SOME REMARKS ON THE EXCEPTIONAL SIMPLE LIE GROUP 54

YOZÔ MATSUSHIMA

1. Let \mathcal{C} be the Cayley algebra of dimension 8 over the field R of real numbers and let \mathcal{F} be the set of all 3×3 Hermitian matrices

(1)
$$X = \begin{pmatrix} \xi_1 & x_3 & \overline{x}_2 \\ \overline{x}_3 & \xi_2 & x_1 \\ x_2 & \overline{x}_1 & \xi_3 \end{pmatrix}$$

with coefficients in \mathfrak{C} . We define the multiplication in \mathfrak{Z} by

$$X \circ Y = \frac{1}{2}(XY + YX).$$

Then \Im becomes a distributive algebra over R. A non-singular linear transformation α of \Im is said to be an automorphism of \Im , if

$$\alpha(X \circ Y) = \alpha X \circ \alpha Y$$

for all X, $Y \in \mathfrak{F}$. The group \mathfrak{N} of all the automorphisms of \mathfrak{F} is compact and the connected component containing the identity of \mathfrak{N} is the exceptional simple compact group \mathfrak{F}_{4}^{10} Denote by E_{i} the matrix (1) with $\xi_{i} = 1$, all remaining terms zero. Let \mathfrak{N} be the subgroup of \mathfrak{F}_{4} consisting of all automorphisms α such that $\alpha E_{i} = E_{i}$ for i = 1, 2, 3 and let \mathfrak{F}_{i} (i = 1, 2, 3) be the subgroups of \mathfrak{F}_{4} consisting of all $\alpha \in \mathfrak{F}_{4}$ such that $\alpha E_{i} = E_{i}$. Then the left coset spaces $\mathfrak{F}_{4}/\mathfrak{F}_{i}$ are homomorphic to the set Π of all irreducible idempotents of \mathfrak{F} and Π is geometrically the "plan projectif des octaves."²⁾

In this note we prove the following two theorems.

THEOREM 1. \Re is connected and isomorphic to the universal covering group $\widetilde{SO(8)}$ of the proper orthogonal group SO(8) of 8 dimensional euclidean space.

THEOREM 2. \mathfrak{H}_i are connected and isomorphic to the universal covering group $\widetilde{SO(9)}$ of the proper orthogonal group SO(9) of 9 dimensional euclidean space.

Theorem 2 gives a proof of a result anounced by A. Borel.³⁾

Received October 22, 1951.

- ²⁾ See, Freudenthal [3] §7 and Hirsch [4].
- ³⁾ See, Borel [1], Théorème 1.

¹⁾ See, Chevalley-Schafer [2] and Freudenthal [3].

2. Proof of Theorem 1. Let F_i^a be the matrix (1) with $x_i = a$ and all numbers except x_i zero. Then $E_i \circ F_i^a = 0$, $E_j \circ F_i^a = \frac{1}{2} F_i^a$ if $i \neq j$. Let $\alpha \in \mathbb{N}$. Then $E_i \circ \alpha F_i^a = 0$ and $E_j \circ \alpha F_i^a = \frac{1}{2} \alpha F_i^a$. It follows that

$$\alpha F_i^a = F_i^{a_i a}, \quad (i = 1, 2, 3),$$

where α_i are the linear transformations of \mathfrak{C} .

Now $F_i^a \circ F_i^b = (a, b)(E_j + E_k)^{(4)}$ where $\{i, j, k\}$ is a permutation of $\{1, 2, 3\}$, implies

$$(\alpha_i a, \alpha_i b) = (a, b)$$

Denote by O(8) the group of all linear transformations of (0, b) which leave the positive definite bilinear form (a, b) invariant. (i.e. orthogonal transformations of (0, b) Further $F_1^{2x} \circ F_2^{2y} = F_3^{2(\overline{xy})}$, $F_2^{2x} \circ F_3^{2y} = F_1^{2(\overline{xy})}$ and $F_2^{2x} \circ F_1^{2y} = F_2^{2(\overline{xy})}$ imply

(2)
$$\begin{cases} \alpha_1(x)\alpha_2(y) = \kappa\alpha_3(xy), \\ \alpha_2(x)\alpha_3(y) = \kappa\alpha_1(xy), \\ \alpha_3(x)\alpha_1(y) = \kappa\alpha_2(xy), \end{cases}$$

where $\kappa \alpha_i(x) = \alpha_i(\bar{x})$. Let γ be the orthogonal transformation of \emptyset defined by $\gamma x = \bar{x}$ for all $x \in \emptyset$. Then $\kappa \alpha_i = \gamma \alpha_i \gamma$ and $\alpha_i \to \kappa \alpha_i$ is an automorphism of O(8). We shall show that $\alpha_i \in SO(8)$ i.e. det. $\alpha_i = 1$.

