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Abstract

For the class of self-similar measures in Rd with overlaps that are essentially of finite type, we set up a
framework for deriving a closed formula for the Lq-spectrum of the measure for q ≥ 0. This framework
allows us to include iterated function systems that have different contraction ratios and those in higher
dimension. For self-similar measures with overlaps, closed formulas for the Lq-spectrum have only been
obtained earlier for measures satisfying Strichartz’s second-order identities. We illustrate how to use our
results to prove the differentiability of the Lq-spectrum, obtain the multifractal dimension spectrum, and
compute the Hausdorff dimension of the measure.
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1. Introduction

Let µ be a bounded positive Borel measure on Rd whose support supp(µ) is compact.
For q ∈ R, the Lq-spectrum τ(q) of µ is defined as

τ(q) := lim
δ→0+

ln sup
∑

i µ(Bδ(xi))q

ln δ
,

where Bδ(xi) is a disjoint family of δ-balls with centers xi ∈ supp(µ) and the supremum
is taken over all such families. The function τ(q) arises in the theory of multifractal

The authors are supported in part by the National Natural Science Foundation of China, grants 11771136
and 11271122, and Construct Program of the Key Discipline in Hunan Province. The first author is also
supported by the Center of Mathematical Sciences and Applications (CMSA) of Harvard University, the
Hunan Province Hundred Talents Program, and a Faculty Research Scholarly Pursuit Award from Georgia
Southern University.
c© 2018 Australian Mathematical Publishing Association Inc.

56

https://doi.org/10.1017/S1446788718000034 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788718000034


[2] Lq-spectrum of self-similar measures with overlaps 57

decomposition of measures. A major goal of the theory is to compute the following
dimension spectrum:

f (α) := dimH

{
x ∈ supp(µ) : lim

δ→0+

ln µ(Bδ(x))
ln δ

= α
}
,

where dimH denotes the Hausdorff dimension. The multifractal formalism, a heuristic
principle first proposed by physicists (see [7, 8] and the references therein), asserts that
the dimension spectrum is equal to the Legendre transform of τ(q), that is,

f (α) = τ∗(α) := inf{qα − τ(q) : q ∈ R}.

We are mainly interested in self-similar measures. For such measures, the multi-
fractal formalism has been verified rigorously for those satisfying the separated open
set condition [1, 3]. For self-similar measures defined by iterated function systems
satisfying the weak separation condition, Lau and the first author [13] proved that
if τ(q) is differentiable at q ≥ 0, then the multifractal formalism at the corresponding
point holds. Feng and Lau [5] removed the differentiability condition; they also studied
the validity of the multiformal formalism in the region q < 0.

The Lq-spectrum also encodes other important information of the measure. For
example, τ(0) is the negative of the box dimension of the corresponding self-similar
set; if τ is differentiable at q = 1, then τ′(1) is equal to the Hausdorff dimension of
µ (see [9, 13, 19, 23] and the references therein); for q > 1, τ(q)/(q − 1) is the Lq-
dimension of µ (see [24]).

The computation of Lq-spectrum thus plays a key role in the theory of multifractal
measures. For self-similar and graph-directed self-similar measures satisfying the
open set condition, τ(q) is computed by Cawley and Mauldin [1] and Edgar and
Mauldin [3]. For self-similar measures with overlaps, the computation is much more
difficult. Lau and the first author obtained τ(q), q ≥ 0, for the infinite Bernoulli
convolution associated with the golden ratio [12] and a class of convolutions of Cantor
measures [14]. Feng [4] computed τ(q) for infinite Bernoulli convolutions associated
with a class of Pisot numbers. The graph of τ(q) for q < 0 has been studied in [4, 6, 18].

The computation of τ(q) in [12] and [14] makes use of Strichartz’s second-order
self-similar identities. Unfortunately, very few self-similar measures satisfy these
identities. Thus, closed formulas for τ(q) have been obtained for only a few classes of
measures that are defined by iterated function systems on R with the same contraction
ratio. The main objective of this paper is to derive a closed formula for τ(q), q ≥ 0, for
self-similar measures that are so-called essentially of finite type (EFT), a condition
introduced in [21]. We recall the definition of EFT in Definition 2.16. It is worth
mentioning that recently Deng and the first author [2] used an infinite matrix method to
obtain the differentiability of the Lq-spectrum for a class of iterated function systems
(IFSs) that includes some of those studies in this paper; however, the method does not
yield a closed formula for τ(q).

Throughout this paper an IFS refers to a finite family of contractions defined on a
compact subset X of Rd. The derivation of τ(q) in this paper is based on the following
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equivalent definition, which holds for q ≥ 0:

τ(q) = inf
{
α ≥ 0 : lim

δ→0+

1
δd+α

∫
X
µ(Bδ(x))q dx > 0

}
= sup

{
α ≥ 0 : lim

δ→0+

1
δd+α

∫
X
µ(Bδ(x))q dx <∞

}
, (1.1)

(see [11, 12] and [13, Proposition 3.1]).
Let Ω ⊆ Rd be a bounded open subset and µ be a positive finite Borel measure

with supp(µ) ⊆ Ω and µ(Ω) > 0. We say that two subsets U and V of Ω with positive
µ-measure are µ-equivalent if µ|V = wµ|U ◦ σ−1 for some w > 0 and some similitude
σ : U → V , where µ|F denotes the restriction of the measure µ to F ⊆ Rd. A µ-partition
P of U is a finite family of measure disjoint sub-cells of U such that µ(U) =

∑
V∈P µ(V).

A sequence of µ-partitions {Pk}k≥1 is refining if each member of Pk+1 is a subset of
some member of Pk.

Our main assumption is the EFT condition introduced in [21], which, loosely
speaking, holds if there exists some bounded open subset Ω ⊆ Rd with supp(µ) ⊆ Ω

and µ(Ω) > 0, together with a finite family B := {B1,`}`∈Γ of cells in Ω such that for
each ` ∈ Γ, there is a family of refining µ-partition {Pk,`}k≥1 satisfying the following
conditions: (1) there exists some cell B ∈ P2,` that is not in P1,` such that B has the same
measure type with some cell in B; (2) Pk+1,` contains all cells in Pk,` that have the same
measure type with some cells in B for k ≥ 2; (3) the sum of the µ-measures of those
cells B ∈ Pk,` that are not µ-equivalent to any cell in B tends to 0 as k→∞. In this case,
we call Ω an EFT-set, B a basic family of cells in Ω, and (B,P) := ({B1,`}, {Pk,`}k≥1)`∈Γ
a basic pair with respect to Ω. We say that (B,P) is weakly regular if for any ` ∈ Γ,
there exists some similitude σ` such that σ`(Ω) ⊆ B1,`.

Let µ be a self-similar measure defined by a finite type IFS {Si}i∈Λ onRd (see [10, 15,
22]) with Ω being a finite type condition set. Assume that µ satisfies EFT with Ω ⊆ Rd

being an EFT-set and (B,P) := ({B1,`}, {Pk,`}k≥1)`∈Γ being a weakly regular basic pair
with respect to Ω. Fix q ≥ 0, define

ϕ`(δ) :=
∫

B1,`

µ(Bδ(x))q dx, Φ
(α)
`

(δ) :=
1

δd+α
ϕ`(δ) for ` ∈ Γ. (1.2)

Then we can derive renewal equations for Φ
(α)
`

(δ), and express them in vector form as:

f = f ∗Mα + z,

where α ∈ R, and

f = f(α)(x) = [ f (α)
`

(x)]`∈Γ, x ∈ R;
f (α)
`

(x) := Φ
(α)
`

(e−x) for ` ∈ Γ;
Mα = [µ(α)

m` ]`,m∈Γ is a finite matrix of Borel measures on R;
z = z(α)(x) = [z(α)

`
(x)]`∈Γ is a vector of error functions.

(1.3)

Let
Mα(∞) := [µ(α)

m` (R)]`,m∈Γ. (1.4)
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For each ` ∈ Γ and α ∈ R, define

F`(α) :=
∑
m∈Γ

µ(α)
m` (R), D` := {α ∈ R : F`(α) <∞}. (1.5)

If the error functions decay exponentially to 0 as x→∞, then the Lq-spectrum of µ
is given by the unique α such that the spectral radius of Mα(∞) is equal to 1. The
following is our main result.

Theorem 1.1. Let µ be a self-similar measure defined by a finite type IFS {Si}i∈Λ on Rd.
Assume that µ satisfies EFT with Ω being an EFT-set and (B,P) := ({B1,`}, {Pk,`}k≥1)`∈Γ
being a weakly regular basic pair with respect to Ω. Let Mα(∞) and F`(α) be defined
as in (1.4) and (1.5).

(1) There exists a unique α ∈ R such that the spectral radius of Mα(∞) is equal to 1.
(2) If we assume, in addition, that for the unique α in (a), there exists ε > 0 such that

for all ` ∈ Γ, z(α)
`

(x) = o(e−εx) as x→∞, then τ(q) = α for q ≥ 0.

In Section 4, we illustrate Theorem 1.1 by the following family of IFSs on R:

S1(x) = ρx, S2(x) = rx + ρ(1 − r), S3(x) = rx + 1 − r, (1.6)

where the contraction ratios ρ, r ∈ (0, 1) satisfy

ρ + 2r − ρr ≤ 1, (1.7)

that is, S2(1) ≤ S3(0) (see Figure 1). This family of IFSs is first studied by Lau and
Wang [17], and is used to illustrate the (general) finite type condition in [10, 15]. For
a probability vector (pi)3

i=1, we define

w1(k) := p1

k∑
j=0

pk− j
2 p j

3 for k ≥ 0. (1.8)

Theorem 1.2. Let µ be a self-similar measure defined by an IFS in (1.6) together with a
probability vector (pi)3

i=1, and w1(k) be defined as in (1.8). Then for q ≥ 0, there exists
a unique real number α := α(q) satisfying

ρ−α(1 − pq
2r−α)(1 − pq

3r−α)
∞∑

k=0

w1(k)q(r−α)k + r−α(pq
2 + pq

3) = 1. (1.9)

Hence τ(q) = α. Moreover, τ is differentiable on (0,∞) and

dimH(µ) = τ′(1) =

(( 3∑
i=2

pi ln pi − p2 p3

3∑
i=2

ln pi

) ∞∑
k=0

w1(k)

−

( 3∏
i=2

(1 − pi)
) ∞∑

k=0

w1(k) ln w1(k) −
3∑

i=2

pi ln pi

)

https://doi.org/10.1017/S1446788718000034 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788718000034


60 S.-M. Ngai and Y. Xie [5]

Figure 1. The first iteration of {Si}
3
i=1 defined in (1.6). The figure is drawn with ρ = 1/3 and r = 2/7.

×

(
(p2 + p3 − 2p2 p3)

∞∑
k=0

w1(k) ln r

−

( 3∏
i=2

(1 − pi)
) ∞∑

k=0

w1(k) ln(ρrk) −
3∑

i=2

pi ln r
)−1
.

Remark 1.3. Substituting q = 0 in (1.9) gives ρ−τ(0) + 2r−τ(0) − (ρr)−τ(0) = 1. Hence
−τ(0) equals the Hausdorff and box dimensions of the corresponding self-similar set
(see [10, 15, 17]).

In Section 5, we illustrate Theorem 1.1 by the following family of IFSs on R2:

S1(x) = ρx, S2(x) = rx + (ρ − ρr, 0),
S3(x) = rx + (1 − r, 0), S4(x) = rx + (0, 1 − r),

(1.10)

where the contraction ratios ρ, r ∈ (0, 1) satisfy

ρ + 2r − ρr ≤ 1, (1.11)

that is, S2(1, 0) ≤ S3(0, 0) (see Figure 2(a)). For any probability vector (pi)4
i=1, define

w2(k) := p1

k∑
j=0

pk− j
2 p j

3 for k ≥ 0. (1.12)

Theorem 1.4. Let µ be a self-similar measure defined by an IFS in (1.10) together with
a probability vector (pi)4

i=1, and w2(k) be defined as in (1.12). Then for q ≥ 0, there
exists a unique real number α := α(q) satisfying

ρ−α(1 − pq
2r−α)(1 − pq

3r−α)
∞∑

k=0

w2(k)q(r−α)k + r−α
4∑

i=2

pq
i = 1. (1.13)

Hence τ(q) = α. Moreover, τ is differentiable on (0,∞) and

dimH(µ) = τ′(1) =

(( 3∑
i=2

pi ln pi − p2 p3

3∑
i=2

ln pi

) ∞∑
k=0

w2(k)

−

( 3∏
i=2

(1 − pi)
) ∞∑

k=0

w2(k) ln w2(k) −
4∑

i=2

pi ln pi

)

https://doi.org/10.1017/S1446788718000034 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788718000034


[6] Lq-spectrum of self-similar measures with overlaps 61

×

(
(p2 + p3 − 2p2 p3)

∞∑
k=0

w2(k) ln r

−

( 3∏
i=2

(1 − pi)
) ∞∑

k=0

w2(k) ln(ρrk) −
4∑

i=2

pi ln r
)−1
.

Remark 1.5. Substituting q = 0 into (1.13), ρ−τ(0) + 3r−τ(0) − (ρr)−τ(0) = 1. Again,
−τ(0) equals the Hausdorff and box dimensions of the corresponding self-similar set
(see [15, Example 5.2]).

We use the vector-valued renewal theorem of Lau et al. [16] to derive the stated
formulas for τ(q); the classical renewal theorem used in [12] and [14] is not sufficient,
as a finite number of renewal equations arise in our derivations. New techniques are
also used in estimating the error terms and in proving the differentiability of τ(q).

This paper is organized as follows. In Section 2, we briefly recall the definition of
EFT. In Section 3 we derive renewal equations and prove Theorem 1.1. Section 4
illustrates Theorem 1.1 by the class of one-dimensional IFSs (1.6) and proves
Theorem 1.2. Section 5 studies IFSs in higher dimension and proves Theorem 1.4.
Finally we state some comments and open questions in Section 6.

2. Self-similar measures and measures that are essentially of finite type

In this section, we recall the definition of EFT and then prove that it is satisfied by
the self-similar measures defined by the IFSs in (1.10).

2.1. The finite type condition and measure type. Let X be a compact subset of Rd

with a nonempty interior, and {Si}i∈Λ be an IFS of contractive similitudes on X with
attractor K ⊆ Rd. To each probability vector (pi)i∈Λ (that is, pi > 0 and

∑
i∈Λ pi = 1), let

µ be the associated self-similar measure, which satisfies the self-similar identity

µ =
∑
i∈Λ

piµ ◦ S −1
i .

Moreover, supp(µ) = K. An IFS {S i}i∈Λ is said to satisfy the open set condition (OSC)
if there exists a nonempty bounded open subset U ⊂ Rd such that

⋃
i∈Λ S i(U) ⊂ U and

S i(U) ∩ S j(U) = ∅ for all i , j.
For k ≥ 1, define

Λk := {(i1, . . . , ik) : i j ∈ Λ for j = 1, . . . , k},

where we call i ∈ Λk a word of length k, and denote its length by |i|. If k = 0, we
define Λ0 := {∅}. Also, we let Λ∗ :=

⋃
k≥0 Λk. We frequently write i := i1 · · · ik instead

of i = (i1, . . . , ik) if no confusion is possible; in particular, we write i =: ik1, if i j = i1 for
all j = 1, . . . , k. For k ≥ 0 and i = i1 · · · ik ∈ Λk, we use the standard notation

Si := Si1 ◦ · · · ◦ Sik , ri := ri1 · · · rik , pi := pi1 · · · pik ,

with S∅ := id, r∅ = p∅ := 1, where id is the identity map on Rd.
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For two indices i, j ∈ Λ∗, we write i 4 j if i is a prefix of j or i = j, and denote by
i $ j if i 4 j does not hold. We say that i, j ∈ Λ∗ are comparable if i 4 j or j 4 i. If
two elements are not comparable, we say they are incomparable; that is, i and j are
incomparable if neither i 4 j nor j 4 i. A chain in Λ∗ is a subset of Λ∗ in which each
pair of elements is comparable. An antichain in Λ∗ is a subset of Λ∗ in which each pair
of distinct elements is incomparable.

