
J. Functional Programming 3 (4): 553-561, October 1993 © 1993 Cambridge University Press 553

FUNCTIONAL PEARLS

Efficient sets—a balancing act

STEPHEN ADAMS
Electronics and Computer Science Department, University of Southampton, UK

Capsule Review

In late 1991 I organized an international programming competition for the Standard ML
community. Each entrant implemented the 'set of integers' abstract data type, matching a
signature that I provided. Prizes (donated by MIT Press) were awarded in two categories:
fastest program (on a particular benchmark), and most elegant yet still efficient program.

More than a dozen entries were received; the top four entries in the speed category are
listed here:

1 Jon Freeman, U. of Pennsylvania
2 Stephen Adams, U. of Southampton
3 Thomas Yan & Sendhil Mullainathan, Cornell U.
4 Eugene Stark, State U. of New York at Stonybrook

The winner in the elegance category was Stephen Adams. His program was almost as fast
as Freeman's for very large sets, and was faster for smaller sets.

In this 'functional pearl', Adams describes a generalization of bis competition entry.

Andrew W. Appel

1 Introduction

We present an implementation of sets using balanced binary trees, written in Stan-
dard ML (SML). Binary trees are an important data structure, especially in the
functional world where mutable data structures are not available. Unfortunately, to
guarantee the nice properties of trees, like logarithmic lookup, it is necessary to keep
the trees balanced. Balancing algorithms are usually complicated. We demonstrate
that this need not be the case—the trick is to abstract away from the rebalancing
scheme to achieve a simple and efficient implementation.

2 Specification

A general purpose set package should implement a wide range of set operations
efficiently, including at least those listed in the signature SET in Fig. 1. This says that
we have a type Set which represents sets of the type Element. The operations are

N =
128
132
189
226

= 105

sec
N =
10.1
8.9
16.7
18.5

104

sec

https://doi.org/10.1017/S0956796800000885 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000885

554 Stephen Adams

signature SET =

sig

type Element

type Set

val empty : Set

val singleton : Element -> Set

val size : Set -> int

val member : Element * Set -> bool

val add : Element * Set -> Set

val delete : Element * Set -> Set

val members : Set -> Element list

val union : Set * Set -> Set

val difference : Set * Set -> Set

val intersection : Set * Set -> Set

end

Fig. 1. Common set operations.

meant to be obvious: empty is the empty set 0, singleton creates a set containing
exactly one element, size returns the cardinality of the set, member returns true iff
the set contains the element, add and delete include or exclude an element, and
union, difference and intersect ion perform the set operations AuB, A — B and
An B. The operation members returns a list of the elements in a set. The elements
in the list are in sorted order.

3 Tree representation

We assume that the type Element has a total ordering I t :

signature ORDER =
sig

type Element
val I t : Element*Element -> bool

end

The total ordering allows us to use an internal binary search tree, where the elements
are stored in the nodes of the tree, and the elements in the left subtree of any node
are all less than the element in the node and the elements in the right subtree are
all greater.

To implement size efficiently we can store the count of the elements in a tree in
the root node. Counting the nodes is just too expensive.

Nievergelt and Reingold (1973) show how the size of a tree can be used to keep
it balanced. They call their trees bounded balance binary trees, and we use a similar
idea. The efficiency these trees is within a few percent of AVL trees. Using the
size is a bonus because it means that no extra information needs to be stored, for
example the height as in height balanced trees, a height difference like in AVL trees
or a 'colour' as in red-black trees. The saving in space is about 16% in New Jersey
SML (NJ/SML). Small savings like this are often worth while because they have
beneficial knock-on effects for object initialization and garbage-collection.

https://doi.org/10.1017/S0956796800000885 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000885

Functional Pearls 555

functor SizedTree(structure Order : ORDER) =

struct

open Order

datatype Tree = E I T of Element * int * Tree * Tree

val empty = E

fun size E = 0
I size (T(v,n,l,r)) = n

fun singleton item = T(item,l,E,E)

fun member (x, E) = false
I member (x, T(v,n,left,right)) =

if lt(x,v) then member(x,left)
else if lt(v,x) then member(x,right)

else true

fun N(v,l,r) = T(v, 1 + size 1 + size r, 1, r)

end

Fig. 2. The basic tree data structure.