LEMMA 1. (*Principle of Triality.*)⁵⁾ For every $\theta \in SO(8)$, there exist θ_1 and θ_2 in SO(8) such that

$$\theta(x)\theta_1(y) = \theta_2(xy)$$

for all x, $y \in \mathbb{G}$. If there exist the other θ'_1 and θ'_2 in SO(8) such that $\theta(x)\theta'_1(y) = \theta'_2(xy)$, then $\theta'_1 = \pm \theta_1$ and $\theta'_2 = \pm \theta_2$. The same holds also, if we start from θ_1 or θ_2 instead of θ .

LEMMA 2. Let θ_i be in O(8) and let

(3)
$$\theta_1(x)\theta_2(y) = \kappa \theta_3(xy)$$

for all $x, y \in \mathbb{G}$. Then $\theta_2(x)\theta_3(y) = \kappa \theta_1(xy)$ and $\theta_3(x)\theta_1(y) = \kappa \theta_2(xy)$ for all $x, y \in \mathbb{G}$.

Proof. Multiplying the both sides of (3) by $\overline{\theta_1(x)}/|x|^2$,⁶⁾ we have

$$\theta_2(y) = \frac{1}{|x|^2} \overline{\theta_1(x)} \ \overline{\theta_3(\overline{xy})}.$$

⁴⁾ The positive definite bilinear form (a, b) on \mathfrak{G} is defined by (a, b) = Re(ab), where $Rex = \frac{1}{2}(x + \overline{x})$.

⁵⁾ See, Freudenthal [3] p. 16.

⁶⁾ $|\mathbf{x}|^2 = (\mathbf{x}, \mathbf{x}) = \mathbf{x} \cdot \mathbf{\bar{x}} = \mathbf{\bar{x}} \cdot \mathbf{x}$. In the following proof, we use the formulae $|\mathbf{\bar{x}}| = |\mathbf{x}|, |\mathbf{xy}|$ = $|\mathbf{x}| |\mathbf{y}|, \ \mathbf{\bar{x}}(\mathbf{xa}) = (\mathbf{\bar{x}x}) \mathbf{a}$ and $(\mathbf{a}\mathbf{\bar{x}})\mathbf{x} = \mathbf{a}(\mathbf{\bar{x}x})$. See, Freudenthal [3] p. 7.

Analogously we have

$$\frac{1}{|y|^2}\theta_2(y)\cdot\theta_3(\overline{y}\,\overline{x})=\overline{\theta_1(x)}\,.$$

Let $\overline{x} = yz$. Then

$$\frac{1}{|y|^2}\theta_2(y)\theta_3(\overline{y}(yz))=\overline{\theta_1(\overline{yz})}.$$

Hence $\theta_2(y)\theta_3(z) = \kappa \theta_3(yz)$.

LEMMA 3. Let $\theta_i \in O(8)$ (i = 1, 2, 3) and $\theta_1(x)\theta_2(y) = \kappa \theta_3(xy)$ for all $x, y \in \mathbb{C}$. Then $\theta_i \in SO(8)$ (i = 1, 2, 3).

Proof. Suppose that θ_1 is not in SO(8). For every $\eta_1 \in SO(8)$, there exist η_2 and η_3 in SO(8) such that

$$\eta_1\theta_1(x)\eta_2\theta_2(y) = \kappa\eta_3 \cdot \kappa\theta_3(xy) = \kappa(\eta_3 \cdot \theta_3)(xy) .$$

Let us choose η_1 such that $\eta_1\theta_1 = \gamma$, where $\gamma x = \overline{x}$ for all $x \in \mathbb{G}$. Then

(4)
$$\overline{x}\zeta_2(y) = \kappa\zeta_3(xy)$$

for all $x, y \in \mathbb{G}$, where $\zeta_2 = \eta_2 \theta_2$ and $\zeta_3 = \eta_3 \theta$. Putting x = 1 in (4), we have $\zeta_2(y) = \kappa \zeta_3(y)$. Hence $\zeta_2 = \kappa \zeta_3$ and

(5)
$$\overline{x}\zeta_2(y) = \zeta_2(xy).$$

Putting y = 1 in (5), we have

(6)
$$\zeta_2(x) = \bar{x}\zeta_2(1).$$

Let $\zeta_2(1) = a$. Then $a \neq 0$. It follows from (5) and (6) that $\overline{x}(\overline{y}a) = (\overline{y}\overline{x})a$. Hence x(ya) = (yx)a for all $x, y \in \mathbb{C}$. It follows that a = 0 and this is a contradiction. Hence $\theta_1 \in SO(8)$. We may prove analogously that θ_2 and θ_3 are also in SO(8).