Let {Mk}
∞
k=1 be a sequence of index sets, whereMk ⊆ Λ∗. Let

mk = mk(Mk) := min{|i| : i ∈ Mk},

and
mk = mk(Mk) := max{|i| : i ∈ Mk}.

We also letM0 := {∅}.

Definition 2.1. We say that {Mk}
∞
k=0 is a sequence of nested index sets if it satisfies the

following conditions:

(1) both {mk} and {mk} are nondecreasing, and

lim
k→∞

mk = lim
k→∞

mk =∞;

(2) for each k ≥ 1,Mk is an antichain in Λ∗;
(3) for each j ∈ Λ∗ with | j| > mk or j ∈ Mk+1, there exists i ∈ Mk such that i 4 j;
(4) for each j ∈ Λ∗ with | j| < mk or j ∈ Mk−1, there exists i ∈ Mk such that j 4 i;
(5) there exists a positive integer L0, independent of k, such that for all i ∈ Mk and

j ∈ Mk+1 with i 4 j, we have | j| − |i| ≤ L0.

To define neighborhood types, we fix a sequence of nested index sets {Mk}
∞
k=0.

Notation 2.2.

(1) For each integer k ≥ 0, letVk be the set of level-k vertices (with respect to {Mk})
defined as

V0 := {(id, 0)}, Vk := {(Si, k) : i ∈ Mk} for all k ≥ 1,

we call (id, 0) the root vertex and denote it by vroot.
(2) LetV :=

⋃
k≥0Vk be the set of all vertices.

(3) For v = (Si, k) ∈ Vk, we use the convenient notation Sv := Si and rv := ri. It is
possible to have v = (Si, k) = (S j, k) with i , j.

(4) More generally, for any k ≥ 0 and any subsetA ⊆ Vk, we use the notation

SA(Ω) :=
⋃
v∈A

Sv(Ω). (2.1)

Let Ω ⊆ X be a nonempty bounded open set which is invariant under {Si}i∈Λ, that
is,

⋃
i∈Λ Si(Ω) ⊆ Ω. Such an Ω exists by our assumption; in particular, X◦ is such a set.

Next, we recall the definitions of neighbors and neighborhoods.
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Definition 2.3. We say that two level-k vertices v, v′ ∈ Vk (allowing v = v′) are
neighbors (with respect to Ω and {Mk}) if Sv(Ω) ∩ S v′(Ω) , ∅. We call the set of
vertices

NΩ(v) := {v′ : v′ ∈ Vk is a neighbor of v}

the neighborhood of v (with respect to Ω and {Mk}).

Obviously v ∈ NΩ(v). If no confusion is possible, we omit the subscript Ω in NΩ(v).
Let S := {S jS −1

i : i, j ∈ Λ∗}. We define an equivalence relation on the set of vertices
V.

Definition 2.4. Two vertices v ∈ Vk and v′ ∈ Vk′ are said to be equivalent, denoted
v ∼σ v′ (or simply v ∼ v′), if for σ := Sv′S −1

v (∈S ) :
⋃

u∈N(v) Su(X)→ X, the following
conditions hold:

(1) {Su′ : u′ ∈ N(v′)} = {σSu : u ∈ N(v)}; in particular, σSu is defined for all u ∈ N(v);
(2) for u ∈ N(v) and u′ ∈ N(v′) such that Su′ = σSu, and for any positive integer

` ≥ 1, an index i ∈ Λ∗ satisfies (SuSi, k + `) ∈ Vk+` if and only if it satisfies
(Su′Si, k′ + `) ∈ Vk′+`.

It is direct to check that ∼ is an equivalence relation. We denote the equivalence
class containing v by [v] and call it the (neighborhood) type of v (with respect to Ω and
{Mk}).

We define an infinite graph G with vertex set V and directed edges E defined as
follows. Let v ∈ Vk and u ∈ Vk+1. Suppose there exist i ∈ Mk, j ∈ Mk+1, and l ∈ Λ∗

such that
v = (Si, k), u = (S j, k + 1), j = (i, l).

Then we connect a directed edge l : v→ u. We call v a parent of u and u an offspring
of v. We write G = (V, E), where E is the set of all directed edges defined above.
We call v = (Si, k) a predecessor of u = (S j, k′), and u a descendent of v, if i 4 j and
k′ ≥ k + 1.

Definition 2.5. Let {Si}i∈Λ be an IFS of contractive similitudes on a compact subset
X ⊆ Rd. We say that {Si}i∈Λ is of finite type (or that it satisfies the finite type condition
(FTC)) if there exist a sequence of nested index sets {Mk}

∞
k=0 and a nonempty bounded

invariant open set Ω ⊆ X such that, with respect to Ω and {Mk}, the set of equivalence
classes V/∼ := {[v] : v ∈ V} is finite. We call such an Ω a finite type condition set (or
FTC-set).

Definition 2.6. A subset I ⊆ Vk is called a level-k island (with respect to Ω and {Mk})
if SI(Ω) is a connected component of SVk (Ω).

Remark 2.7.

(1) For each v ∈ Vk, there exists a unique island, denoted I(v), containing v and,
moreover, N(v) ⊆ I(v).

(2) If {Si}i∈Λ satisfies OSC with Ω being an OSC-set, then I(v) = {v} for all v ∈ V.
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64 S.-M. Ngai and Y. Xie [9]

Notation 2.8.

(1) Let
Ik := {I : I is a level-k island}, I :=

⋃
k≥0

Ik

be the collection of all level-k islands and the collection of all islands,
respectively.

(2) Generalizing (2.1), for any k ≥ 0 and any subset B ⊆ Ik, we use the notation

SB(Ω) :=
⋃
I∈B

SI(Ω).

Definition 2.9. We say that two islands I ∈ Ik and I′ ∈ Ik′ are equivalent, and denote
it by I ≈σ I′ (or simply I ≈ I′), if there exists some σ ∈S such that {Sv′ : v′ ∈ I′} =
{σSv : v ∈ I} and, moreover, v ∼σ v′ for any v ∈ I and v′ ∈ I′ satisfying Sv′ = σSv.

Notation 2.10.

(1) We denote the equivalence class of I by [I] and we call [I] the (island) type
of I.

(2) For I ∈ Ik, I′ ∈ Ik+1, I is said to be a parent of I′ and I′ an offspring of I if for
any v ∈ I′, I contains some parent of v. For any k ≥ 0 and I ∈ Ik, let

O(I) := {J : J is an offspring of I} (2.2)

be the collection of all offspring of I. Analogously, we define predecessors and
descendants of an island.

Definition 2.11. Let µ be a self-similar measure defined by an IFS {Si}i∈Λ of finite
type with Ω being an FTC-set. Two equivalent vertices v ∈ Vk and v′ ∈ Vk′ are µ-
equivalent, denoted v ∼µ,σ,w v′ (or simply v ∼µ v′) if for σ = Sv′ ◦ S −1

v , there exists a
number w > 0 such that

µ|SN(v′)(Ω) = w · µ|SN(v)(Ω) ◦ σ
−1.

As ∼ is an equivalence relation, so is ∼µ. Denote the µ-equivalence class of v by
[v]µ and call it the (neighborhood) measure type of v (with respect to Ω, {Mk} and
µ). Intuitively, v ∼µ v′ means that the measures µ|SN(v)(Ω) and µ|SN(v′)(Ω) have the same
structure. The following proposition shows that µ-equivalent vertices generate the
same number of offspring of each neighborhood measure type. The proof can be found
in [21].

Proposition 2.12. For two equivalent vertices v ∈ Vk and v′ ∈ Vk′ , let {ui}i∈Λ1 and
{u′i}i∈Λ′1 be the offspring of v and v′ in G, respectively. If [v]µ = [v′]µ, then, counting
multiplicity, {[ui]µ : i ∈ Λ1} = {[u′i]µ : i ∈ Λ′1}.
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Definition 2.13. Let µ be a self-similar measure defined by a finite type IFS {Si}i∈Λ on
Rd with Ω being an FTC-set. Two islands I ∈ Ik and I′ ∈ Ik′ are said to be µ-equivalent,
denoted I ≈µ,σ,w I′ (or simply I ≈µ I′), if I ≈σ I′ and there exists some w > 0 such
that

µ|SI′ (Ω) = w · µ|SI(Ω) ◦ σ
−1. (2.3)

We remark that (2.3) holds if and only if v ∼µ,σ,w v′ for any v ∈ I and v′ ∈ I′
satisfying Sv′ = σSv. We note that ≈µ is an equivalence relation. We denote the
µ-equivalence class of I by [I]µ, and call [I]µ the (island) measure type of I
(with respect to Ω, {Mk}, and µ). From the definition of ≈µ, we obtain an analog
of Proposition 2.12 concerning ≈µ. That is, µ-equivalent islands generate the same
number of offspring of each island measure type.

Definition 2.14. Let µ be a self-similar measure defined by a finite type IFS. Let B ⊆ Ik
for k ≥ 0 and Bµ := {[I]µ : I ∈ B}. We call I a level-2 nonbasic island with respect to
B if I ∈ O(J) for someJ ∈ B and [I]µ < Bµ. Inductively, for ` ≥ 3, we call I a level-`
nonbasic island with respect to B if I is an offspring of some level-(` − 1) nonbasic
island with respect to B and [I]µ < Bµ.

We remark that, by definition, for any ` ≥ 2, I is a level-` nonbasic island with
respect to B if and only if there exists a finite sequence of {Ik}

`
k=1 such that I1 ∈ B,

I` = I, [Ii]µ < Bµ, and Ii is an offspring of Ii−1 for all i = 2, . . . , `. In particular, Ii is
a level-i nonbasic island with respect to B for all i = 2, . . . , `.

2.2. Measures that are essentially of finite type. We recall the definition of EFT
in [21, Section 2.2]. Let Ω ⊆ Rd be a bounded open subset and µ be a positive finite
Borel measure with supp(µ) ⊆ Ω and µ(Ω) > 0. We call a µ-measurable subset U of Ω

a cell (in Ω) if µ(U) > 0.
We say that two cells U and V are µ-equivalent, denoted U 'µ,σ,w V (or simply

U 'µ V), if there exist some similitude σ : U → V and some constant w > 0 such that
σ(U) = V and

µ|V = wµ|U ◦ σ−1.

It is easy to check that 'µ is an equivalence relation.
Let U ⊆ Ω be a cell. Two cells V,W in U are measure disjoint with respect to µ if

µ(V ∩W) = 0. We call a finite family P of measure disjoint cells a µ-partition of U if
V ⊆ U for all V ∈ P, and µ(U) =

∑
V∈P µ(V). A sequence of µ-partitions {Pk}k≥1 is said

to be refining if for any V ∈ Pk and any W ∈ Pk+1, either W ⊆ V or they are measure
disjoint, that is, each member of Pk+1 is a subset of some member of Pk.

Remark 2.15. Let µ be a self-similar measure defined by a finite type IFS {Si}i∈Λ on
Rd with Ω being an FTC-set. The following can be verified directly.

(1) For any island I ∈ I, SI(Ω) is a cell.
(2) Let I and I′ be two islands. By definition, I ≈µ I′ if and only if I ≈ I′ and

SI(Ω) 'µ SI′(Ω).
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(3) Let k ≥ m ≥ 0. Then for any I ∈ Im, P := {SJ (Ω) : J ∈ Ik is a descendent of I}
is a refining µ-partition of SI(Ω).

Let B := {B1,`}`∈Γ be a finite family of measure disjoint cells in Ω, and for each
` ∈ Γ, let {Pk,`}k≥1 be a family of refining µ-partitions of B1,` with P1,` := {B1,`}. For
k ≥ 2, we divide each Pk,` into two (possibly empty) subcollections, P1

k,` and P2
k,`, with

respect to B, defined as follows:

P1
k,` := {B ∈ Pk,` : B 'µ B1,i for some i ∈ Γ},

P2
k,` := Pk,`\P1

k,` = {B ∈ Pk,` : B < P1
k,`}.

(2.4)

Definition 2.16. We say that a positive finite Borel measure µ on Rd is essentially of
finite type (EFT) if there exist a bounded open subset Ω ⊆ Rd with supp(µ) ⊆ Ω and
µ(Ω) > 0, and a finite family B := {B1,`}`∈Γ of measure disjoint cells in Ω such that
for any ` ∈ Γ, there is a family of refining µ-partitions {Pk,`}k≥1 of B1,` satisfying the
following conditions:

(1) P1,` = {B1,`}, and there exists some B ∈ P1
2,` such that B , B1,`;

(2) if for some k ≥ 2, there exists some B ∈ P1
k,`, then B ∈ P1

k+1,` and hence B ∈ P1
m,`

for all m ≥ k;
(3) limk→∞

∑
B∈P2

k,`
µ(B) = 0.

Here P1
k,` and P2

k,` (k ≥ 2) are defined as in (2.4). In this case, we call Ω an EFT-set, B a
basic family of cells (in Ω), and (B,P) := ({B1,`}, {Pk,`}k≥1)`∈Γ a basic pair (with respect
to Ω).

Remark 2.17.

(1) We remark that conditions (1) and (2) are needed in Section 3 to derive the
vector-valued renewal equation, and error estimate forces condition (3) to hold.
In fact, to derive the vector-valued renewal equation, we only need condition
(2) as well as (1’): the existence of some B ∈

⋃
k≥2 P1

k,` such that B , B1,`.
Since condition (3) implies that

⋃
k≥2 P1

k,` , ∅, we have chosen to use the more
convenient condition (1).

(2) Let (B,P) := ({B1,`}, {Pk,`}k≥1)`∈Γ be a basic pair. Then for some k ≥ 2, P2
k,` = ∅ if

and only if Pm,` = Pk,` for all m ≥ k.

The following definition of a weakly regular basic pair is weaker than that of a
regular basic pair defined in [21].

Definition 2.18. Assume that µ satisfies EFT with Ω being an EFT-set and (B,P) :=
({B1,`}, {Pk,`}k≥1)`∈Γ being a basic pair with respect to Ω. We say that (B,P) is weakly
regular if for any ` ∈ Γ, there exists some similitude σ` such that σ`(Ω) ⊆ B1,`. In this
case, we call B a weakly regular basic family of cells (in Ω).

Measures studied in this paper are mainly self-similar. The following result is
modified from [21, Proposition 2.15] to suit our purposes. The proof is similar. A
connected FTC-set Ω is replaced by an FTC-set Ω.
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Proposition 2.19 [21]. Let µ be a self-similar measure defined by a finite type IFS on
Rd with an FTC-set Ω. Suppose there exists some m ≥ 0 such that the following two
conditions hold.

(1) There exists a finite index set Γ such that Im = {I1,` : ` ∈ Γ}; moreover, for
each ` ∈ Γ, there exists some constant c(`) ≥ 2 (chosen to be the minimum) and
descendant J ∈ Im+c(`)−1 of I1,` satisfying SJ (Ω) , SI1,` (Ω) and J ≈µ I1,i for
some i ∈ Γ.

(2) For k ≥ 2 and ` ∈ Γ, let Ik,` be the collection of all level-k nonbasic islands with
respect to Im that are descendants of I1,`. Then limk→∞

∑
I∈Ik,`

µ(SI(Ω)) = 0 for
all ` ∈ Γ.

Then µ satisfies EFT with Ω being an EFT-set and with B = {SI1,` (Ω) : ` ∈ Γ} being a
basic family of cells in Ω.

In the proof of Proposition 2.19, for any ` ∈ Γ, we define

P1,` := {B1,`} and
P2,` := {SJ (Ω) : J ∈ Im+c(`)−1 is a descendant of I1,`},

(2.5)

where B1,` = SI1,` (Ω). For k ≥ 3, if P2
k−1,` = ∅, define Pk,` := P1

k−1,`; otherwise, define

Pk,` := P1
k−1,` ∪ {SI(Ω) : I ∈ O(J) for some island J

satisfying SJ (Ω) ∈ P2
k−1,`}. (2.6)

The following two classes of examples for EFT are proved in [21].