The tree data structure is an algebraic data type, either being empty or a node
with constructor T containing the element, the size of the tree and the left and right
subtrees:

datatype Tree = E I T of Element * int • Tree * Tree

Now we can start on the implementation. The functor SizedTree (Fig. 2) collects
together the operations that we can perform on trees with a stored size. The functor,
like others in this paper, is parameterized with the properties of the type Element
so that it can be reused for different element types.
The tree size obeys an invariant:

size (T(v,n,l,r)) = n = 1 + size 1 + size r

It is a good idea to use a smart constructor to build nodes to ensure that this
invariant is never broken:

fun N(v,l,r) = T(v, 1 + size 1 + size r, 1, r)

N is really just an ordinary function but it will always be used in lieu of the 'native'
constructor T. We still need to use T for pattern matching, however, so we cannot
make this totally transparent.

4 Keeping trees balanced

The standard algorithm for inserting an element in an unbalanced binary tree
searches for the element to find the position to insert the element. If it is not found
then a singleton tree is created containing the new element at the empty tree where

https://doi.org/10.1017/S0956796800000885 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000885

556

a

\
b

Stephen Adams

Single Rotation

Double Rotation

a

b

c

Fig. 3. Single and Double Left-Rotations. a<b<c are tree elements; X, Y and Z are trees.
Note that rotations preserve the order of the elements.

the element ought to be. If it is found then the original tree is returned because it
already contains the element.

fun add (x,E) = singleton x
I add (x.tree as T(v,_,l,r)) =

if lt(x,v) then N(v,add(x,l),r)

else if lt(v,x) then N(v,l,add(x,r))

else tree

The problem with this algorithm is that when it is used to insert an ordered sequence
such as 1,2,3,- •. it produces a poorly balanced tree. The tree can be balanced if we
replace the calls to N by a 'smarter' constructor that builds a balanced tree instead of
the 'natural' tree. Such a function can only be devised if there is enough information
to know if the tree would be unbalanced. Height-balanced and bounded balance
trees have this information immediately available, but AVL trees (Adel'son-Vel'skii
& Landis, 1962) do not.

The purpose of balancing is to keep the paths from the root to each element
roughly the same length and short. The maximum path length in a balanced tree is
logarithmic in the size of the tree. This is achieved by building rotations of the tree
that place subtrees so that larger subtrees which tend to have longer path lengths
are higher up than the shorter subtrees. There are two types of rotation which are
illustrated in Fig. 3. These rotations and their mirror images can be expressed quite
elegantly in SML as the operations single_L, double_L, etc., which construct the
appropriate rotation of the tree that would be constructed by N.

An intuitive description of the rebalancing criteria is given here. More rigour is
taken in the appendix of Adams (1992). A rotation must be used when the tree

https://doi.org/10.1017/S0956796800000885 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000885

Functional Pearls 557

functor BalancedTree(structure Order : ORDER) =

struct

structure TheTree = SizedTree(structure Order = Order)

open TheTree

fun single.L (a,x,T(b,_,y,z)) = N(b,N(a,x,y),z)

fun double.L (a,x,T(c,_,T(b,_,yl,y2) ,z)) = N(b,N(a,x,yl),N(c,y2,z))

fun single_R (b,T(a,_,x,y),z) = N(a,x,N(b,y,z))

fun double_R (c,T(a,_,x>T(b,_,yl,y2)) ,z) = N(b,N(a,x,yl) ,N(c,y2,z))

val ratio = 5

fun B (p as (v,l,r)) =

let val In = size 1

val rn = size r

in

if ln+rn < 2 then N p

else if rn>ratio*ln then (*right is too big*)

let val T(_,_,rl,rr) = r

val rln = size rl

val rrn = size rr

in

if rln < rrn then single.L p else double_L p

end

else if ln>ratio*rn then (*left is too big*)

let val T(_,_,ll,lr) = 1

val lln = size 11

val lrn = size lr

in

if lrn < lln then single_R p else double_R p

end

else N p

end

fun add (x,E) = singleton x

I add (x.tree as T(v,_,l,r)) =

if lt(x,v) then B(v,add(x,l),r)
else if lt(v,x) then B(v,l,add(x,r))

else tree

exception Homework
fun delete (x.tree) = raise Homework

end

Fig. 4. Balanced tree operations.

that would otherwise be built is unbalanced. In particular, we should not build a
tree that has more than w times the number of elements in one subtree than the
other. This is equivalent to saying that one subtree must never be more than a fixed
amount higher than its sibling. Figure 3 shows the effect of rotating a tree that has
a right subtree that is too big. We call w the weight ratio.

https://doi.org/10.1017/S0956796800000885 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000885

558 Stephen Adams

The important difference between the two rotations is that the single rotation lifts
Z relative to X and Y, whereas the double rotation lifts Y. So a good choice of
rotation is to pick a single rotation when Z is heavier and a double if Y is heavier.
This algorithm is implemented by the smarter constructor, called B, for balance,
which is the centrepiece of the functor BalancedTree in Fig. 4.