Thus α_i (i = 1, 2, 3) in (2) are in SO(8). Thus if $\alpha \in \mathbb{R}$, then

(7)
$$\alpha X = \begin{pmatrix} \xi_1 & \alpha_3(x_3) & \kappa \alpha_2(\overline{x}_2) \\ \kappa \alpha_3(\overline{x}_3) & \xi_2 & \alpha_1(x_1) \\ \alpha_2(x_2) & \kappa \alpha_1(\overline{x}_1) & \xi_3 \end{pmatrix},$$

where X is the matrix (1) and α_i 's satisfy the relations (2).

Conversely let α_1 be an arbitrary element in SO(8) and let α_2 and α_3 be the elements in SO(8) such that $\alpha_1(x)\alpha_2(y) = \kappa\alpha_3(xy)$ for all $x, y \in \mathbb{C}$ (cf. Lemma 1). Then the relations (2) hold for these α_i 's by Lemma 2. Now we define the linear transformation $\alpha(\alpha_1, \alpha_2, \alpha_3)$ of \mathfrak{F} by (7). For every $\alpha_1 \in SO(8)$ we have thus two linear transformations $\alpha(\alpha_1, \alpha_2, \alpha_3)$ and $\alpha(\alpha_1, -\alpha_2, -\alpha_3)$ (cf. Lemma 1). We may easily verify that these linear transformations are the automorphisms of \mathfrak{F} and form a closed subgroup \mathfrak{M} of the group \mathfrak{A} of all automorphisms of \mathfrak{F} . It is clear that every automorphism in \mathfrak{M} leaves fixed the

elements E_i (i = 1, 2, 3) and $\mathfrak{M} \supseteq \mathfrak{N}$. The mapping $f_1(\alpha(\alpha_1, \alpha_2, \alpha_3)) = \alpha_1$ is a homomorphism of \mathfrak{M} onto SO(8) and the kernel of f_1 consists of $\alpha(1, 1, 1)$ and $\alpha(1, -1, -1)$.⁷⁾ Let \mathfrak{M}_0 be the connected component of \mathfrak{M} containing the identity. Then $f_1(\mathfrak{M}_0) = SO(8)$. Since $f_1^{-1}(\alpha_1) = \{\alpha(\alpha_1, \alpha_2, \alpha_3), \alpha(\alpha_1, -\alpha_2, -\alpha_3)\}$, at least one of $\alpha(\alpha_1, \alpha_2, \alpha_3)$ and $\alpha(\alpha_1, -\alpha_2, -\alpha_3)$ is in \mathfrak{M}_0 . We shall prove that $\mathfrak{M} = \mathfrak{M}_0$. Suppose, on the contrary, that $\mathfrak{M} \neq \mathfrak{M}_0$. Since $\mathfrak{M}_0 \cup \alpha(1, -1, -1)\mathfrak{M}_0$ $=\mathfrak{M}, \mathfrak{M}$ consists of two connected components and $\alpha(1, -1, -1) \in \mathfrak{M}_0$. Now $\alpha(-1, 1, -1)$ and $\alpha(-1, -1, 1)$ belong to the distinct components of \mathfrak{M} , for otherwise $\alpha(-1, 1, -1) \ \alpha(-1, -1, 1) = \alpha(1, -1, -1)$ is in \mathfrak{M}_0 . Let, for example, $\alpha(-1, -1, 1) \in \mathfrak{M}_0$. Let $f_3(\alpha(\alpha_1, \alpha_2, \alpha_3)) = \alpha_3$. Then f_3 is also a homomorphism of \mathfrak{M} onto SO(8) and the kernel of $f_{\mathfrak{d}}$ is $\{\alpha(1, 1, 1), \alpha(-1, -1, 1)\}$. Hence $f_{\mathfrak{d}}$ is a local isomorphism and $f_3(\mathfrak{M}_0) = SO(8)$. By assumption the kernel of f_3 is contained in \mathfrak{M}_0 and hence $\mathfrak{M} = \mathfrak{M}_0$ and this is a contradiction. Hence $\mathfrak{M} = \mathfrak{M}_0$. Moreover we have shown that \mathfrak{M} is a two sheeted covering group of SO(8). Hence \mathfrak{M} is isomorphic to the universal covering group $\widetilde{SO(8)}$ of SO(8). Since \mathfrak{M} is connected, \mathfrak{M} is contained in \mathfrak{F}_4 and each automorphism in \mathfrak{M} leaves fixed the elements E_i . Hence $\mathfrak{M} \subseteq \mathfrak{N}$. Since we have already shown that $\mathfrak{M} \supseteq \mathfrak{N}$, we have $\mathfrak{M} = \mathfrak{N}$ and this completes the proof of Theorem 1.