Example 2.20. Let µ be a self-similar measure defined by an IFS {Si}i∈Λ on Rd

satisfying OSC with Ω being an OSC-set and µ(Ω) > 0. Then µ satisfies EFT with
Ω being an EFT-set and B := {B1,1} = {Ω} being a weakly regular basic family of cells.

Let {Si}
3
i=1 be defined as in (1.6) and µ be the self-similar measure associated with

a probability vector (pi)3
i=1. Let w1(k), k ≥ 0, be defined as in (1.8). We remark that for

k ≥ 0,

p1 pk+1
3 + p2w1(k) = p1 pk+1

2 + p3w1(k) = w1(k + 1) and
w1(k + 1) ≤ w1(k) ≤ p1.

Example 2.21. Let µ be the self-similar measure defined by an IFS {Si}
3
i=1 in (1.6)

together with a probability vector (pi)3
i=1. Then µ satisfies EFT with Ω = (0, 1) being

an EFT-set and there exists a weakly regular basic pair with respect to Ω.

2.3. EFT for a class of IFSs onR2. In this subsection, we prove that any self-similar
measure defined by an IFS in (1.10) satisfies EFT.

Let {Si}
4
i=1 be defined as in (1.10) and µ be the self-similar measure associated with

a probability vector (pi)4
i=1. Let w2(k), k ≥ 0, be defined as in (1.12). We remark that

for k ≥ 0,

p1 pk+1
3 + p2w2(k) = p1 pk+1

2 + p3w2(k) = w2(k + 1) and
w2(k + 1) ≤ w2(k) ≤ p1.

(2.7)
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Throughout this subsection we let X = [0, 1] × [0, 1],

Ω = X◦, Wk := {2k−i13i : i = 0, 1, . . . , k} for k ≥ 0. (2.8)

To simplify notation we let

γk := 1 − rk for k ≥ 0. (2.9)

Define
I1,1 := {(S1, 1), (S2, 1)}, I1,2 := {(S3, 1)}, I1,3 := {(S4, 1)} (2.10)

(see Figure 2(a)) and

B1,1 := SI1,1 (Ω) = S1(Ω) ∪ S2(Ω) = (0, ργ1) × (0, ρ) ∪ (ργ1, ργ1 + r) × (0, r),
B1,2 := SI1,2 (Ω) = S3(Ω) = (γ1, 1) × (0, r),
B1,3 := SI1,3 (Ω) = S4(Ω) = (0, r) × (γ1, 1), (2.11)

where I1,i, i = 1, 2, 3, are defined in (2.10).

Example 2.22. Let µ be a self-similar measure defined by an IFS {Si}
4
i=1 in (1.10)

together with a probability vector (pi)4
i=1. Let Ω and Wk be as in (2.8). Then µ satisfies

EFT with Ω = (0, 1) × (0, 1) being an EFT-set and there exists a weakly regular basic
pair with respect to Ω.

To prove Example 2.22, we first summarize without proof some elementary
properties. Proposition 2.23(1) below implies that all multi-indices in Wk correspond
to the same vertex.

Proposition 2.23. Let {Si}
4
i=1 be as in (1.10) and {I1,i}

3
i=1 be as in (2.10). The following

relations hold:

(1) S13 = S21. Moreover, for any i, j ∈ Wk, Si = Sj;
(2) I1 = {I1,1,I1,2,I1,3}.

Proposition 2.24. Assume the hypotheses of Example 2.22 and {B1,i}
3
i=1 defined as in

(2.11). Then (1)–(3) below hold, and (4)–(6) hold for all k ≥ 0:

(1) S3(B1,1) = (γ1, (1 + ρr)γ1) × (0, ρr)
∪ ((1 + ρr)γ1, (1 + ρr)γ1 + r2) × (0, r2),

S4(B1,1) = (0, ρrγ1) × (γ1, γ1 + ρr)
∪ (ρrγ1, ρrγ1 + r2) × (γ1, γ1 + r2);

(2) S1(B1,2) = (ργ1, ρ) × (0, ρr),
S3(B1,2) = (γ2, 1) × (0, r2),

S4(B1,2) = (rγ1, r) × (γ1, γ1 + r2);

(3) S3(B1,3) = (γ1, γ1 + r2) × (rγ1, r) and S4(B1,3) = (0, r2) × (γ2, 1);
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(4) S2k1(B1,1) = (ργk, ργk + ρ2rkγ1) × (0, ρ2rk)
∪ (ργk + ρ2rkγ1, ργk + ρ2rkγ1 + ρrk+1) × (0, ρrk+1),

S2k1(B1,3) = (ργk, ργk + ρrk+1) × (ρrkγ1, ρrk);

(5) S2k (B1,1) = (ργk, ργk+1) × (0, ρrk) ∪ (ργk+1, ργk+1 + rk+1) × (0, rk+1),
S2k (B1,2) = (rkγ1 + ργk, rk + ργk) × (0, rk+1),

S2k (B1,3) = (ργk, ργk + rk+1) × (rkγ1, rk);

(6) S2k1(Ω) = (ργk, ρ) × (0, ρrk) and S2k (Ω) = (ργk, ργk + rk) × (0, rk).

Proof. (1)–(3) follow from (2.11), and (4)–(6) can be proved directly by induction; we
omit the details. �

Lemma 2.25. Assume the hypotheses of Proposition 2.24. Then for k ≥ 1,

µ(S1(Ω) ∩ S2k (Ω)) = µ
( 3⋃

i=1

S1(B1,i) ∩ S2k (Ω)
)

= µ(S2k1(Ω)). (2.12)

Proof. First, we prove the first equality in (2.12). Since µ(S1(Ω)) = µ(
⋃3

i=1 S1(B1,i)),
µ(S1(Ω) ∩ A) = µ((

⋃3
i=1 S1(B1,i)) ∩ A) for any A ⊆ Ω. Hence µ(S1(Ω) ∩ S2k (Ω)) =

µ(
⋃3

i=1 S1(B1,i) ∩ S2k (Ω)).
Next, we show that

3⋃
i=1

S1(B1,i) ∩ S2k (Ω) = S2k1(Ω) for k ≥ 1. (2.13)

By Proposition 2.24(2,4,6),

S1(B1,1) = (0, ρ2γ1) × (0, ρ2) ∪ (ρ2γ1, ρ
2γ1 + ρr) × (0, ρr),

S1(B1,2) = (ργ1, ρ) × (0, ρr), S1(B1,3) = (0, ρr) × (ργ1, ρ),

and S2(Ω) = (ργ1, ργ1 + r) × (0, r). It follows from (1.11) that ρr + ρ2γ1 ≤ ργ1

and hence S1(B1,1) ∩ S2(Ω) = ∅. Since ρ < r + ργ1, S1(B1,2) ∩ S2(Ω) = (ργ1, ρ) ×
(0, ρr) = S21(Ω), where Proposition 2.24(6) is used in the last equality. Since r < γ1,
S1(B1,3) ∩ S2(Ω) = ∅. Hence

⋃3
i=1 S1(B1,i) ∩ S2(Ω) = S21(Ω). Assume that the stated

inequality holds for k = m, that is,
⋃3

i=1 S1(B1,i) ∩ S2m (Ω) = S2m1(Ω). Then S1(B1,2) ∩
S2m (Ω) = S2m1(Ω) and S1(B1,i) ∩ S2m (Ω) = ∅ for i = 1, 3. For k = m + 1, since S1(B1,i) ∩
S2m+1 (Ω) ⊆ S1(B1,i) ∩ S2m (Ω), S1(B1,i) ∩ S2m+1 (Ω) = ∅ for i = 1, 3. By (2.11) and
Proposition 2.23(1),

S1(B1,2) ∩ S2m+1 (Ω) = S13(Ω) ∩ S2m+1 (Ω) = S21(Ω) ∩ S2m+1 (Ω)

= S2(S1(Ω) ∩ S2m (Ω)) = S2

(( 3⋃
i=1

S1(B1,i)
)
∩ S2m (Ω)

)
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= S2

( 3⋃
i=1

S1(B1,i) ∩ S2m (Ω)
)

= S2(S2m1(Ω)) = S2m+11(Ω).

This proves (2.13). Hence the second inequality in (2.12) holds. �

For any k ≥ 0, w2(k) denotes the sum of probability weights corresponding to all
multi-indices in Wk. Part (1) of the following lemma explains the meaning of the factor
w2(k).

Lemma 2.26. Assume the hypotheses of Proposition 2.24 and let w2(k) be defined as in
(1.12). Then:

(1) for k ≥ 0 and i = 1, 3, µ|S2k1(B1,i) = w2(k)µ ◦ S −1
2k1;

(2) for k ≥ 1, µ|S2k (B1,1) = w2(k − 1)µ ◦ S −1
2k−11 + pk

2µ ◦ S −1
2k ;

(3) for k ≥ 1 and i = 2, 3, µ|S2k (B1,i) = pk
2µ ◦ S −1

2k ;
(4) for i = 1, 2, 3 and j = 3, 4, µ|S j(B1,i) = p jµ ◦ S −1

j .

Proof. We only prove (1) for i = 1 as an example. By Proposition 2.24(4), S1(B1,1) =

(0, ρ2γ1) × (0, ρ2) ∪ (ρ2γ1, ρr + ρ2γ1) × (0, ρr). Note that S2(Ω) = (ργ1, ργ1 + r) ×
(0, r). Moreover, since ργ1 − (ρ2γ1 + ρr) = ρ(1 − 2r − ρ + ρr) ≥ 0, S1(B1,1) ⊆
S1(Ω)\S2(Ω). Hence µ(A) = p1µ ◦ S −1

1 (A) for any A ⊆ S1(B1,1). Assume that the
stated equality holds for k = m, that is, µ|S2m1(B1,1) = w2(m)µ ◦ S −1

2m1. For k = m + 1,
by Proposition 2.23(1), S2m+11(B1,1) = S13m+1 (B1,1). Then S −1

1 (A) ⊆ S3m+1 (B1,1) and
S −1

2 (A) ⊆ S2m1(B1,1) for any A ⊆ S2m+11(B1,1). It follows that µ(S −1
1 (A)) = pm+1

3 µ ◦
S −1

3m+1 (S −1
1 (A)) and µ(S −1

2 (A)) = w2(m)µ ◦ S −1
2m1(S −1

2 (A)). Thus,

µ(A) = p1µ ◦ S −1
1 (A) + p2µ ◦ S −1

2 (A)
= p1 pm+1

3 µ ◦ S −1
3m+1 (S −1

1 (A)) + p2w2(m)µ ◦ S −1
2m1(S −1

2 (A))

= p1 pm+1
3 µ ◦ S −1

13m+1 (A) + p2w2(m)µ ◦ S −1
2m+11(A)

= (p1 pm+1
3 + p2w2(m))µ ◦ S −1

2m+11(A)

= w2(m + 1)µ ◦ S −1
2m+11(A).

The last equality follows from (2.7). This proves part (1) for i = 1. For the proof of
part (3) in the case i = 3, we use Lemma 2.25. �

Proof (Example 2.22). It suffices to show that for m = 1, all the assumptions of
Proposition 2.19 are satisfied. By (2.8), Ω = (0, 1) × (0, 1). For each k ≥ 0, let Mk =

{1, 2, 3, 4}k. Let I1,` be defined as in (2.10). Thus, I1 = {I1,1,I1,2,I1,3}. Let I1,µ :=
{[I1,1]µ, [I1,2]µ, [I1,3]µ}. Next, we show that for any k ≥ 2, Ik,1,3 := {(S2k−11, k), (S2k , k)}
is the only level-k nonbasic island with respect to I1 (see Figure 2(b)). For ` = 2, 3,
since I(vroot) ≈µ I1,`, none of the I ∈ O(I1,`) are nonbasic islands with respect to I1
(see Figure 4) and hence assumption (1) of Proposition 2.19 holds for ` = 2, 3 with
c(`) = 2. Upon iterating the IFS once, I1,1 generates the following five islands:
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Figure 2. (a) First level iterations containing {I1,`}
3
`=1. (b) Second level iterations containing {I2,1,i}

5
i=1

and {I2,`,i}
3
i=1 for ` = 2, 3. The figures are drawn with ρ = 1/4 and r = 7/20.

I2,1,1 := {(S11, 2), (S12, 2)}, I2,1,2 := {(S14, 2)},
I2,1,3 := {(S21, 2), (S22, 2)}, I2,1,4 := {(S23, 2)}, I2,1,5 := {(S24, 2)}

(see Figure 3). Lemma 2.26 implies that [I2,1,i]µ ∈ I1,µ for i = 1, 2, 4, 5, and [I2,1,3]µ <
I1,µ. Thus, assumption (1) of Proposition 2.19 holds for ` = 1 with c(1) = 2 and
I2,1,3 is the only level-2 nonbasic island with respect to I1. Assume that Ik,1,3 :=
{(S2k−11, k), (S2k , k)} is the only level-k nonbasic island with respect to I1. Similarly,
Ik,1,3 generates five islands, namely,

Ik+1,1,1 := {(S2k−111, k + 1), (S2k−112, k + 1)}, Ik+1,1,2 := {(S2k−114, k + 1)},
Ik+1,1,3 := {(S2k1, k + 1), (S2k+1 , k + 1)}, Ik+1,1,4 := {(S2k3, k + 1)},

Ik+1,1,5 := {(S2k4, k + 1)}.

Lemma 2.26 again implies that [Ik+1,1,i]µ ∈ I1,µ for i = 1, 2, 4, 5, and [Ik+1,1,3]µ < I1,µ.
Thus, Ik+1,1,3 is the only level-(k + 1) nonbasic island with respect to I1. Since the
closure of SIk,1,3 (Ω) converges to a point, limk→∞ µ(SIk,1,3 (Ω)) = 0. Thus, assumption
(2) in Proposition 2.19 holds. Equation (2.11) implies that S1(Ω) ⊆ B1,1, S3(Ω) = B1,2
and S4(Ω) = B1,3, and hence B := {B1,` : ` = 1, 2, 3} is weakly regular. �

3. Renewal equation and proof of Theorem 1.1

Let {Si}i∈Λ be a finite type IFS on a compact subset X ⊆ Rd with Ω ⊆ X being
an FTC-set and let µ be the self-similar measure defined by {Si}i∈Λ together with
a probability vector (pi)i∈Λ. To compute τ(q) for q ≥ 0, we will use the equivalent
definition in (1.1).

In the rest of this section, we assume that µ satisfies EFT with Ω being an EFT-set
and (B,P) := ({B1,`}, {Pk,`}k≥1)`∈Γ being a weakly regular basic pair with respect to Ω.
Let ϕ`(δ) and Φ

(α)
`

(δ) be defined as in (1.2).

Proposition 3.1. Assume the above hypotheses and let q ≥ 0. Then there exist constants
c1, c2 > 0 such that

c1

∫
X
µ(Bc2δ(x))q dx ≤

∑
`∈Γ

∫
B1,`

µ(Bδ(x))q dx ≤
∫

X
µ(Bδ(x))q dx. (3.1)
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Figure 3. I1,1 and its offspring {I2,1,i}
5
i=1.

Figure 4. I2,` and its offspring {I2,`,i}
3
i=1 for ` = 2, 3.

