→ N (41)
G→ N (42)

where G is the constant functor with value in M0 → Q(0), thus showing that BObjΓ is contractible,
as claimed.

6. The special property for k-cubes

The purpose of this section is to prove Theorem 6. In this section Ck will stand for the topolog-
ical version of the little k-cube operad, and we will also consider the topological version of the
construction (12), C = Ck. Recall that D0(X) = CkX. It clearly suffices to prove that the map

φ : B(DnX, (D1X)×n, (D0X)×n)→ CkX ×B(Ck(n), Ck(1)×n, Ck(0)×n) (43)

is an equivalence, where the first coordinate of the map φ is given by composition, and the second
map by the forgetful map

D�(X)→ Ck(�).
In effect, to get from spaces to simplicial sets, we may apply the singular set functor, and to get to
K-modules, we may further apply the free K-module functor.

Now since the left-hand side of (43) obviously preserves weak equivalences, we can further
replace the terms of (43) as follows. First, let C′k(�) ⊂ Ck(�) consist of all �-tuples of little cubes
α1, . . . , α� : Ik → Ik such that Im(αi) ⊂ Int(Ik) and the images Im(αi) are disjoint. Now let M(�)
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be the space of pairs (α,m) where α = (α1, . . . , α�) ∈ Ck(�) and m is a set of unordered X-decorated
points in Ik −⋃�

i=1 Im(αi) (with the usual configuration space topology). Let M ′(�) be defined in
the same way as M(�), with Ck(�) replaced by C′k(�):

M ′(�) = M(�)×Ck(�) C′k(�).
Then we have equivalences

Dn(X)→M(n)←M ′(n)
(the first map replaces a little cube decorated by an element of X by its center). Thus, we can
further restate the claim that (43) is an equivalence as follows.

Proposition 13. The map

κ : B(M ′(�),M(1)×�,M(0)×�)→M(0)×B(C′k(�), Ck(1)×�, Ck(0)×�) (44)

where the first map is by composition and the second map is by projection M → C, is an equivalence.

Remark. Recall that C′k(�) � Ck(�), Ck(1) � ∗, so the right-hand side of (44) is weakly equivalent to
M(0)× Ck(�).
Proof of Proposition 13. First define N(�) as the pull-back

N(�) = (C′k(�)× Ck(1)�)×C′
k(�) M

′(�) (45)

where the map
C′k(�)× Ck(1)� → C′k(�)

is by composition. Then N(�) enjoys a right M(1)�-action where M(1)� acts by composition on
M ′(�) and by the forgetful map together with internal composition on C′k(�)× Ck(1)�:

(C′k(�)× Ck(1)�)×M(1)� �� C′k(�)× Ck(1)� × Ck(1)�

Id×γ�

��
C′k(�)× Ck(1)�.

Furthermore, the projection
N(�)→M ′(�)

is obviously an equivalence (by contracting Ck(1)�), so we may replace M ′(�) by N(�) in the state-
ment of the proposition.

Now filter N(�) by closed subspaces Nq(�) consisting of all triples

(α, β, x), (46)

α = (α1, . . . , α�) ∈ C′k(�), β = (β1, . . . , β�) ∈ C′k(1)�, x ∈ M ′(�) where the number of X-decorated
points of x contained in

Ik −
�⋃

i=1

Im(αi)

is less than or equal to q.

Lemma 14. Suppose A ⊂ X is an M -equivariant weak neighborhood deformation retract (NDR)
pair with Urysohn function and homotopy (u, h) where M is a monoid acting on the right, such
that the following conditions are satisfied.

(1) X −A = V ×M for some V ⊂ X −A closed.

(2) ht(A ∪ V ) ⊂ A ∪ V for all t. (Note that A ∪ V = A ∪ Cl(V ); Cl denotes closure.)
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Then there is a natural M -equivariant homotopy equivalence

Cofiber(A ⊂ X)→ ((A ∪ V )/A) ∧M+.

Proof. Because of the weak NDR property, we have

Cofiber(A ⊂ X) � X/A,
so it suffices to prove

X/A � (A ∪ V )/A ∧M+. (47)
To get a map ←, note that the inclusion

A ∪ V → X

extends to an equivariant map
(A ∪ V )×M → X → X/A

which clearly annihilates A×M , thus inducing

ψ : (A ∪ V )×M/A×M → X/A.

To get a map → in (47), use the map φ induced by h1: to see that it is continuous, let

U = {x ∈ X | u(x) < 1}.
Then φ is constant (hence, continuous) on U , but also continuous on X −A. Now {U,X −A} is an
open cover of X.

Now since ψ is obviously a bijection, we can define both homotopies φψ � Id, ψφ � Id as ht.
Then ψφ is a quotient of ht (with topology), and thus is continuous. To see that

ht : φψ � Id (48)

is continuous, note that we have a continuous map

ht : A ∪ V → A ∪ V,
and hence

unit ◦ ht : A ∪ V → (A ∪ V ) ∧M+. (49)
Then (48) is the free extension of (49).

Now we shall prove the following.

Lemma 15. The pair Nq−1(�) ⊂ Nq(�), with M = M(1)�, satisfy the hypotheses of Lemma 14.