3. Proof of Theorem 2. Since the subgroups \mathfrak{H}_i of \mathfrak{F}_1 are conjugate to each other in \mathfrak{F}_4 ,⁸⁾ it is sufficient to consider the group \mathfrak{H}_1 . The derivation δ of \mathfrak{F} such that $\delta E_1 = 0$ may be represented uniquely as the sum of two derivations

$$\delta = A + \varDelta,$$

where $\Delta E_i = 0$ (i = 1, 2, 3) and

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & a \\ 0 & -\bar{a} & 0 \end{pmatrix}, \quad a \in \mathfrak{C},$$

and $\tilde{A}X = [A, X] = AX - XA$. Conversely for each such a metrix A, \tilde{A} is a derivation of \Im such that $\tilde{A}E_1 = 0$.⁹⁾ Since \mathcal{A} 's form the Lie algebra of the group \Re , dim. $\{\mathcal{A}\} = 28$ and dim. $\{\tilde{A}\} = 8$, where $\{\mathcal{A}\}$ and $\{\tilde{A}\}$ denote the linear spaces consisting of \mathcal{A} 's and \tilde{A} 's respectively. Hence the derivations which maps E_1 to 0 form a Lie algebra of dimensions 36 and this is the Lie algebra of \mathfrak{H}_1 . Hence dim. $\mathfrak{H} = 36$. Now let Π be the set of all irreducible idempotents of \mathfrak{I} .¹⁰⁾ Further let Π_1 be the set of all $X \in \Pi$ such that $E_1 \circ X = 0$. Then an element $X \in \mathfrak{J}$ is in Π_1 if and only if

⁷⁾ We denote by 1 and -1 the identity transformation and the transformation defined by $x \rightarrow -x$ respectively.

⁸⁾ For, there exist α and β in \mathfrak{F}_4 such that $\alpha E_1 = E_2$ and $\beta E_1 = E_3$. See, Freudenthal [3] p. 27. This fact is also proved in the following.

⁹⁾ Chevalley-Schafer [2] and Freudenthal [3] p. 20.

¹⁰) See, Freudenthal [3] §5. Note that the set II is invariant under the transformations of F4.

(8)
$$X = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \xi_2 & x_1 \\ 0 & \overline{x}_1 & \xi_3 \end{pmatrix},$$

where $\xi_2 = \xi_2^2 + x_1 \overline{x}_1$, $\xi_2 + \xi_3 = 1$. Then $\xi_3 = \xi_3^2 + x_1 \overline{x}_1$. Hence $1 = \xi_2^2 + \xi_3^2 + 2x_1 \overline{x}_1$. Now the bilinear form $(X, Y) = Sp(X \circ Y)$ defined on \Im is positive definite and invariant under the transformations of $\Im_4^{(1)}$. Let $||X||^2 = (X, X)$. If X is the matrix (1), then $||X||^2 = \sum_{i=1}^3 \xi_i + 2\sum_{i=1}^3 x_i \overline{x}_i$. Hence if $X \in \Pi_1$, then ||X|| = 1. Now let \Im_1 be the 10 dimensional linear subspace of \Im consisting of the matrices of the form (8), and let S^9 be the set of all $X \in \Im_1$ such that ||X|| = 1. Then S^9 is a 9 dimensional sphere and Π_1 is the intersection of S^9 and the hyper-plane $\xi_2 + \xi_3 = 1$ in \Im_1 . Hence Π_1 is an 8 dimensional sphere. Let $\alpha \in \Im_1$. Then $\alpha(E_1 \circ X) = E_1 \circ \alpha X$, hence $\alpha(\Pi_1) = \Pi_1$. Thus α induces a transformation R_α of the sphere Π_1 . Since α is an orthogonal transformation of \Im , R_α is an isometric transformation of Π_1 and hence a (proper or improper) rotation. Thus $g(\alpha) = R_\alpha$ is a homomorphism of \Im_1 into the group O(9). Let \mathfrak{D} be the kernel of g. Since each $\alpha \in \mathfrak{D}$ leaves fixed the elements E_i , α is contained in \mathfrak{N} . Hence $\alpha(\in \mathfrak{D})$ is of the form $\alpha = \alpha(\alpha_1, \alpha_2, \alpha_3)$ (see §1) and