Consequently,

τ(q) = inf
{
α ≥ 0 : lim

δ→0+

∑
`∈Γ

Φ
(α)
`

(δ) > 0
}

= sup
{
α ≥ 0 : lim

δ→0+

∑
`∈Γ

Φ
(α)
`

(δ) <∞
}
. (3.2)

Proof. Since B is a finite family of measure disjoint cells in Ω and Ω ⊆ X,∑
`∈Γ

∫
B1,`

µ(Bδ(x))q dx ≤
∫

Ω

µ(Bδ(x))q dx ≤
∫

X
µ(Bδ(x))q dx,

proving the second inequality in (3.1).
To prove the first inequality in (3.1), we note that by the weak regularity of B,

for any ` ∈ Γ, there exists some similitude σ` such that σ`(Ω) ⊆ B1,`. For ` ∈ Γ, let
ri` := max{ri : Si(Ω) ⊆ B1,`, i ∈ Λk and k ≥ 1} and σ` := S i` . Then∫

B1,`

µ(Bδ(x))q dx ≥
∫

B1,`

(pi`µ ◦ S −1
i` (Bδ(x)))q dx

= pq
i`r

d
i`

∫
S −1

i`
(B1,`)

µ(Br−1
i`
δ(y))q dy (let S −1

i` (x) = y)

≥ pq
im rd

im

∫
Ω

µ(Br−1
iM
δ(y))q dy, (3.3)

where pim = min{pi` : ` ∈ Γ}, rim = min{ri` : ` ∈ Γ}, and riM = max{ri` : ` ∈ Γ}.
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For convenience, let Y := X\Ω. Since Ω, ∂Ω, Y are mutually disjoint and X =

Ω ∪ ∂Ω ∪ Y ,∫
X
µ(Bδ(x))q dx

=

∫
Ω

µ(Bδ(x))q dx +

∫
∂Ω

µ(Bδ(x))q dx +

∫
Y
µ(Bδ(x))q dx. (3.4)

For any x ∈ ∂Ω, there exists y ∈ Bδ(x) ∩Ω ⊆ Ω such that Bδ(x) ⊆ B2δ(y). Hence∫
∂Ω

µ(Bδ(x))q dx ≤
∫

Ω

µ(B2δ(y))q dy. (3.5)

Let Qδ(Y) be the largest subset of Y satisfying Bδ(x) ⊆ Y for any x ∈ Qδ(Y). Combining
this with the fact that µ(Y) = 0, we see that µ(Bδ(x)) = 0 for any x ∈ Qδ(Y). Let
Rδ(Y) := Y\Qδ(Y). Then∫

Y
µ(Bδ(x))q dx =

∫
Rδ(Y)

µ(Bδ(x))q dx. (3.6)

Since Bδ(x) ∩ Ω , ∅ for any x ∈ Rδ(Y), there exists y ∈ Bδ(x) ∩ Ω ⊆ Ω such that
Bδ(x) ∩ Ω ⊆ B2δ(y), and thus µ(Bδ(x)) = µ(Bδ(x) ∩ Ω) ≤ µ(B2δ(y)). Combining this
with (3.4), (3.5), and (3.6),∫

X
µ(Bδ(x))q dx ≤ 3

∫
Ω

µ(B2δ(x))q dx. (3.7)

Equations (3.3) and (3.7) imply that

1/3 · pq
im rd

im

∫
X
µ(B1/2·r−1

iM
δ(y))q dy ≤

∑
`∈Γ

∫
B1,`

µ(Bδ(x))q dx,

and hence the first inequality of (3.1) holds with c1 = 1/3 · pq
im rd

im and c2 = 1/2 · r−1
iM

.
Multiplying both sides of (3.1) by δ−(d+α), and using (1.2),

c1

δd+α

∫
X
µ(Bc2δ(x))q dx ≤

∑
`∈Γ

Φ
(α)
`

(δ) ≤
1

δd+α

∫
X
µ(Bδ(x))q dx. (3.8)

Taking limδ→0+ in (3.8),

lim
δ→0+

c1

δd+α

∫
X
µ(Bc2δ(x))q dx ≤ lim

δ→0+

∑
`∈Γ

Φ
(α)
`

(δ)

≤ lim
δ→0+

1
δd+α

∫
X
µ(Bδ(x))q dx. (3.9)

Note that c2 > 0. Letting δ′ := c2δ,

lim
δ→0+

c1

δd+α

∫
X
µ(Bc2δ(x))q dx = c1cd+α

2 lim
δ′→0+

1
δ′(d+α)

∫
X
µ(Bδ′(x))q dx. (3.10)
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It follows from (3.9) and (3.10) that

inf
{
α ≥ 0 : lim

δ→0+

∑
`∈Γ

Φ
(α)
`

(δ) > 0
}

= inf
{
α ≥ 0 : lim

δ→0+

1
δd+α

∫
X
µ(Bδ(x))q dx > 0

}
,

and

sup
{
α ≥ 0 : lim

δ→0+

∑
`∈Γ

Φ
(α)
`

(δ) <∞
}

= sup
{
α ≥ 0 : lim

δ→0+

1
δd+α

∫
X
µ(Bδ(x))q dx <∞

}
.

Equation (3.2) holds by combining these with (1.1). �

We denote the contraction ratio of a contractive similitude σ by rσ. In view of
Proposition 3.1, it suffices to study Φ

(α)
`

(δ) for ` ∈ Γ.

Step 1. Derivation of a functional equation for Φ
(α)
`

(δ) for ` ∈ Γ. For ` ∈ Γ and k ≥ 2,
let P1

k,` and P2
k,` be defined as in (2.4). Without loss of generality, we assume that Γ can

be partitioned into two (possibly empty) sub-collections, Γ∗ and Γ′∗, defined as follows.
For ` ∈ Γ, we say ` ∈ Γ∗ if there exists some integer κ` satisfying P2

κ` ,`
= ∅, where we

choose κ` to be the smallest number satisfying the above condition. Let Γ′∗ := Γ\Γ∗.
Define κ` :=∞ for ` ∈ Γ′∗.

Fix ` ∈ Γ, by the definition of EFT, for any 2 ≤ k ≤ κ`, there exist two finite disjoint
subsets Gk,`,G′k,` ⊆ N such that

P1
k,` =

k⋃
j=2

{B j,`,i : i ∈ G j,`}, P2
k,` = {Bk,`,i : i ∈ G′k,`}.

Define
Bk,`,i := SIk,`,i (Ω) for 2 ≤ k ≤ κ` and i ∈ Gk,` ∪G′k,`.

Condition (1) of EFT implies that G2,` , ∅ for all ` ∈ Γ. If ` ∈ Γ′∗, condition (3) of EFT
implies that limk→∞

∑
i∈G′k,`

µ(Bk,`,i) = 0. Thus, for all ` ∈ Γ∗,

ϕ`(δ) =

κ∑̀
j=2

∑
i∈G j,`

∫
B j,`,i

µ(Bδ(x))q dx, (3.11)

while for all ` ∈ Γ′∗ and n ≥ 2,

ϕ`(δ) =

n∑
j=2

∑
i∈G j,`

∫
B j,`,i

µ(Bδ(x))q dx

+
∑

i∈G′n,`

∫
Bn,`,i

µ(Bδ(x))q dx. (3.12)
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For ` ∈ Γ, 2 ≤ k ≤ κ`, i ∈ Gk,` and δ > 0, let B̃k,`,i(δ) be the largest subset of Bk,`,i

satisfying Bδ(x) ⊆ Bk,`,i for any x ∈ B̃k,`,i(δ). We denote B̂k,`,i(δ) := Bk,`,i\B̃k,`,i(δ). So
for ` ∈ Γ∗, (3.11) can be written as

ϕ`(δ) =

κ∑̀
j=2

∑
i∈G j,`

∫
B̃ j,`,i(δ)

µ(Bδ(x))q dx

+

κ∑̀
j=2

∑
i∈G j,`

∫
B̂ j,`,i(δ)

µ(Bδ(x))q dx,

while for ` ∈ Γ′∗ and n ≥ 2, (3.12) can be expressed as

ϕ`(δ) =

n∑
j=2

∑
i∈G j,`

∫
B̃ j,`,i(δ)

µ(Bδ(x))q dx

+

n∑
j=2

∑
i∈G j,`

∫
B̂ j,`,i(δ)

µ(Bδ(x))q dx

+
∑

i∈G′n,`

∫
Bn,`,i

µ(Bδ(x))q dx.

For ` ∈ Γ, 2 ≤ k ≤ κ` and i ∈ Gk,`, there exist unique σ(k, `, i) ∈S ,w(k, `, i) > 0 and
c(k, `, i) ∈ Γ such that I1,c(k,`,i) ≈µ,σ(k,`,i),w(k,`,i) Ik,`,i. By Definition 2.13,

µ|SIk,`,i (Ω) = w(k, `, i) · µ|SI1,c(k,`,i) (Ω) ◦ σ(k, `, i)−1.

For B̃k,`,i(δ) ⊆ Bk,`,i, let B̃1,c(k,`,i)(δ/rσ(k,`,i)) be the largest subset of B1,c(k,`,i) satisfying
Bδ/rσ(k,`,i) (x) ⊆ B1,c(k,`,i) for any x ∈ B̃1,c(k,`,i)(δ/rσ(k,`,i)), where B1,c(k,`,i) = SI1,c(k,`,i) (Ω).
Thus,

µ|B̃k,`,i(δ) = w(k, `, i) · µ|B̃1,c(k,`,i)(δ/rσ(k,`,i)) ◦ σ(k, `, i)−1.

We denote B̂1,c(k,`,i)(δ/rσ(k,`,i)) = B1,c(k,`,i)\B̃1,c(k,`,i)(δ/rσ(k,`,i)). Hence for ` ∈ Γ∗,

ϕ`(δ) =

κ∑̀
j=2

∑
i∈G j,`

w( j, `, i)qrd
σ( j,`,i)

∫
B1,c( j,`,i)

µ(Bδ/rσ( j,`,i) (x))q dx

+

κ∑̀
j=2

(e`j(δ) − ẽ`j(δ)), (3.13)

where

e`j(δ) =
∑
i∈G j,`

∫
B̂ j,`,i(δ)

µ(Bδ(x))q dx,

ẽ`j(δ) =
∑
i∈G j,`

w( j, `, i)qrd
σ( j,`,i)

∫
B̂1,c( j,`,i)(δ/rσ( j,`,i))

µ(Bδ/rσ( j,`,i) (x))q dx.
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For ` ∈ Γ′∗ and n ≥ 2,

ϕ`(δ) =

n∑
j=2

∑
i∈G j,`

w( j, `, i)qrd
σ( j,`,i)

∫
B1,c( j,`,i)

µ(Bδ/rσ( j,`,i) (x))q dx

+

n∑
j=2

(e`j(δ) − ẽ`j(δ)) +
∑

i∈G′n,`

∫
Bn,`,i

µ(Bδ(x))q dx, (3.14)

where

e`j(δ) =
∑
i∈G j,`

∫
B̂ j,`,i(δ)

µ(Bδ(x))q dx,

ẽ`j(δ) =
∑
i∈G j,`

w( j, `, i)qrd
σ( j,`,i)

∫
B̂1,c( j,`,i)(δ/rσ( j,`,i))

µ(Bδ/rσ( j,`,i) (x))q dx.

Multiplying both sides of (3.13) and (3.14) by δ−(d+α), and using (1.2), we have for
` ∈ Γ∗,

Φ
(α)
`

(δ) =

κ∑̀
j=2

∑
i∈G j,`

w( j, `, i)qr−ασ( j,`,i)Φ
(α)
c( j,`,i)(δ/rσ( j,`,i))

+ E(α)
`

(δ), (3.15)

where

E(α)
`

(δ) =

κ∑̀
j=2

δ−(d+α)(e`j(δ) − ẽ`j(δ))

and

Φ
(α)
`

(δ) =

n∑
j=2

∑
i∈G j,`

w( j, `, i)qr−ασ( j,`,i)Φ
(α)
c( j,`,i)(δ/rσ( j,`,i))

+

n∑
j=2

δ−(d+α)(e`j(δ) − ẽ`j(δ))

+ δ−(d+α)
∑

i∈G′n,`

∫
Bn,`,i

µ(Bδ(x))q dx for ` ∈ Γ′∗ and n ≥ 2. (3.16)

For δ > 0 and ` ∈ Γ′∗, let N = N(`) := max{n ∈ N : δ ≤ min{rσ( j,`,i) : i ∈ G j,` for all
j ≤ n}}. Taking n := N in (3.16) for ` ∈ Γ′∗ and N ≥ 2,

Φ
(α)
`

(δ) =

∞∑
j=2

∑
i∈G j,`

w( j, `, i)qr−ασ( j,`,i)Φ
(α)
c( j,`,i)(δ/rσ( j,`,i))

+ E(α)
`

(δ) − E(α)
`,∞

(δ), (3.17)
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where

E(α)
`

(δ) =

N∑
j=2

δ−(d+α)(e`j(δ) − ẽ`j(δ))

+ δ−(d+α)
∑

i∈G′N,`

∫
BN,`,i

µ(Bδ(x))q dx

E(α)
`,∞

(δ) =

∞∑
j=N+1

∑
i∈G j,`

w( j, `, i)qr−ασ( j,`,i)Φ
(α)
c( j,`,i)(δ/rσ( j,`,i)).

Step 2. Derivation of the vector-valued equation. For each ` ∈ Γ, define

f`(x) = f (α)
`

(x) := Φ
(α)
`

(e−x). (3.18)

If we let δ = e−x, then Φ
(α)
`

(βδ) = f`(x − ln β) for any β > 0. Combining (3.15) and
(3.17), we have for ` ∈ Γ∗,

f`(x) =

κ∑̀
j=2

∑
i∈G j,`

w( j, `, i)qr−ασ( j,`,i) fc( j,`,i)(x + ln(rσ( j,`,i)))

+ z(α)
`

(x), (3.19)

where z(α)
`

(x) = E(α)
`

(e−x). For ` ∈ Γ′∗ and N ≥ 2,

f`(x) =

∞∑
j=2

∑
i∈G j,`

w( j, `, i)qr−ασ( j,`,i) fc( j,`,i)(x + ln(rσ( j,`,i)))

+ z(α)
`

(x), (3.20)

where z(α)
`

(x) = E(α)
`

(e−x) − E(α)
`,∞

(e−x).
For `, m ∈ Γ, let µ(α)

m` be the discrete measure such that for 2 ≤ j ≤ κ`, i ∈
G j,`, c( j, `, i) = m,

µ(α)
m` (−ln(rσ( j,`,i))) := w( j, `, i)qr−ασ( j,`,i). (3.21)

Then (see (1.4) and (1.5))

µ(α)
m` (R) =

κ∑̀
j=2

∑
i∈G j,`

w( j, `, i)qr−ασ( j,`,i),

and

F`(α) =
∑
m∈Γ

κ∑̀
j=2

∑
i∈G j,`

w( j, `, i)qr−ασ( j,`,i).

We summarize the above derivations in the following theorem.
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Theorem 3.2. Let µ be a self-similar measure defined by an IFS {Si}i∈Λ of finite type.
Assume that µ satisfies EFT. Let f,Mα, and z be defined as in (1.3). Then f satisfies the
vector-valued renewal equation f = f ∗Mα + z.

Proof (Theorem 1.1). We use a similar argument as that in [20, Theorem 1.1]. (1) We
observe that each F`(α) is a strictly increasing continuous positive function of α and

lim
α→−∞

F`(α) = 0, lim
α→∞

F`(α) =∞. (3.22)

Thus, there exists a unique α such that the spectral radius of Mα(∞) is 1.
(2) Let α be the unique number in part (1). Let m := [m(α)

k` ] = [
∫ ∞

0 x dµ(α)
k` ] be the

moment matrix. Following the proof of [20, Theorem 1.1(b)], we need to show that
some moment condition holds, and it suffices to show that

0 <
∑
k∈Γ

m(α)
k` <∞.

It is easy to check that for ` ∈ Γ,
∑

k∈Γ m(α)
k` takes the following values:

∑
k∈Γ

κ∑̀
j=2

∑
i∈G j,`

w( j, `, i)qr−ασ( j,`,i)|ln(rσ( j,`,i))|.

Equation (3.22) implies that there exists ε > 0 such that 0 < F`(α + ε) <∞. Thus,

0 <
∑
k∈Γ

κ∑̀
j=2

∑
i∈G j,`

w( j, `, i)qr−ασ( j,`,i)|ln(rσ( j,`,i))|

=
∑
k∈Γ

κ∑̀
j=2

∑
i∈G j,`

w( j, `, i)qr−(α+ε)
σ( j,`,i) r

ε
σ( j,`,i)|ln(rσ( j,`,i))|

< ∞.

