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Functions of asymptotic expansions

E.R. Love

Led on by a paper of Brown and Dancer with the same title, this

paper gives two further theorems on asymptotic expansions of

composite functions.

In their article with the above title, Brown and Dancer extended a

theorem of Entringer on asymptotic behaviour, their aim being to obtain an

asymptotic expansion of a composite function from that of the inner

constituent function. Since many important asymptotic expansions involve

complex variables almost inherently, it seems appropriate to extend their

theorem, which involves a real variable and indeed a monotonic function, to

functions of a complex variable. Theorem 1 is the outcome of this.

Nevertheless, there are asymptotic expansions of composite functions

which can be obtained in a manner which is closer to the formal

substitution procedure often used with convergent power series. One

instance is the complex version of the example used by Brown and Dancer in

[J] to illustrate their theorem: the derivation of the asymptotic

expansion for T{z+l) from that for logr(z+l) . Theorem 2 justifies

generally the formal substitution of an asymptotic expansion in a

convergent power series.

THEOREM 1. Let S = {z : a s args 5 0} , where -v 2 a < 0 s TT , be

a sector in the complex plane; and let m and R be positive constants.

If

|f(2) | •* °° and g(z) = f{z) + 0[z~m) as z •* °° in S ,

and if
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Hz) is regular, and h'(z)/Wz) bounded, in \z\ > R ;

then

in s •

Proof. (i) If \w\ 5 { ,

JL Z «!
1! + 2! + 3! £ \w\

*%'*<*••

and so

(l) |expu-l| 5 2|w| whenever 2|u| 5 1 .

(ii) h(z) has no zero in \z\ > R . For otherwise Taylor's Theorem

shows that h'(z)/h(z) has a simple pole there, contrary to its assumed

boundedness, or else that h(z) is identically zero, contrary tc the

implied hypothesis that h'{z)/h{z) is a function.

(iii) Let Z be a straight line segment, from z. to z- , wholly

in \s\ > R . Then

where log/, x and log/ > are branches of the many-valued logarithm. So/, x / >

expUlh(JT

- 1

d8) _
d8\ -

by (l)> provided that the last expression is at most 1 . Consequently, if

A is the assumed bound for \h'(s)/h(s)\ in \s\ > R ,

(2) - 1 5 24 2n-«J if 24 3.-3, < 1 .
"2 "1 2 I1

(iv) There are p > 0 and B > 0 such that, for all z in S
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with

2/? and \g(z)-f(z)\ < B\z\~m ;

and there is > p such that Bp"7" < R . So, for all z in S with

s »p.
2 '

and \g{z)-f{z)\ <R .

The triangle with vertices 0, /(s) and g{z) in the Argand diagram

therefore has the side joining f(z) and g{z) entirely outside the

circle with centre 0 and radius R .

Taking z± = f(z) and z^ = g(z) in (2),

(3)
h\f{z)]

for all a in S such that

_ .. S 2A\g(z)-f(z)\

2 p , provided that the right side is at

most 1 . Hence, for all z in S such that \z\ > max Pj, (a4B)1'm

n\j\zi)

as required.

REMARKS. The hypothesis that h'(z)/h(z) is bounded in an annular

neighbourhood of °° might be thought to be more drastically restrictive

here than in the real variable context of [/]• However the product and

quotient of two functions h satisfying this hypothesis also satisfy it.

Since all linear functions satisfy it, this shows that all polynomials and

rational functions satisfy it. So also do expa and exp(l/z) ; but

exp(a J does not, nor indeed does any integral function of finite order

exceeding 1 .

Other functions which do not satisfy this hypothesis are coss and

sins , although only because of their behaviour on the real axis. They

show that the sum and difference of functions which satisfy the hypothesis

may not satisfy it, since exp{±iz) do satisfy it. However the sum and

difference of two asymptotic expansions present no problems, so that this

feature of the hypothesis may be no handicap.
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The functions f and g do not need to be regular (holomorphic) for

Theorem 1. So it is conceivable that their values for large z may be

confined to a sector T , even if 5 is nearly the whole plane. In such a

case the boundedness requirement on h'(z)/h(z) is only needed in T , as

we see from (2) and (3). Consequently wider classes of functions h may

then be admissible.

In Theorem 2 we suppose that the function g takes small values when

s is large, in contrast to Theorem 1. Consequently the hypothesis on h

refers to a neighbourhood of 0 , instead of one of °° .

THEOREM 2. Let S = {z : a 5 arg3 5 g} as before. If

and

00

h(w) = £ b w in a neighbourhood of w = 0 ,
n=l "

then

oo £

^(#(3)) ^ I - ^ as z -»• <» in 5 ,
n=l 3

where c is the coefficient of z in the formal expansion of

' a \n

n=l vr=l 3

Proof. If n is any positive integer, multiplication of asymptotic

expansions gives

00 a

g(z) ^ \ —*— as z -*• °° in S ,
r=l z

where a. = a for each positive integer r , a = 0 for r < n ,

and

Next, addition of asymptotic expansions gives
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m-X
— as z •*•<*> in S ,

where m is any fixed positive integer. In particular,

m-X

as z •*• °° in S . Observe that the step following (U), curtailing the

inner summation, could not have been taken earlier because it is false for

r - m . The definition of c now gives

m-X m-X tm—X \ c -, \
I ba(z)n = I I b a U- + 0\M

n-X r=X ̂ n=X ' z Kz '

m-X

n=l

m-X a

r=l s
in 5 .

Since

= — + 0 —• as 3 -»• °° in 5 ,
2 ^

there are positive constants A and £ such that

s in S with \z\ > B .-TJ

Let R be the radius of a W-neighbourhood in which ?z(u) is expressed as

the sum of its Taylor series as in the hypothesis. For z in 5 with

|2| > max(a4/i?, B) , •

(6) I
=m n=mn=m

2'> .i'WJ
2A I |iJ(-M".

the last series being convergent.

From (5) and (6) we now have

m-1
= I

n=X n=m r=X z
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as s ••• °° in S . This holds for each fixed m , as required.

EXAMPLE. From the expansion [Z, p. 53]

(7) logr(a+l) - (a-4)loga + z - { log(27r)

s -»• °° in | a rgs | < TT - e , we obtain [compare 2, p . 573

(8) r ( ^ ) ^ 1 + f
( ) /2TT3 «=1 3

as 3 ••• °° in |arg3| 5 IT - e , by applying Theorem 2 with g(z) equal to

the left side of (7) and h(w) = expw - 1 .
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