$$\alpha X = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \xi_2 & \alpha_1(x_1) \\ 0 & \kappa \alpha_1(\overline{x}_1) & \xi_3 \end{pmatrix} = X$$

for all $X \in H_1$. We see easily that $\alpha_1 = 1$ and hence \mathfrak{D} is the finite group of order 2. Since dim. $\mathfrak{H}_1 = \dim O(9) = 36$, the component \mathfrak{H}_1^0 containing the identity is mapped by g onto SO(9). As $\mathfrak{H}_1^0 \supset \mathfrak{N} \supset \mathfrak{D}$ by Theorem 1, \mathfrak{H}_1^0 is a two-sheeted covering group of SO(9) and hence it is isomorphic to the universal covering group $\widetilde{SO(9)}$ of SO(9). We may easily see that if $\mathfrak{H}_1 \neq \mathfrak{H}_1^0$, then the order of the group $\mathfrak{H}_1/\mathfrak{H}_1^0$ is 2 and $g(\mathfrak{H}_1) = O(9)$. Now the mapping

$$X \to RX = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \xi_3 & x_1 \\ 0 & \overline{x}_1 & \xi_2 \end{pmatrix}$$

is an improper rotation of the sphere Π_1 . If $\mathfrak{H}_1 \neq \mathfrak{H}_1^0$, there exists $\alpha \in \mathfrak{H}_1$ such that $\alpha X = RX$ for all $X \in \Pi_1$. Then $\alpha E_1 = E_1$, $\alpha E_2 = E_3$ and $\alpha E_3 = E_2$. Since $g(\mathfrak{H}_1^0) = SO(9)$ and SO(9) is transitive on Π_1 , there exists $\beta \in \mathfrak{H}_1^0$ such that $\beta E_2 = E_3$. $\beta(E_1 \circ E_3) = E_1 \circ \beta E_3 = 0$, $\beta(E_2 \circ E_3) = E_3 \circ \beta E_3 = 0$ and $\beta E_3 \circ \beta E_3 = \beta E_3$ imply $\beta E_3 = E_2$. Then $\beta^{-1}\alpha E_i = E_i$ for i = 1, 2, 3. Thus $\beta^{-1}\alpha \in \mathfrak{N} \cap \mathfrak{H}_1^0$. Hence $\alpha \in \mathfrak{H}_1^0$ and this is a contradiction. Thus \mathfrak{H}_1 is connected and isomorphic to SO(9).

Remark. The group of all automorphisms of \Im is not connected. For example,

¹¹) See, Freudenthal [3], §4.

YOZÔ MATSUSHIMA

$$X = \begin{pmatrix} \xi_1 & x_3 & \overline{x}_2 \\ \overline{x}_3 & \xi_2 & x_1 \\ x_2 & \overline{x}_1 & \xi_3 \end{pmatrix} \rightarrow \alpha X = \begin{pmatrix} \xi_1 & x_2 & \overline{x}_3 \\ \overline{x}_2 & \xi_3 & x_1 \\ x_3 & \overline{x}_1 & \xi_2 \end{pmatrix}$$

is an automorphism of \mathfrak{J} . α is an improper orthogonal transformation of \mathfrak{J} and hence $\alpha \in \mathfrak{F}_4$.

References

- Borel, A., Le plan projectif des octaves et les sphères comme espaces homogènes, C. R. Paris, (1950).
- [2] Chevalley, C. and Schafer, R. D., The exceptional simple Lie algebras F₄ and E₆, Proc. Nat. Acad. Sci. U.S.A. 36 (1950).
- [3] Freudenthal, H., Oktaven, Ausnahmegruppen und Oktavengeometrie, Mathematisch Instituut der Rijksuniversiteit te Utrecht, (1951).
- [4] Hirsch, G., La géométrie projective et la topologie des espaces fibrés, Colloque international de topologie algebrique, Paris, (1947).

Mathematical Institute, Nagoya University