Moreover, it follows from (3.21) that
∑

m∈Γ µ
(α)
m` (0) = 0 <

∑
m∈Γ µ

(α)
m` (∞), that is, each

column of Mα is nondegenerate at 0. From Theorem 3.2, f = f ∗Mα + z, where, by
assumption, z is directly Riemann integrable on R.

We first consider the case Mα(∞) is irreducible. It follows from the above
observations and [20, Theorem 4.1] that there exist positive constants C1 and
C2 such that 0 < C1 ≤ limx→∞ f`(x) ≤ C2 < ∞ for all ` ∈ Γ. By (3.18), 0 < C1 ≤

limδ→0+ Φ
(α)
`

(δ) ≤ C2 <∞ for all ` ∈ Γ. Consequently, Φ
(α)
`

(δ) ≤
∑
`∈Γ Φ

(α)
`

(δ) and thus,

0 < C1 ≤ lim
δ→0+

Φ
(α)
`

(δ) ≤ lim
δ→0+

∑
`∈Γ

Φ
(α)
`

(δ)

≤
∑
`∈Γ

lim
δ→0+

Φ
(α)
`

(δ) ≤ C2#Γ <∞.

It now follows from (3.2) that τ(q) = α.
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It remains to consider the case Mα(∞) is reducible. As in the proof of [20, Theorem
1.1(b), Case 2],

lim
x→∞

f (β)
`

(x) = 0 for all ` ∈ Γ and all β < α. (3.23)

Moreover, there exists some `0 ∈ Γ such that

lim
x→∞

f (α)
`0

(x) > 0. (3.24)

Combining (3.23) with (3.18), we see that for all ` ∈ Γ and all β < α, limδ→0+ Φ
(β)
`

(δ)
= 0. Thus, Proposition 3.1 implies that τ(q) ≥ α. Similarly, combining (3.24) and
(3.18),

0 < lim
δ→0+

Φ
(α)
`0

(δ) ≤ lim
δ→0+

∑
`∈Γ

Φ
(α)
`

(δ).

It follows from Proposition 3.1 again that τ(q) ≤ α, which completes the proof. �

4. A class of one-dimensional IFSs with overlaps

In this section, we derive renewal equations and compute the Lq-spectrum of self-
similar measures µ defined by the IFSs in (1.6). Let X := [0, 1] and Ω = (0, 1). Define

I1,1 = {(S1, 1), (S2, 1)}, I1,2 = {(S3, 1)},

and
B1,` := SI1,` (Ω) for ` ∈ Γ,

where Γ = {1, 2}. For ` ∈ Γ and k ≥ 1, let Pk,` be defined as in (2.5) and (2.6). It follows
from Example 2.21 that µ satisfies EFT with Ω = (0,1) being an EFT-set, B := {B1,`}`∈Γ
being a weakly regular basic family of cells in Ω, and (B, P) := ({B1,`}, {Pk,`}k≥1)`∈Γ
being a weakly regular basic pair with respect to Ω.

In the rest of this section, we use the notation defined in Section 3. For I ∈ I, let
SI(Ω) and O(I) be defined as in (2.1) and (2.2), respectively. For ` ∈ Γ, i = 1, 2, and
k ≥ 2, let Pi

k,` be defined as in (2.4). We first observe that O(I1,2) = {I2,2,1,I2,2,2},
where I2,2,1 := {(S31, 2), (S32, 2)} and I2,2,2 := {(S33, 2)} (see Figure 5). Since
I(vroot) ≈µ,S3,p3 I1,2, I1,i ≈µ,S3,p3 I2,2,i for i = 1, 2. Define

B2,2,i := SI2,2,i (Ω) = S3(B1,i) for i = 1, 2. (4.1)

Thus, P2,2 = P1
2,2 = {B2,2,1, B2,2,2} and P2

2,2 = ∅. It follows that Pk,2 = P2,2 for all k ≥ 2;
in particular, 2 ∈ Γ∗, κ2 = 2, and G2,2 = {1, 2}.

Define

Ik,1,1 := {(S2k−211, k), (S2k−212, k)},
Ik,1,2 := {(S2k−11, k), (S2k , k)}, Ik,1,3 := {(S2k−13, k)}

for k ≥ 2. By the proof of [21, Example 3.3],

O(I1,1) = {I2,1,i : i = 1, 2, 3}, O(Ik,1,2) = {Ik+1,1,i : i = 1, 2, 3},
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Figure 5. First, second, and third levels of iterations containing {I1,`}, {I2,`,i}, and {I3,1,i}. The figure is
drawn with ρ = 1/3 and r = 2/7.

and Ik,1,2 is the only level-k nonbasic island with respect to I1. For k ≥ 2, let

Bk,1,1 := SIk,1,1 (Ω) = S2k−21(B1,1),
Bk,1,2 := SIk,1,2 (Ω) = S2k−1 (B1,1),
Bk,1,3 := SIk,1,3 (Ω) = S2k−1 (B1,2).

(4.2)

Thus, P1
k,1 =

⋃k
j=2{B j,1,1, B j,1,3} and P2

k,1 = {Bk,1,2} for all k ≥ 2. Consequently, 1 ∈ Γ′∗,
κ1 =∞, Gk,1 = {1, 3}, and G′k,1 = {2} for k ≥ 2.

In the rest of this section, fix q ≥ 0 and let w1(k) be defined as in (1.8).
First, we derive functional equations for Φ

(α)
`

(δ) for ` = 1, 2. Combining (3.12),
(3.11), (4.2) and (4.1),

ϕ1(δ) =

n∑
j=2

(∫
B j,1,1

+

∫
B j,1,3

)
µ(Bδ(x))q dx +

∫
Bn,1,2

µ(Bδ(x))q dx

and
ϕ2(δ) =

(∫
B2,2,1

+

∫
B2,2,2

)
µ(Bδ(x))q dx.

For ` ∈ Γ, 2 ≤ k ≤ κ`, i ∈ Gk,` and δ > 0, let B̃k,`,i(δ), B̂k,`,i(δ), B̃1,c(k,`,i)(δ/rσ(k,`,i)) and
B̂1,c(k,`,i)(δ/rσ(k,`,i)) be defined as in Section 3. Combining (4.2) and (4.1), we have for
j ≥ 2,

B̃ j,1,1(δ) = (S2 j−211(0) + δ, S2 j−212(1) − δ),

B̂ j,1,1(δ) = (S2 j−211(0), S2 j−211(0) + δ) ∪ (S2 j−212(1) − δ, S2 j−212(1)),
B̃ j,1,3(δ) = (S2 j−13(0) + δ, S2 j−13(1) − δ),

B̂ j,1,3(δ) = (S2 j−13(0), S2 j−13(0) + δ) ∪ (S2 j−13(1) − δ, S2 j−13(1)),
B̃2,2,1(δ) = (S31(0) + δ, S32(1) − δ),

B̂2,2,1(δ) = (S31(0), S31(0) + δ) ∪ (S32(1) − δ, S32(1)),
B̃2,2,2(δ) = (S33(0) + δ, S33(1) − δ),

B̂2,2,2(δ) = (S33(0), S33(0) + δ) ∪ (S33(1) − δ, S33(1)).

(4.3)
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Figure 6. Figure showing the sets B2,1,1, B̃2,1,1(δ), and B̂2,1,1(δ).

Figure 7. Figure showing the sets B2,1,3, B̃2,1,3(δ), and B̂2,1,3(δ).

(See Figures 6 and 7.)
It follows from (4.2), (4.1), and [21, Lemma 2.14] that for j ≥ 2,

µ(B j,1,1) = w1( j − 2)µ(B1,1), µ(B j,1,2) = p j−1
2 µ(B1,2).

Thus,

w( j, 1, 1) = w1( j − 2), c( j, 1, 1) = 1, σ( j, 1, 1) = S2 j−21, rσ( j,1,1) = ρr j−2,

w( j, 1, 3) = p j−1
2 , c( j, 1, 3) = 2, σ( j, 1, 3) = S2 j−1 , rσ( j,1,3) = r j−1,

and

B̃1,1(δ/ρr j−2) = (S1(0) + δ/ρr j−2, S2(1) − δ/ρr j−2),
B̃1,2(δ/r j−1) = (S3(0) + δ/r j−1, S3(1) − δ/r j−1),

B̂1,1(δ/ρr j−2) = (S1(0), S1(0) + δ/ρr j−2) ∪ (S2(1) − δ/ρr j−2, S2(1)),

B̂1,2(δ/r j−1) = (S3(0), S3(0) + δ/r j−1) ∪ (S3(1) − δ/r j−1, S3(1)).

Since µ|S3(B1,i) = p3µ ◦ S −1
3 on S3(B1,i) for i = 1, 2, by using (4.1), we have µ(B2,2,i) =

p3µ(B1,i). Hence w(2, 2, i) = p3, c(2, 2, i) = i, σ(2, 2, i) = S3, rσ(2,2,i) = r and
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B̃1,1(δ/r) = (S1(0) + δ/r, S2(1) − δ/r),
B̃1,2(δ/r) = (S3(0) + δ/r, S3(1) − δ/r),

B̂1,1(δ/r) = (S1(0), S1(0) + δ/r) ∪ (S2(1) − δ/r, S2(1)),

B̂1,2(δ/r) = (S3(0), S3(0) + δ/r) ∪ (S3(1) − δ/r, S3(1)).

By (3.14) and (3.13),

ϕ1(δ) =

n∑
j=2

(
w1( j − 2)qρr j−2

∫
B1,1

µ(Bδ/ρr j−2 (x))q dx

+ (pq
2r) j−1

∫
B1,2

µ(Bδ/r j−1 (x))q dx
)

+

n∑
j=2

(e1
j(δ) − ẽ1

j(δ)) +

∫
Bn,1,2

µ(Bδ(x))q dx, (4.4)

and

ϕ2(δ) = pq
3r

(∫
B1,1

+

∫
B1,2

)
µ(Bδ/r(x))q dx + e2

2(δ) − ẽ2
2(δ), (4.5)

where

e1
j(δ) =

(∫
B̂ j,1,1(δ)

+

∫
B̂ j,1,3(δ)

)
µ(Bδ(x))q dx,

ẽ1
j(δ) = w1( j − 2)qρr j−2

∫
B̂1,1(δ/ρr j−2)

µ(Bδ/ρr j−2 (x))q dx

+ (pq
2r) j−1

∫
B̂1,2(δ/r j−1)

µ(Bδ/r j−1 (x))q dx, (4.6)

e2
2(δ) =

(∫
B̂2,2,1(δ)

+

∫
B̂2,2,2(δ)

)
µ(Bδ(x))q dx,

ẽ2
2(δ) = pq

3r
(∫

B̂1,1(δ/r)
+

∫
B̂1,2(δ/r)

)
µ(Bδ/r(x))q dx.

Multiplying both sides of (4.4) and (4.5) by δ−(1+α) and using (1.2),

Φ
(α)
1 (δ) =

n∑
j=2

(w1( j − 2)q(ρr j−2)−αΦ
(α)
1 (δ/ρr j−2)

+ (pq
2r−α) j−1Φ

(α)
2 (δ/r j−1))

+

n∑
j=2

δ−1−α(e1
j(δ) − ẽ1

j(δ)) + δ−1−α
∫

Bn,1,2

µ(Bδ(x))q dx (4.7)

and

Φ
(α)
2 (δ) = pq

3r−α(Φ(α)
1 (δ/r) + Φ

(α)
2 (δ/r)) + δ−1−α(e2

2(δ) − ẽ2
2(δ)).
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Let N := max{n ∈ N : δ ≤ min{ρrn−2, rn−1}}. Substituting n = N in (4.7),

Φ
(α)
1 (δ) =

∞∑
j=2

(w1( j − 2)q(ρr j−2)−αΦ
(α)
1 (δ/ρr j−2)

+ (pq
2r−α) j−1Φ

(α)
2 (δ/r j−1))

+ E(α)
1 (δ) − E(α)

1,∞(δ), (4.8)
where

E(α)
1 (δ) =

N∑
j=2

δ−1−α(e1
j(δ) − ẽ1

j(δ)) + δ−1−α
∫

BN,1,2

µ(Bδ(x))q dx,

E(α)
1,∞(δ) =

∞∑
j=N+1

(w1( j − 2)q(ρr j−2)−αΦ
(α)
1 (δ/ρr j−2)

+ (pq
2r−α) j−1Φ

(α)
2 (δ/r j−1)).

Let
Φ

(α)
2 (δ) = pq

3r−α(Φ(α)
1 (δ/r) + Φ

(α)
2 (δ/r)) + E(α)

2 (δ), (4.9)
where

E(α)
2 (δ) = δ−1−α(e2

2(δ) − ẽ2
2(δ)).

Next, we derive a vector-valued equation. It follows from (3.20), (3.19), (4.8), and
(4.9) that

f1(x) =

∞∑
j=2

(w1( j − 2)q(ρr j−2)−α f1(x + ln(ρr j−2))

+ (pq
2r−α) j−1 f2(x + ln(r j−1))) + z(α)

1 (x)
and

f2(x) = pq
3r−α

2∑
i=1

fi(x + ln r) + z(α)
2 (x),

where z(α)
1 (x) = E(α)

1 (e−x) − E(α)
1,∞(e−x), z(α)

2 (x) = E(α)
2 (e−x). For `,m = 1, 2, let µ(α)

m` be the
discrete measures such that for j ≥ 2,

µ(α)
11 (−ln(ρr j−2)) = (w1( j − 2))q(ρr j−2)−α,

µ(α)
21 (−ln(r j−1)) = (pq

2r−α) j−1,

µ(α)
12 (−ln r) = µ(α)

22 (−ln r) = pq
3r−α.

Then

µ(α)
11 (R) =

∞∑
j=2

w1( j − 2)q(ρr j−2)−α,

µ(α)
21 (R) =

∞∑
j=2

(pq
2r−α) j−1,

µ(α)
12 (R) = µ(α)

22 (R) = pq
3r−α.
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For fixed q ≥ 0, let

F1(α) :=
∞∑
j=2

w1( j − 2)q(ρr j−2)−α +

∞∑
j=2

(pq
2r−α) j−1,

F2(α) := 2pq
3r−α,

D` := {α ∈ R : F`(α) <∞} for ` = 1, 2,

(4.10)

and

Mα(∞) =


∞∑
j=2

w1( j − 2)q(ρr j−2)−α pq
3r−α

∞∑
j=2

(pq
2r−α) j−1 pq

3r−α

 .
Finally, we show that the error terms z(α)

`
(x) = o(e−εx) as x→∞, that is, E(α)

`
(δ) =

o(δε) and E(α)
1,∞(δ) = o(δε) as δ→0 for some ε > 0 and ` = 1, 2.

Proposition 4.1.

(1) Φ
(α)
1 (δ/ρrk) ≤ 1 for any k ≥ N − 1;

(2) Φ
(α)
2 (δ/rk) ≤ 1 for any k ≥ N.

Proof.
(1) It follows from the definition of N that δ ≥ ρrk for any k ≥ N − 1. Hence

Φ
(α)
1 (δ/ρrk) =

1
(δ/ρrk)1+α

∫
B1,1

µ(Bδ/ρrk (x))q dx ≤ (ρrk/δ)1+α ≤ 1.

Hence Φ
(α)
1 (δ/ρrk) ≤ 1 for any k ≥ N − 1.

(2) The proof is similar to that of (1). �

The following proposition can be proved directly by using induction; we omit the
details.

Proposition 4.2.

(1) S2k (1) = rk + ρ(1 − rk) for any k ≥ 1;
(2) S2k−11(0) = ρ(1 − rk−1) for any k ≥ 1.

Proposition 4.3. For q ≥ 0, let F1(α) and D1 be defined as in (4.10). Then D1 is open.

Proof. Let p := max{p2, p3}. In view of (1.8), we consider the following two cases for
w1(k).