Thus, so do B(Nq−1(�),M(1)�,M(1)�) ⊂ B(Nq(�),M(1)�,M(1)�).
Now consider the following diagram.

B(Nq−1(�),M(1)�,M(0)�) ��

��

B(Nq(�),M(1)�,M(0)�)

��
Nq−1(�)×M(1)� M(0)� �� Nq(�)×M(1)� M(0)�

(50)

By Lemma 14, the cofibers of both rows are naturally equivalent to

((A ∪ V )/A) ∧M(0)�+.

Thus, if the left column of (50) is an equivalence, so is the right column. Thus, inductively,

B(N(�),M(1)�,M(0)�) � N(�)×M(1)� M(0)� ∼= C′k(�)×M(0).

The equivalences are easily checked to be compatible with the required maps.
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Proof of Lemma 15. To simplify notation, we shall identify little cubes with their images. For a
little cube α in Ik, and for t ∈ R>0, let tα be the cube with the same center which is t times larger.

Now first note that there is a continuous function

λ : C′k(�)→ R>1

such that for α = (α1, . . . , α�) ∈ C′k(�), λ = λ(α),

(λα1, . . . , λα�) ∈ C′k(�). (51)

To this end, for every β ∈ C′k(�), there is an open neighborhood U of β and a constant µ > 1 which
works as λ in (51) for α ∈ U . Thus, since C′k(�) is paracompact, the function λ can constructed by
partition of unity.

Now also note that for two pairs of cubes α ⊃ β, γ ⊃ δ (not equal), there is a canonical
homeomorphism

Φαβ
γδ : Cl(β − α)→ Cl(δ − γ).

First, there are canonical linear homeomorphisms identifying the boundaries ∂α, ∂β, ∂γ, ∂δ.
Connecting two corresponding points on ∂α, ∂β creates a line segment; map this segment
linearly onto the line segment obtained by identifying the corresponding points on ∂γ, ∂δ. Also
let (Φαβ

γδ )∗ be the map induced by Φαβ
γδ on configuration spaces.

Then define the homotopy h in Nq(�) (see (45)) by

ht(α, 1,m) = ((αi)�i=1, ((1 − t/3))�i=1, ((Φ
λ(α)αi,αi

λ(α)αi,(1−t/3)αi
)�i=1)∗m),

and extend M(1)�-equivariantly. We can let
V

consist of all triples (α, 1,m) (see (45)) where m contains exactly q X-decorated points. Define

u(α, β,m) = sup


t

∣∣∣∣∣∣∣∣

there are exactly q X-decorated points in
((Φλ(α)αi ,αi

λ(α)αi ,(1−t/3)αi
)�i=1)∗m which are in Ik −

�⋃
i=1

αi.



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Mac71 S. MacLane, Categories for the working mathematician, Graduate Texts in Mathematics, vol. 5

(Springer, Berlin, 1971).
May72 J. P. May, Geometry of iterated loop spaces, Lecture Notes in Mathematics, vol. 271 (Springer,

Berlin, 1972).
MS01 J. McClure and J. Smith, A solution of Deligne’s Hochschild cohomology conjecture, in Recent

progress in homotopy theory, Baltimore, MD, 2000, Contemp. Math., vol. 293 (American Math-
ematical Society, Providence, RI, 2002), 153–193.

Qui68 D. Quillen, On the (co-)homology of commutative rings, in Applications of categorical algebra,
Proc. Sympos. Pure Math. 17 (1968), 65–87.

Qui67 D. Quillen, Homotopical algebra, Lecture Notes in Mathematics, vol. 43 (Springer, Berlin, 1967).
Tam98 D. E. Tamarkin, Another proof of M. Kontsevich’s formality theorem, Preprint (1998),

math.QA/9803025.
Tam00 D. E. Tamarkin, The deformation complex of a d-algebra is a (d + 1)-algebra, Preprint (2000),

math.QA/0010072.
Tam03 D. E. Tamarkin, Formality of chain operad of little discs, Lett. Math. Phys. 66 (2003), 65–72.
Vor00 A. A. Voronov, Homotopy Gerstenhaber algebras, in Conference Moshe Flato 1999, vol. II, Math.

Phys. Stud. 22 (2000), 307–331.
Zhu96 Y. Zhu, Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9

(1996), 237–302.

Po Hu
Department of Mathematics, Wayne State University, 656 W. Kirby,
Rm. 1150 Faculty/Administration Building, Detroit, MI 48202, USA

Igor Kriz ikriz@umich.edu
Department of Mathematics, University of Michigan, 2074 E Hall, 525 E University Avenue,
Ann Arbor, MI 48109-1109, USA

Alexander A. Voronov
Department of Mathematics, University of Minnesota, 127 Vincent, 206 Church Street SE,
Minneapolis, MN 55455-0487, USA

168

https://doi.org/10.1112/S0010437X05001521 Published online by Cambridge University Press

mailto:ikriz@umich.edu
https://doi.org/10.1112/S0010437X05001521

	1 Introduction
	2 Special operads fibered over $\mathcal{C}$
	3 Lax algebras
	4 Lax algebras enhanced over categories
	5 Proof of Theorem 3
	6 The special property for $k$-cubes
	References