The first test ensures that the two subtrees are big enough to achieve anything by
rebalancing. Note also that the triple of parameters is named as p by using a layered
pattern. The parameters are passed on to the other functions simply as p, without
the possibility of getting them mixed up.* The algorithm preserves the invariant
ln/w < rn < In * w provided that the two subtrees are not too far out of balance.
Plug B into the code for add in place of N and voild: a rebalancing implementation
of add. The identical trick works with the textbook version of delete, which we
have left as a homework exercise.

5 SetxSet—>Set operations

Crane (1972) shows how to concatenate two balanced trees and, the inverse opera-
tion, how extract an substring from a tree. For concatenation all of the values in the
first tree must be less than any of the values in the second tree. Concatenation is a
special case of union. Crane's algorithm finds the position in the larger tree where
the smaller tree can be inserted without unbalancing the tree at that position. The
higher parts of the new tree may then need rebalancing just as in add. We implement
this idea using the balancing factor w to find the position and B to rebalance the
higher parts of the tree. The function concat3, in Fig. 5, is the natural successor
to B and N in a hierarchy of smart constructors. This function forms a balanced
tree from two non-overlapping trees of arbitrary size and a third item, an element
which lies between the values in the first tree and those in the second tree. It runs
in time proportional to the difference in the height of the trees, so it is very fast
for similar sized trees, and degenerates to an insert when joining a tiny tree to a
big tree. This property of concat3 is used in an O(logn) algorithm to split a tree
selecting all the elements less than a certain value, corresponding to the set operation
spl i t_ l t (S ,a) = {x € S\x < a}. The splitting algorithm cuts out all the unwanted
subtrees and recombines the fragments left over. It takes time only O(logn) because
concat3 combines small fragments of tree to make bigger trees before combining
the result with the bigger fragments, so its arguments are usually similar in size. The
symmetrical operation spli t_gt is similar.

We can use these tools to devise a divide-and-conquer algorithm that will compute
the union A U B of two arbitrary sets. We use the following properties of union

• AL)Q = 0L)A = A.

{ {x € A\x <a} U {x € B\x < a)
U {a}
U {x € A\x > a} U {x e B\x > a}

* This might also be faster on a naive system or an interpreter.

https://doi.org/10.1017/S0956796800000885 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000885

Functional Pearls 559

functor BalancedTreeCollection(structure Order : ORDER) =
struct

structure TheTree = BalancedTree(structure Order = Order)
open TheTree

fun concat3 (v,E,r) = add(v.r)
I concat3 (v,l,E) = add(v.l)
I concat3 (v, 1 as T(vl,nl,ll,rl), r as T(v2,n2,12,r2)) =

if ratio*nl < n2 then B(v2,concat3(v,l,12),r2)
else if ratio*n2 < nl then B(vl,ll,concat3(v,rl,r))

else N(v,l,r)

fun split.lt (E,x) = E
I split_lt (T(v,_,l,r),x) =

if lt(x,v) then split.lt(l,x)
else if lt(v,x) then concat3(v,l,split.lt(r,x))

else 1

fun split.gt (E,x) = E
I split.gt (T(v,_,l,r),x) =

if lt(v,x) then split_gt(r,x)
else if lt(x,v) then concat3(v,split_gt(l,x),r)

else r

fun union (E,tree2) = tree2
I union (treel,E) = treel
I union (treel, T(a,_,l,r)) =

let val 1' = split.lt(treel,a)
val r' = split_gt(treel,a)

in

concat3(a, union(l',l), union(r',r))
end

fun difference (treel,tree2) = raise Homework
fun intersection (treel,tree2) = raise Homework

end

Fig. 5. Splitting and combining trees

This gives us the algorithm for union (Fig. 5). union runs in worst case time O(n+m)
where n and m are the sizes of the inputs. The logarithmic cost of s p l i t . l t (and
possibly concat3) is out-powered by the exponential growth of recursive calls to
union on smaller trees. On fortuitous inputs, like sets taken from disjoint ranges, or
huge with tiny sets, the performance of union is considerably better and degrades
gracefully to the worst case.