Case 1. p2 = p3. Then w1(k) = (k + 1)p1 pk
2; moreover,

p1 pk ≤ w1(k) = (k + 1)p1 pk. (4.11)
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Thus,

lim
k→∞

k
√

w1(k)q(ρrk)−α = lim
k→∞

k
√

((k + 1)p1 pk)q(ρrk)−α

= lim
k→∞

k
√

(k + 1)q pq
1ρ
−α · pq/rα

= pq/rα. (4.12)

Case 2. p2 , p3. Assume p2 > p3. Then

w1(k) = p1 pk
2

k∑
j=0

(p3/p2) j = p1 pk
2

1 − (p3/p2)k+1

1 − p3/p2
.

Note that

1 ≤
1 − (p3/p2)k+1

1 − p3/p2
<

1
1 − p3/p2

=
p2

p2 − p3
=: c.

Thus, p1 pk
2 ≤ w1(k) ≤ cp1 pk

2. Similarly, if p3 > p2, p1 pk
3 ≤ w1(k) ≤ cp1 pk

3. So if p2 ,
p3,

p1 pk ≤ w1(k) ≤ cp1 pk. (4.13)

Hence

lim
k→∞

k
√

w1(k)q(ρrk)−α = pq/rα if p2 , p3. (4.14)

Combining (4.12) and (4.14), limk→∞
k
√

w1(k)q(ρrk)−α = pq/rα. By the root test, the
series

∑∞
k=0 w1(k)q(ρrk)−α is convergent if pq/rα < 1, that is,

∑∞
k=0 w1(k)q(ρrk)−α and∑∞

k=0(pq/rα)k have the same radius of convergence. If pq/rα = 1, then
∑∞

k=0(pq/rα)k =

∞. It follows from (4.11) and (4.13) that (p1 pk)q ≤ w1(k)q for q ≥ 0. For k ≥ 0,
(p1 pk)q(ρrk)−α ≤ w1(k)q(ρrk)−α. Thus,

∞ = pq
1ρ
−α

∞∑
k=0

(pq/rα)k ≤

∞∑
k=0

w1(k)q(ρrk)−α.

Hence D1 is open. �

Proposition 4.4. For q ≥ 0, assume that α ∈ D` for ` = 1, 2. Then there exists ε > 0
such that:

(1)
∑∞

j=N+1 w1( j − 2)q(ρr j−2)−αΦ
(α)
1 (δ/ρr j−2) = o(δε);

(2)
∑∞

j=N+1(pq
2r−α) j−1Φ

(α)
2 (δ/r j−1) = o(δε);

(3)
∑N

j=2 δ
−1−α(e1

j(δ) − ẽ1
j(δ)) = o(δε);

(4) δ−1−α
∫

BN,1,2
µ(Bδ(x))q dx = o(δε);

(5) δ−1−α(e2
2(δ) − ẽ2

2(δ)) = o(δε).
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Proof.
(1) By Proposition 4.3, D1 = {α ∈ R : F1(α) < ∞} is open. Thus, there exists ε > 0
sufficiently small such that α + ε ∈ D1. So there exists a positive constant C such that

∞∑
j=N+1

w1( j − 2)q(ρr j−2)−α−ε +

∞∑
j=N+1

(pq
2r−α−ε) j−1 ≤ C.

Since

(ρrN−1)−ε
∞∑

j=N+1

w1( j − 2)q(ρr j−2)−α ≤
∞∑

j=N+1

w1( j − 2)q(ρr j−2)−α−ε ,

∑∞
j=N+1 w1( j − 2)q(ρr j−2)−α ≤ C(ρrN−1)ε ≤ Cδε , where the last inequality follows

from the definition of N. Combining these with Proposition 4.1(1),
∑∞

j=N+1 w1( j −
2)q(ρr j−2)−αΦ

(α)
1 (δ/ρr j−2) = o(δε).

(2) The proof is similar to that of (1).
(3) It suffices to show that e1

j(δ) = o(δ1+α+ε) and ẽ1
j(δ) = o(δ1+α+ε) for 2 ≤ j ≤ N. It

follows from (4.6) and (4.3) that

e1
j(δ) =

(∫ S2 j−211(0)+δ

S2 j−211(0)
+

∫ S2 j−212(1)

S2 j−212(1)−δ

+

∫ S2 j−13(0)+δ

S2 j−13(0)
+

∫ S2 j−13(1)

S2 j−13(1)−δ

)
µ(Bδ(x))q dx.

As an example we only prove
∫ S2 j−211(0)+δ

S2 j−211(0) µ(Bδ(x))q dx = o(δ1+α+ε). It follows from (1)
and (2) that

w1(N − 1)q ≤ Cδα+ε , pNq
2 ≤ Cδα+ε . (4.15)

Since Bδ(x) ⊆ B2δ(S2 j−211(0)) for any x ∈ (S2 j−211(0), S2 j−211(0) + δ) and µ(B2δ(S2 j−211
(0))) = p1w1( j − 2)µ(B2δ/ρ2r j−2 (0)) ≤ p1w1( j − 2),∫ S2 j−211(0)+δ

S2 j−211(0)
µ(Bδ(x))q dx ≤ (µ(B2δ(S2 j−211(0))))qδ ≤ pq

1w1( j − 2)qδ

≤ (p1 p1−N
2 )qw1(N − 1)qδ ≤ C(p1 p1−N

2 )qδ1+α+ε ,

where the third inequality holds because for 0 ≤ k ≤ N − 2

w1(k) =
p1(pN−1

2 + pN−2
2 p3 + · · · + pN−1

3 )(pk
2 + pk−1

2 p3 + · · · + pk
3)

(pN−1
2 + pN−2

2 p3 + · · · + pN−1
3 )

≤
w1(N − 1)(p2 + p3)k

pN−1
2 + pN−2

2 p3 + · · · + pN−1
3

≤ p1−N
2 w1(N − 1), (4.16)

and the last inequality follows from (4.15). The estimate ẽ1
j(δ) = o(δ1+α+ε) can be

established as that for e1
j(δ) = o(δ1+α+ε).
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(4) By (4.2),∫
BN,1,2

µ(Bδ(x))q dx =

(∫ S2N−11(0)+δ

S2N−11(0)
+

∫ S2N (1)−δ

S2N−11(0)+δ
+

∫ S2N (1)

S2N (1)−δ

)
µ(Bδ(x))q dx

=: (I) + (II) + (III).

We first show that δ−1−α(I) = o(δε/2). For any x ∈ (S2N−11(0), S2N−11(0) + δ), Bδ(x) ⊆
B2δ(S2N−11(0)) and

µ(B2δ(S2N−11(0))) = w1(N − 1)µ(B2δ/ρrN−1 (0)) ≤ w1(N − 1).

Combining these with (4.15),

(I) ≤ µ(B2δ(S2N−11(0)))qδ ≤ w1(N − 1)qδ ≤ Cδ1+α+ε .

It follows that δ−1−α(I) = o(δε/2).
Next, we show that δ−1−α(II) = o(δε/2). It follows from [21, Lemma 2.14] that

µ|S2N−1 (B1,1) = w1(N − 2)µ ◦ S −1
2N−21 + pN−1

2 µ ◦ S −1
2N−1 on S2N−1 (B1,1).

Thus, µ(Bδ(x)) ≤ w1(N − 2) + pN−1
2 for x ∈ (S2N−11(0) + δ, S2N (0) − δ). Combining

Proposition 4.2, (4.16), (4.15), and (1.7),

(II) ≤ (S2N (1) − S2N−11(0) − 2δ)(w1(N − 2) + pN−1
2 )q

≤ rN−1(2r + ρ(1 − r))(p1−N
2 w1(N − 1) + p−1

2 pN
2 )q

≤ rN−1(2r + ρ(1 − r))((Cδα+ε)1/q + (Cδα+ε)1/q)q

≤ C′rN−1δα+ε ≤ C′r−1δ1+α+ε ;

that is, δ−1−α(II) = o(δε/2).
The proof of δ−1−α(III) = o(δε/2) is similar to that for δ−1−α(I) = o(δε/2). Hence

δ−1−α
∫

S2N−1 (B1,1)
µ(Bδ(x))q dx = o(δε/2).

(5) The proof is similar to that of (3). �

Proof (Theorem 1.2). Combining Theorem 1.1 and Proposition 4.4 yields τ(q) = α.
Let

G(q, α) := (1 − pq
2r−α)(1 − pq

3r−α)
∞∑

k=0

w1(k)q(ρrk)−α

+ r−α(pq
2 + pq

3) − 1.

We show that G(q, α) is C1. It follows from Proposition 4.3 that
∞∑

k=0

w1(k)q(ρrk)−α <∞ for any (q, α) ∈ (0,∞) × D1.
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Since w1(k) ≤ p1 < 1,
∑∞

k=0 w1(k)q(ρrk)−α is strictly decreasing in q and strictly
increasing in α. Thus, for any (q0, α0) ∈ (0,∞) × D1, the series converges uniformly
on {(q, α) : q ≥ q0, α ≤ α0}. Moreover, it follows from (4.11) and (4.13) that

lim
k→∞

w1(k) = 0.

Hence, for any (q, α) ∈ (0,∞) × D1,

Gq(q, α) = (−pq
2r−α(1 − pq

3r−α) ln p2

− pq
3r−α(1 − pq

2r−α) ln p3)
∞∑

k=0

w1(k)q(ρrk)−α

+ (1 − pq
2r−α)(1 − pq

3r−α)
∞∑

k=0

w1(k)q(ρrk)−α ln w1(k)

+ r−α
3∑

i=2

pq
i ln pi

and

Gα(q, α) = (pq
2(1 − pq

3r−α) + pq
3(1 − pq

2r−α))r−α ln r
∞∑

k=0

w1(k)q(ρrk)−α

+ (1 − pq
2r−α)(1 − pq

3r−α)
∞∑

k=0

w1(k)q(ρrk)−α ln(ρrk)−1

+ r−α
3∑

i=2

pq
i ln r−1.

A similar argument as above shows that G(q, α) is C1.
We now show that Gα(q̃, α̃) , 0 for any (q̃, α̃) ∈ (0,∞) × D1 satisfying G(q̃, α̃) = 0.

Since τ(q) is convex, we can let {qn} be an increasing sequence of positive numbers
such that limn→∞ qn = q̃ and that τ is differentiable at each qn. Then (1.9) implies that

Gq(qn, αn) + Gα(qn, αn) · α′(qn) = 0 for all n,

and thus,
Gq(q̃, α̃) + Gα(q̃, α̃) · α′−(q̃) = 0,

where α′−(q̃) denotes the left-hand derivative of α(q)(= τ(q)) at q̃.
Suppose, in contrast, that Gα(q̃, α̃) = 0. Then Gq(q̃, α̃) = 0. So Gα(q̃, α̃) −Gq(q̃, α̃)

= 0. It follows from G(q̃, α̃) = 0 that

∞∑
k=0

w1(k)q̃(ρrk)−α̃ =
1 − (pq̃

2 + pq̃
3)r−α̃

(1 − pq̃
2r−α̃)(1 − pq̃

3r−α̃)
. (4.17)
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Figure 8. Graphs of τ(q) and f (α) for the self-similar measure in Example 2.21 with ρ = 1/3, r = 2/7,
p1 = 1/2, p2 = 1/4, and p3 = 1/4.

Substituting (4.17) into the above expressions for Gq and Gα, simplifying the result,
and using the fact that 0 < pq̃

i r−α̃ < 1 for i = 2, 3,

0 = Gα(q̃, α̃) −Gq(q̃, α̃)

= pq̃
2r−α̃(ln r−1 − ln p2)

pq̃
3r−α̃

1 − pq̃
2r−α̃

+ pq̃
3r−α̃(ln r−1 − ln p3)

pq̃
2r−α̃

1 − pq̃
3r−α̃

+ (1 − pq̃
2r−α̃)(1 − pq̃

3r−α̃)
∞∑

k=0

w1(k)q̃(ρrk)−α̃(ln(ρrk)−1 − ln w1(k))

> 0,

a contradiction. Hence Gα(q, α) , 0 for any (q, α) ∈ (0,∞) × D1 satisfying G(q, α) = 0.
The implicit function theorem now implies that τ is differentiable on (0,∞) and
the stated formula for dimH(µ) follows by computing τ′(1) = −Gq(1, 0)Gα(1, 0)−1

(see [9, 19]). This completes the proof. �

Figure 8 shows the graphs of τ(q) and f (α), q ≥ 0, for some measure in the family.
For this example, dimH(µ) = τ′(1) ≈ 0.720268 and dimH(K) = −τ(0) ≈ 0.797012,
where K is the self-similar set corresponding to the IFS in (1.6).

5. A class of examples in R2

In this section, we derive renewal equations and compute the Lq-spectrum of self-
similar measure µ defined by the IFSs in (1.10) together with a probability vector
(pi)4

i=1. Let X := [0, 1] × [0, 1],Ω = (0, 1) × (0, 1). Define

I1,1 = {(S1, 1), (S2, 1)}, I1,2 = {(S3, 1)}, I1,3 = {(S4, 1)},

and
B1,` := SI1,` (Ω) for ` ∈ Γ,

where Γ = {1, 2, 3}. For ` ∈ Γ and k ≥ 1, let Pk,` be defined as in (2.5) and (2.6).
It follows from Example 2.22 that µ satisfies EFT with Ω = (0, 1) × (0, 1) being
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an EFT-set, B := {B1,`}`∈Γ being a weakly regular basic family of cells in Ω, and
(B,P) := ({B1,`}, {Pk,`}k≥1)`∈Γ being a weakly regular basic pair with respect to Ω.

In the rest of this section, we use the notation defined in Section 3. For I ∈ I, let
SI(Ω) and O(I) be defined as in (2.1) and (2.2), respectively. For ` ∈ Γ, i = 1, 2, and
k ≥ 2, let Pi

k,` be defined as in (2.4). We first observe that for ` = 2, 3, O(I1,`) =

{I2,`,i, i = 1, 2, 3}, where I2,`,1 := {(S(`+1)1, 2), (S(`+1)2, 2)}, I2,`,2 := {(S(`+1)3, 2)}, and
I2,`,3 := {(S(`+1)4, 2)} (see Figure 2). Since for ` = 2, 3, I(vroot) ≈µ,S`+1,p`+1 I1,`, we have
I1,i ≈µ,S`+1,p`+1 I2,`,i for i = 1, 2, 3. For ` = 2, 3, define

B2,`,i := SI2,`,i (Ω) = S`+1(B1,i), i = 1, 2, 3. (5.1)

Thus, P2,` = P1
2,` = {B2,`,i, i = 1,2,3} and P2

2,` = ∅. It follows that Pk,` = P2,` for all k ≥ 2;
in particular, for ` = 2, 3, ` ∈ Γ∗, κ` = 2, and G2,` = {1, 2, 3}.

By the proof of Example 2.22,

O(I1,1) = {I2,1,i, i = 1, . . . , 5}, O(Ik,1,3) = {Ik+1,1,i, i = 1, . . . , 5},

and Ik,1,3 is the only level-k nonbasic island with respect to I1. For k ≥ 2, define

Bk,1,1 := SIk,1,1 (Ω) = S2k−21(B1,1),
Bk,1,2 := SIk,1,2 (Ω) = S2k−21(B1,3),
Bk,1,3 := SIk,1,3 (Ω) = S2k−1 (B1,1),
Bk,1,4 := SIk,1,4 (Ω) = S2k−1 (B1,2),
Bk,1,5 := SIk,1,5 (Ω) = S2k−1 (B1,3).

(5.2)

Thus, P1
k,1 =

⋃k
j=2{B j,1,i, i = 1, 2, 4, 5} and P2

k,1 = {Bk,1,3} for all k ≥ 2. Consequently,
1 ∈ Γ′∗, κ1 =∞, Gk,1 = {1, 2, 4, 5}, and G′k,1 = {3} for k ≥ 2.

In the rest of this section, let w2(k) be defined as in (1.12). First, we derive functional
equations for Φ

(α)
`

(δ) for ` = 1, 2, 3. Combining (3.11), (3.12), (5.2), and (5.1),

ϕ1(δ) =

( n∑
j=2

(∫
B j,1,1

+

∫
B j,1,2

+

∫
B j,1,4

+

∫
B j,1,5

)
+

∫
Bn,1,3

)
µ(Bδ(x))q dx,

and

ϕ`(δ) =

3∑
i=1

∫
B2,`,i

µ(Bδ(x))q dx for ` = 2, 3.

For ` ∈ Γ, 2 ≤ k ≤ κ`, i ∈ Gk,`, and δ > 0, let B̃k,`,i(δ), B̂k,`,i(δ), B̃1,c(k,`,i)(δ/rσ(k,`,i)), and
B̂1,c(k,`,i)(δ/rσ(k,`,i)) be defined as in Section 3. Recall from (2.9) that γk := 1 − rk.
Combining (5.2), (5.1), and Proposition 2.24, we have for j ≥ 2,

B̃ j,1,1(δ) = (ργ j−2 + δ, ργ j−2 + ρ2r j−2γ1 + δ) × (δ, ρ2r j−2 − δ)
∪ (ργ j−2 + ρ2r j−2γ1 + δ, ργ j−2 + ρ2r j−2γ1 + ρr j−1 − δ)

× (δ, ρr j−1 − δ),
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B̂ j,1,1(δ) = (ργ j−2, ργ j−2 + ρ2r j−2γ1 + ργ j−1) × (0, δ)
∪ (ργ j−2, ργ j−2 + ρ2r j−2γ1 + δ) × (ρ2r j−2 − δ, ρ2r j−2)
∪ (ργ j−2 + ρ2r j−2γ1, ργ j−2 + ρ2r j−2γ1 + ρr j−1)

× (ρr j−1 − δ, ρr j−1)
∪ (ργ j−2, ργ j−2 + δ) × (δ, ρ2r j−2 − δ)
∪ (ργ j−2 + ρ2r j−2γ1, ργ j−2 + ρ2r j−2γ1 + δ)

× (ρ2r j−2, ρr j−1 − δ)
∪ (ργ j−2 + ρ2r j−2γ1 + ρr j−1 − δ, ργ j−2 + ρ2r j−2γ1 + ρr j−1)

× (δ, ρr j−1 − δ),

B̃ j,1,2(δ) = (ργ j−2 + δ, ργ j−2 + ρr j−1 − δ) × (ρr j−2γ1 + δ, ρr j−2 − δ),

B̂ j,1,2(δ) = (ργ j−2, ργ j−2 + ρr j−1)
× ((ρr j−2γ1, ρr j−2γ1 + δ) ∪ (ρr j−2 − δ, ρr j−2))

∪ ((ργ j−2, ργ j−2 + δ) ∪ (ργ j−2 + ρr j−1 − δ, ργ j−2 + ρr j−1))
× (ρr j−2γ1 + δ, ρr j−2 − δ),

B̃ j,1,4(δ) = (r j−1γ1 + ργ j−1 + δ, r j−1 + ργ j−1 − δ) × (δ, r j − δ),

B̂ j,1,4(δ) = (r j−1γ1 + ργ j−1, r j−1 + ργ j−1) × ((0, δ) ∪ (r j − δ, r j))
∪ ((r j−1γ1 + ργ j−1, r j−1γ1 + ργ j−1 + δ)
∪ (r j−1 + ργ j−1 − δ, r j−1 + ργ j−1)) × (δ, rk − δ),

B̃ j,1,5(δ) = (ργ j−1 + δ, r j + ργ j−1 − δ) × (r j−1γ1 + δ, r j−1 − δ),

B̂ j,1,5(δ) = (ργ j−1, r j + ργ j−1) × ((r j−1γ1, r j−1γ1 + δ) ∪ (r j−1 − δ, r j−1))
∪ ((ργ j−1, ργ j−1 + δ) ∪ (r j + ργ j−1 − δ, r j + ργ j−1))

× (r j−1γ1 + δ, r j−1 − δ),

B̃2,2,1(δ) = (γ1 + δ, (1 + ρr)γ1 + δ) × (δ, ρr − δ)
∪ ((1 + ρr)γ1 + δ, (1 + ρr)γ1 + r2 − δ) × (δ, r2 − δ),

B̂2,2,1(δ) = (γ1, (1 + ρr)γ1 + r2) × (0, δ) ∪ (γ1, (1 + ρr)γ1 + δ) × (ρr − δ, ρr)
∪ ((1 + ρr)γ1, (1 + ρr)γ1 + r2) × (r2 − δ, r2)
∪ (γ1, γ1 + δ) × (δ, ρr − δ)
∪ ((1 + ρr)γ1, (1 + ρr)γ1 + δ) × (ρr, r2 − δ)
∪ ((1 + ρr)γ1 + r2 − δ, (1 + ρr)γ1 + r2) × (δ, r2 − δ),

B̃2,2,2(δ) = (γ2 + δ, 1 − δ) × (δ, r2 − δ),

B̂2,2,2(δ) = (γ2, 1) × ((0, δ) ∪ (r2 − δ, r2))
∪ ((γ2, γ2 + δ) ∪ (1 − δ, 1)) × (δ, r2 − δ),
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Figure 9. The middle part and the shaded region are B̃2,1,1(δ) and B̂2,1,1(δ), respectively. The union is
B2,1,1.

B̃2,2,3(δ) = (γ1 + δ, r2 + γ1 − δ) × (rγ1 + δ, r − δ),

B̂2,2,3(δ) = ((γ1, γ1 + δ) ∪ (r2 + γ1 − δ, r2 + γ1)) × (rγ1 + δ, r − δ)
∪ (γ1, r2 + γ1) × ((rγ1, rγ+δ) ∪ (r − δ, r)),

B̃2,3,1(δ) = (δ, ρrγ1 + δ) × (γ1 + δ, ρr + γ1 − δ)
∪ (ρrγ1 + δ, ρrγ1 + r2 − δ) × (γ1 + δ, r2 + γ1 − δ),

B̂2,3,1(δ) = (0, ρrγ1 + r2) × (γ1, γ1 + δ)
∪ (0, ρrγ1 + δ) × (ρr + γ1 − δ, ρr + γ1)
∪ (ρrγ1, ρrγ1 + r2) × (r2 + γ1 − δ, r2 + γ1)
∪ (0, δ) × (γ1 + δ, ρr + γ1 − δ)
∪ (ρrγ1, ρrγ1 + δ) × (ρr + γ1, r2 + γ1 − δ)
∪ (ρrγ1 + r2 − δ, ρrγ1 + r2) × (γ1 + δ, r2 + γ1 − δ),

B̃2,3,2(δ) = (rγ1 + δ, r − δ) × (γ1 + δ, r2 + γ1 − δ),

B̂2,3,2(δ) = (rγ1, r) × ((γ1, γ1 + δ) ∪ (r2 + γ1 − δ, r2 + γ1))
∪ (γ1 + δ, r2 + γ1 − δ) × ((rγ1, rγ1 + δ) ∪ (r − δ, r)),

B̃2,3,3(δ) = (δ, r2 − δ) × (γ2 + δ, 1 − δ),

B̂2,3,3(δ) = (0, r2) × ((γ2, γ2 + δ) ∪ (1 − δ, 1))
∪ ((0, δ) ∪ (r2 − δ, r2)) × (γ2 + δ, 1 − δ).

(See Figures 9 and 10.)
It follows from (5.2), (5.1), and Lemma 2.26 that for i = 1, 2, 3 and j ≥ 2,

µ(B j,1,1) = w2( j − 2)µ(B1,1), µ(B j,1,2) = w2( j − 2)µ(B1,3),

µ(B j,1,4) = p j−1
2 µ(B1,2), µ(B j,1,5) = p j−1

2 µ(B1,3),
µ(B2,2,i) = p3µ(B1,i), µ(B2,3,i) = p4µ(B1,i).

Thus,

w( j, 1, 1) = w2( j − 2), c( j, 1, 1) = 1, σ( j, 1, 1) = S2 j−21, rσ( j,1,1) = ρr j−2,

w( j, 1, 2) = w2( j − 2), c( j, 1, 2) = 3, σ( j, 1, 2) = S2 j−21, rσ( j,1,2) = ρr j−2,
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Figure 10. The middle part and the shaded region are B̃2,1,2(δ) and B̂2,1,2(δ), respectively. The union is
B2,1,2.

w( j, 1, 4) = p j−1
2 , c( j, 1, 4) = 2, σ( j, 1, 4) = S2 j−1 , rσ( j,1,1) = r j−1,

w( j, 1, 5) = p j−1
2 , c( j, 1, 5) = 3, σ( j, 1, 5) = S2 j−1 , rσ( j,1,2) = r j−1,

w(2, 2, i) = p3, c(2, 2, i) = i, σ(2, 2, i) = S3, rσ(2,2,i) = r,
w(2, 3, i) = p4, c(2, 3, i) = i, σ(2, 3, i) = S4, rσ(2,3,i) = r,

B̃1,1(δ/ρr j−2) = (δ/ρr j−2, ργ1 + δ/ρr j−2) × (δ/ρr j−2, ρ − δ/ρr j−2)
∪ (ργ1 + δ/ρr j−2, ργ1 + r − δ/ρr j−2)

× (δ/ρr j−2, r − δ/ρr j−2),
B̂1,1(δ/ρr j−2) = (0, ργ1 + r) × (0, δ/ρr j−2)

∪ (0, ργ1 + δ/ρr j−2) × (ρ − δ/ρr j−2, ρ)
∪ (ργ1, ργ1 + r) × (r − δ/ρr j−2, r)
∪ (0, δ/ρr j−2) × (δ/ρr j−2, ρ − δ/ρr j−2)
∪ (ργ1, ργ1 + δ/ρr j−2) × (ρ, r − δ/ρr j−2)
∪ (ργ1 + r − δ/ρr j−2, ργ1 + r) × (δ/ρr j−2, r − δ/ρr j−2),

B̃1,3(δ/ρr j−2) = (δ/ρr j−2, r − δ/ρr j−2) × (γ1 + δ/ρr j−2, 1 − δ/ρr j−2),

B̂1,3(δ/ρr j−2) = (0, r) × ((γ1, γ1 + δ/ρr j−2) ∪ (1 − δ/ρr j−2, 1))
∪ ((0, δ/ρr j−2) ∪ (r − δ/ρr j−2, r))

× (γ1 + δ/ρr j−2, 1 − δ/ρr j−2),

B̃1,2(δ/r j−1) = (γ1 + δ/r j−1, 1 − δ/r j−1) × (δ/r j−1, r − δ/r j−1),

B̂1,2(δ/r j−1) = (γ1, 1) × ((0, δ/r j−1) ∪ (r − δ/r j−1, r))
∪ ((γ1, γ1 + δ/r j−1) ∪ (1 − δ/r j−1, 1))

× (δ/r j−1, r − δ/r j−1),

B̃1,3(δ/r j−1) = (δ/r j−1, r − δ/r j−1) × (γ1 + δ/r j−1, 1 − δ/r j−1),

B̂1,3(δ/r j−1) = (0, r) × ((γ1, γ1 + δ/r j−1) ∪ (1 − δ/r j−1, 1))
∪ ((0, δ/r j−1) ∪ (r − δ/r j−1, r))

× (γ1 + δ/r j−1, 1 − δ/r j−1),
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B̃1,1(δ/r) = (δ/r, ργ1 + δ/r) × (δ/r, ρ − δ/r)
∪ (ργ1 + δ/r, ργ1 + r − δ/r) × (δ/r, r − δ/r),

B̂1,1(δ/r) = (0, ργ1 + r) × (0, δ/r) ∪ (0, ργ1 + δ/r) × (ρ − δ/r, ρ)
∪ (ργ1, ργ1 + r) × (r − δ/r, r) ∪ (0, δ/r) × (δ/r, ρ − δ/r)
∪ (ργ1, ργ1 + δ/r) × (ρ, r − δ/r)
∪ (ργ1 + r − δ/r, ργ1 + r) × (δ/r, r − δ/r),

B̃1,2(δ/r) = (γ1 + δ/r, 1 − δ/r) × (δ/r, r − δ/r),

B̂1,2(δ/r) = (γ1, 1) × ((0, δ/r) ∪ (r − δ/r, r))
∪ ((γ1, γ1 + δ/r) ∪ (1 − δ/r, 1)) × (δ/r, r − δ/r),

B̃1,3(δ/r) = (δ/r, r − δ/r) × (γ1 + δ/r, 1 − δ/r),

B̂1,3(δ/r) = (0, r) × ((γ1, γ1 + δ/r) ∪ (1 − δ/r, 1))
∪ ((0, δ/r) ∪ (r − δ/r, r)) × (γ1 + δ/r, 1 − δ/r).

By (3.14) and (3.13),

ϕ1(δ) =

n∑
j=2

w2( j − 2)q(ρr j−2)2
(∫

B1,1

+

∫
B1,3

)
µ(Bδ/ρr j−2 (x))q dx

+

n∑
j=2

(pq
2r2) j−1

(∫
B1,2

+

∫
B1,3

)
µ(Bδ/r j−1 (x))q dx

+

n∑
j=2

(e1
j(δ) − ẽ1

j(δ)) +

∫
Bn,1,3

µ(Bδ(x))q dx (5.3)

and

ϕ`(δ) = pq
`+1r2

3∑
i=1

∫
B1,i

µ(Bδ/r(x))q dx + e`2(δ) − ẽ`2(δ) for ` = 2, 3, (5.4)

where

e1
j(δ) =

(∫
B̂ j,1,1(δ)

+

∫
B̂ j,1,2(δ)

+

∫
B̂ j,1,4(δ)

+

∫
B̂ j,1,5(δ)

)
µ(Bδ(x))q dx,

ẽ1
j(δ) = w2( j − 2)q(ρr j−2)2

(∫
B̂1,1(δ/ρr j−2)

+

∫
B̂1,3(δ/ρr j−2)

)
µ(Bδ/ρr j−2 (x))q dx

+ (pq
2r2) j−1

(∫
B̂1,2(δ/r j−1)

+

∫
B̂1,3(δ/r j−1)

)
µ(Bδ/r j−1 (x))q dx,

e`2(δ) =

3∑
i=1

∫
B̂2,`,i(δ)

µ(Bδ(x))q dx,

ẽ`2(δ) = pq
`+1r2

3∑
i=1

∫
B̂1,i(δ/r)

µ(Bδ/r(x))q dx for ` = 2, 3.

(5.5)
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Multiplying both sides of (5.3) and (5.4) by δ−(2+α), and using (1.2),

Φ
(α)
1 (δ) =

n∑
j=2

w2( j − 2)q(ρr j−2)−α
∑
i=1,3

Φ
(α)
i (δ/ρr j−2)

+

n∑
j=2

(pq
2r−α) j−1

∑
i=2,3

Φ
(α)
i (δ/r j−1)

+

n∑
j=2

δ−2−α(e1
j(δ) − ẽ1

j(δ)) + δ−2−α
∫

Bn,1,3

µ(Bδ(x))q dx, (5.6)

and

Φ
(α)
`

(δ) = pq
`+1r−α

3∑
i=1

Φ
(α)
i (δ/r) + δ−2−α(e`2(δ) − ẽ`2(δ)) for ` = 2, 3.

Let N := max{n ∈ N : δ ≤ min{ρrn−2, rn−1}}. Letting n = N in (5.6),

Φ
(α)
1 (δ) =

∞∑
j=2

w2( j − 2)q(ρr j−2)−α
∑
i=1,3

Φ
(α)
i (δ/ρr j−2)

+

∞∑
j=2

(pq
2r−α) j−1

∑
i=2,3

Φ
(α)
i (δ/r j−1)

+ E(α)
1 (δ) − E(α)

1,∞(δ), (5.7)

where

E(α)
1 (δ) :=

N∑
j=2

δ−2−α(e1
j(δ) − ẽ1

j(δ)) + δ−2−α
∫

BN,1,3

µ(Bδ(x))q dx,

E(α)
1,∞(δ) :=

∞∑
j=N+1

w2( j − 2)q(ρr j−2)−α
∑
i=1,3

Φ
(α)
i (δ/ρr j−2)

+

∞∑
j=N+1

(pq
2r−α) j−1

∑
i=2,3

Φ
(α)
i (δ/r j−1).