Asymmetric set difference and intersection may also be implemented using the
divide-and-conquer framework. We have left them as an exercise here, but full
implementations and analysis are given in Adams (1992).

https://doi.org/10.1017/S0956796800000885 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000885

560 Stephen Adams

6 Iterating over sets

It is a common practice to provide a function to gather the elements of a collection
together in a computation. The standard environment provides fold which does
this for lists. We copy this idea in tree_f old which combines the elements from
right-to-left and in-order:

fun tree_fold f base E = base

I tree.fold f base (T(v,n,l,r)) =

tree.fold f (f (v,tree_fold f base r)) 1

This traversal is in-order because the call to f is between the two recursive calls to
tree_f old, and it is right-to-left because r is innermost, being processed before v
and then 1. Other traversals can be built by changing the order of the calls to f and
tree_f old. An in-order traversal is perhaps the most useful because it can make a
list of all the elements in the tree, in ascending order:

fun members tree = tree_fold (op ::) [] tree

An important feature of tree_f old is that it has a type similar to that of the standard
list fold. This hides the tree implementation and allows list-based programs to be
easily modified to use to trees. Since these functions are independent of the shape
of the tree they belong in the SizedTree functor.

7 Finishing touches

At this point we have balanced trees that do all that is needed to implement the
specified set operations. All that remains is to use the implemention to provide the
abstract data type specified by the signature SET:

functor OrderedSet(structure Order : ORDER) : SET =

struct

structure Implementation =

BalancedTreeCollection(structure Order = Order)

open Implementation

type Set = Tree

end

This last step is important: it separates the concrete implementation from the
abstract type, leaving the implementation free for use in another application. At this
point we may correct any small discrepancies. Only a new name was needed in this
case.

8 Conclusion

Balanced binary trees are a difficult subject, often left as an exercise in data structure
courses. Standard texts usually present complex and ugly algorithms. It has been the
aim of this paper to show that balanced trees can be implemented more easily by
abstracting away from the rebalancing using 'smart constructors'. It is even possible
to upgrade programs that use unbalanced trees, provided sufficient information is
available at each node to determine the size or height of the tree.

https://doi.org/10.1017/S0956796800000885 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000885

Functional Pearls 561

Standard texts, like Knuth or Aho et al, describe only concrete manipulations
on balanced trees. The small but important step of combining these operations to
implement abstract set operations is usually omitted. We have rectified this common
omission.

The size information is useful for determining the cardinality of a set and for
rebalancing the tree. The size has applications outside sets, for example, in deter-
mining the rank of an element in an ordered collection or the nth element in an
ordered collection (Knuth). Size-balanced binary trees are a particularly versatile
data structure.

Acknowledgements

The original form of this program was written in response to Andrew Appel's
challenge to the SML community to write a fast integer set package. Without
the bait of a competition I doubt that I would have taken the time to finish the
program. I would like to thank Andy Gravell, Richard Bird and Robert Harper for
their comments on the presentation of this material.

References

Adams, S. R. (1992) An efficient functional implementatation of sets. Report CSTR 92-10,
Electronics and Computer Science, University of Southampton.

Adel'son-Vel'skii, G. M. and Landis, Y. M. (1962) An algorithm for the organization of
information, Dokl. Akad. Nauk SSSR 146, 263-266 (in Russian). English translation in
Soviet Math. Dokl. 3, 1962, 1259-1262.

Aho, A. V, Hopcroft, J. E. and Ullman, J. D. (1974) The Design and Analysis of Computer
Algorithms. Addison-Wesley. -

Crane, C. A. (1972) Linear lista and priotity queues as balanced binary trees. PhD Thesis,
Stanford University.

Knuth, D. E. (1973) The Art of Computer Programming, Volume 3: Sorting and Searching.
Addison-Wesley.

Nievergelt, J. and Reingold, E. M. (1973) Binary search trees of bounded balance, SI AM J.
Computing 2(1).

https://doi.org/10.1017/S0956796800000885 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000885