Let

Φ
(α)
`

(δ) = pq
`+1r−α

3∑
i=1

Φ
(α)
i (δ/r) + E(α)

`
(δ) for ` = 2, 3, (5.8)

where

E(α)
`

(δ) := δ−2−α(e`2(δ) − ẽ`2(δ)).

Next, we derive a vector-valued renewal equation. It follows from (3.19), (3.20),
(5.7), and (5.8) that
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f1(x) =

∞∑
j=2

w2( j − 2)q(ρr j−2)−α
∑
i=1,3

fi(x + ln(ρr j−2))

+

∞∑
j=2

(pq
2r−α) j−1

∑
i=2,3

fi(x + ln(r j−1)) + z(α)
1 (x),

and

f`(x) = pq
`+1r−α

3∑
i=1

fi(x + ln(r)) + z(α)
`

(x) for ` = 2, 3,

where
z(α)

1 (x) = E(α)
1 (e−x) − E(α)

1,∞(e−x), z(α)
`

(x) = E(α)
`

(e−x).

For `,m = 1, 2, let µ(α)
m` be the discrete measures such that for j ≥ 2,

µ(α)
m1(−ln(ρr j−2)) = w2( j − 2)q(ρr j−2)−α for m = 1, 3,

µ(α)
m1(−ln(r j−1)) = (pq

2r−α) j−1 for m = 2, 3,

µ(α)
m` (−ln(r)) = pq

`+1r−α for m = 1, 2, 3 and ` = 2, 3.

Then

µ(α)
11 (R) =

∞∑
j=2

w2( j − 2)q(ρr j−2)−α, µ(α)
21 (R) =

∞∑
j=2

(pq
2r−α) j−1,

µ(α)
31 (R) =

∞∑
j=2

w2( j − 2)q(ρr j−2)−α +

∞∑
j=2

(pq
2r−α) j−1,

µ(α)
m` (R) = pq

`+1r−α for m = 1, 2, 3 and ` = 2, 3.

For fixed q ≥ 0,

F1(α) = 2
( ∞∑

j=2

w2( j − 2)q(ρr j−2)−α +

∞∑
j=2

(pq
2r−α) j−1

)
,

F`(α) = 3pq
`+1r−α for ` = 2, 3,

D` = {α ∈ R : F`(α) <∞} for ` = 1, 2, 3,

(5.9)

and

Mα(∞) =


a pq

3r−α pq
4r−α

b pq
3r−α pq

4r−α

a + b pq
3r−α pq

4r−α

 ,
where a :=

∑∞
j=2 w2( j − 2)q(ρr j−2)−α and b :=

∑∞
j=2(pq

2r−α) j−1.
Finally, we need to show that the error terms z(α)

`
(x) = o(e−εx) as x→∞, that is,

E(α)
`

(δ) = o(δε) and E(α)
1,∞(δ) = o(δε) as δ→0 for some ε > 0 and ` = 1, 2, 3.
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Proposition 5.1.

(1) Φ
(α)
i (δ/ρrk) ≤ 1 for i = 1, 3 and any k ≥ N − 1;

(2) Φ
(α)
i (δ/rk) ≤ 1 for i = 2, 3 and any k ≥ N.

Proof.
(1) It follows from the definition of N that δ ≥ ρrk for any k ≥ N − 1. Thus, for i = 1, 3,

Φ
(α)
i (δ/ρrk) =

ϕi(δ/ρrk)
(δ/ρrk)2+α

≤

∫
B1,i

µ(Bδ/ρrk (x))q dx ≤
∫

B1,i

dx ≤ 1.

This proves part (1).
(2) The proof is similar to that of (1). �

Proposition 5.2. For q ≥ 0, let F1(α) and D1 be defined as in (5.9). Then D1 is open.

Proof. The proof is similar to that of Proposition 4.3. �

Proposition 5.3. For q ≥ 0, assume that α ∈ D` for ` = 1, 2, 3. Then there exists ε > 0
such that:

(1)
∑∞

j=N+1 w2( j − 2)q(ρr j−2)−α
∑

i=1,3 Φ
(α)
i (δ/ρr j−2) = o(hε);

(2)
∑∞

j=N+1(pq
2r−α) j−1 ∑

i=2,3 Φ
(α)
i (δ/r j−1) = o(δε);

(3)
∑N

j=2 δ
−2−α(e1

j(δ) − ẽ1
j(δ)) = o(δε);

(4) δ−2−α
∫

BN,1,3
µ(Bδ(x))q dx = o(δε);

(5) δ−2−α(e`2(δ) − ẽ`2(δ)) = o(δε) for ` = 2, 3.

Proof.
(1) By Proposition 5.2, D1 = {α ∈ R : F1(α) <∞} is open. Thus, there exists ε > 0 such
that α + ε ∈ D1. So there exists a positive constant C such that

∞∑
j=N+1

w2( j − 2)q(ρr j−2)−α−ε +

∞∑
j=N+1

(pq
2r−α−ε) j−1 ≤ C.

Since

(ρrN−1)−ε
∞∑

j=N+1

w2( j − 2)q(ρr j−2)−α ≤
∞∑

j=N+1

w2( j − 2)q(ρr j−2)−α−ε ,

∑∞
j=N+1 w2( j − 2)q(ρr j−2)−α ≤ C(ρrN−1)ε ≤ Cδε , where the last inequality follows from

the definition of N. Combining this with Proposition 5.1(1),
∞∑

j=N+1

w2( j − 2)q(ρr j−2)−α
∑
i=1,3

Φ
(α)
i (δ/ρr j−2) ≤ 2Cδε .

This proves part (1).
(2) The proof is similar to that of (1).
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(3) It suffices to show that e1
j(δ) = o(δ2+α+ε) and ẽ1

j(δ) = o(δ2+α+ε) for 2 ≤ j ≤ N. In
order to estimate the remaining error terms, we will need the following facts. It follows
from (1) and (2) that

w2(N − 1)q ≤ 2Cδα+ε , pNq
2 ≤ 2Cδα+ε . (5.10)

By (5.5),

e1
j(δ) =

∑
i=1,2,4,5

∫
B̂ j,1,i(δ)

µ(Bδ(x, y))q dx dy.

As an example we only prove that
∫

B̂ j,1,1(δ) µ(Bδ(x, y))q dxdy = o(δ2+α+ε). Note that∫
B̂ j,1,1(δ)

µ(Bδ(x, y))q dx dy

=

(∫ ργ j−2+ρ2r j−2γ1+ργ j−1

ργ j−2

∫ δ

0
+

∫ ργ j−2+ρ2r j−2γ1+δ

ργ j−2

∫ ρ2r j−2

ρ2r j−2−δ

+

∫ ργ j−2+ρ2r j−2γ1+ρr j−1

ργ j−2+ρ2r j−2γ1

∫ ρr j−1

ρr j−1−δ

+

∫ ργ j−2+δ

ργ j−2

∫ ρ2r j−2−δ

δ

+

∫ ργ j−2+ρ2r j−2γ1+δ

ργ j−2+ρ2r j−2γ1

∫ ρr j−1−δ

ρ2r j−2

+

∫ ργ j−2+ρ2r j−2γ1+ρr j−1

ργ j−2+ρ2r j−2γ1+ρr j−1−δ

∫ ρr j−1−δ

δ

)
µ(Bδ(x, y))q dx dy

=: E1 + E2 + E3 + E4 + E5 + E6.

For E1, since √
(ρ2r j−2γ1 + ργ j−1)2 + δ2 ≤ 2ρ + δ,

Bδ(x, y) ⊆ B2ρ+2δ(S2 j−211(0, 0)) for (x, y) ∈ (ργ j−2, ργ j−2 + ρ2r j−2γ1 + ργ j−1) × (0, δ).
Note that

µ(B2ρ+2δ(S2 j−211(0, 0))) = p1w2( j − 2)µ(B(2ρ+2δ)/ρ2r j−2 (0, 0)) ≤ p1w2( j − 2)

and for 0 ≤ k ≤ N − 2,

w2(k) =
p1(pN−1

2 + pN−2
2 p3 + · · · + pN−1

3 )(pk
2 + pk−1

2 p3 + · · · + pk
3)

(pN−1
2 + pN−2

2 p3 + · · · + pN−1
3 )

≤
w1(N − 1)(p2 + p3)k

pN−1
2 + pN−2

2 p3 + · · · + pN−1
3

≤ p1−N
2 w2(N − 1). (5.11)

Combining these with the definition of N,

E1 ≤ (p1w2( j − 2))q(ρ2r j−2γ1 + ργ j−1)δ ≤ 2ρpq
1w2( j − 2)qδ

≤ 2pq
1 p(1−N)q

2 w2(N − 1)qρrN−1r1−N ≤ 2(p1 p1−N
2 )qr1−Nδ2+α+ε .

The proofs for E2 ≤ Cδ2+α+ε and E3 ≤ Cδ2+α+ε are similar.
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For E4, since

E4 ≤

∫ ργ j−2+δ

ργ j−2

∫ ρ2r j−2−δ

0
µ(Bδ(x, y))q dx dy

and
√

(δ2 + (ρ2r j−2 − δ)2) ≤ ρ2r j−2 ≤ ρ2, then,

Bδ(x, y) ⊆ Bρ2+δ(S2 j−212(0, 0))

for (x, y) ∈ (ργ j−2, ργ j−2 + δ) × (0, ρ2r j−2 − δ). Note that

µ(Bρ2+δ(S2 j−212(0, 0))) ≤ p2w2( j − 2).

Combining these with (5.10) and (5.11), and using the definition of N,

E4 ≤ (p2w2( j − 2))q(ρ2r j−2 − δ)δ ≤ pq
2w2( j − 2)qρ2δ

≤ p(2−N)q
2 w2(N − 1)qρr1−NρrN−1δ

≤ 2Cρr1−N p(2−N)q
2 δ2+α+ε .

The proofs for E5 ≤ Cδ2+α+ε and E6 ≤ Cδ2+α+ε are similar. Combining the estimates
for E1, . . . ,E6, we have

∫
B̂ j,1,1(δ) µ(Bδ(x, y))q dx dy ≤ Cδ2+α+ε .

Next, we will show that ẽ1
j(δ) = o(δ2+α+ε). By (5.5),

ẽ1
j(δ) = w2( j − 2)q(ρr j−2)2

(∫
B̂1,1(δ/ρr j−2)

+

∫
B̂1,3(δ/ρr j−2)

)
µ(Bδ/ρr j−2 (x))q dx

+ (pq
2r2) j−1

(∫
B̂1,2(δ/r j−1)

+

∫
B̂1,3(δ/r j−1)

)
µ(Bδ/r j−1 (x))q dx.

As an example, we only prove

w2( j − 2)q(ρr j−2)2
∫

B̂1,1(δ/ρr j−2)
µ(Bδ/ρr j−2 (x))q dx = o(δ2+α+ε).

Note that

w2( j − 2)q(ρr j−2)2
∫

B̂1,1(δ/ρr j−2)
µ(Bδ/ρr j−2 (x))q dx

= w2( j − 2)q(ρr j−2)2
(∫ ργ1+r

0

∫ δ/ρr j−2

0
+

∫ ργ1+δ/ρr j−2

0

∫ ρ

ρ−δ/ρr j−2

+

∫ ργ1+r

ργ1

∫ r

r−δ/ρr j−2
+

∫ δ/ρr j−2

0

∫ ρ−δ/ρr j−2

δ/ρr j−2
+

∫ ργ1+δ/ρr j−2

ργ1

∫ r−δ/ρr j−2

ρ

+

∫ ργ1+r

ργ1+r−δ/ρr j−2

∫ r−δ/ρr j−2

δ/ρr j−2

)
µ(Bδ/ρr j−2 (x, y))q dx dy

=: Ẽ1 + Ẽ2 + Ẽ3 + Ẽ4 + Ẽ5 + Ẽ6.
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Since √
(ργ1 + r)2 + (δ/ρr j−2)2 ≤ ρ + r + δ/ρr j−2,

Bδ/ρr j−2 (x, y) ⊆ Bρ+r+2δ/ρr j−2 (S1(0, 0)) for (x, y) ∈ (0, ργ1 + r) × (0, δ/ρr j−2). Note that
µ(Bρ+r+2δ/ρr j−2 )(S1(0, 0)) ≤ p1. Thus,

Ẽ1 ≤ w2( j − 2)q(ρr j−2)2 pq
1(ργ1 + r) · δ/ρr j−2

≤ w2( j − 2)qρr j−2 pq
1(ρ + r)δ

≤ pq
1 p(1−N)q

2 w2(N − 1)qρ(ρ + r)δ

≤ r1−N(p1 p1−N
2 )qw2(N − 1)qρ(ρrN−1 + rN)δ

≤ 2Cρr1−N(p1 p1−N
2 )qδ2+α+ε .

The proofs for Ẽ2 ≤ Cδ2+α+ε and Ẽ3 ≤ Cδ2+α+ε are similar. For Ẽ4,

Ẽ4 ≤ w2( j − 2)q(ρr j−2)2
∫ δ/ρr j−2

0

∫ ρ−δ/ρr j−2

0
µ(Bδ/ρr j−2 (x, y))q dx dy

≤ w2( j − 2)q(ρr j−2)2µ(Bρ+δ/ρr j−2 (S1(0, 0)))q(ρ − δ/ρr j−2)δ/ρr j−2

≤ pq
1 p(1−N)q

2 w2(N − 1)q(ρ2r j−2 − δ)δ

≤ (p1 p1−N
2 )qw2(N − 1)qρrN−1ρr1−Nδ

≤ 2Cρr1−N(p1 p1−N
2 )qδ2+α+ε .

The proofs for Ẽ5 ≤ Cδ2+α+ε and Ẽ6 ≤ Cδ2+α+ε are similar. Hence,

w2( j − 2)q(ρr j−2)2
∫

B̂1,1(δ/ρr j−2)
µ(Bδ/ρr j−2 (x))q dx = o(δ2+α+ε).

Similarly, we can derive analogous results for the second, third, and fourth terms of
ẽ1

j(δ). Thus, ẽ1
j(δ) = o(δ2+α+ε). This proves part (3).

(4) It suffices to show that
∫

BN,1,3
µ(Bδ(x))q dx ≤ Cδ2+α+ε . It follows from (5.2) and

Proposition 2.24(4) that∫
BN,1,3

µ(Bδ(x))q dx

=

(∫ ργN

ργN−1

∫ ρrN−1

0
+

∫ ργN+rN

ργN

∫ rN

0

)
µ(Bδ(x, y))q dx dy

=

(∫ ργN+δ

ργN−1+δ

∫ ρrN−1−δ

δ

+

∫ ργN+rN−δ

ργN+δ

∫ rN−δ

δ

+

∫ ργN+rN

ργN−1

∫ δ

0
+

∫ ργN+δ

ργN−1

∫ ρrN−1

ρrN−1−δ

+

∫ ργN+rN

ργN

∫ rN

rN−δ

+

∫ ργN−1+δ

ργN−1

∫ ρrN−1−δ

δ
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+

∫ ργN+δ

ργN

∫ rN−δ

ρrN−1
+

∫ ργN+rN

ργN+rN−δ

∫ rN−δ

δ

)
µ(Bδ(x, y))q dx dy

=: EN
1 + EN

2 + EN
3 + EN

4 + EN
5 + EN

6 + EN
7 + EN

8 .

By Lemma 2.26(2), µ|S2N−1 (B1,1) = w2(N − 2)µ ◦ S −1
2N−21 + pN−1

2 µ ◦ S −1
2N−1 , and hence

µ(S2N−1 (B1,1)) ≤ w2(N − 2) + pN−1
2 . Since Bδ(x, y) ⊆ S2N−1 (B1,1) for (x, y) ∈ (ργN−1 +

δ, ργN + δ) × (δ, ρrN−1 − δ) ∪ (ργN + δ, ργN + rN − δ) × (δ, rN − δ), (5.10) implies

EN
1 + EN

2 ≤ (w2(N − 2) + pN−1
2 )q((ργN − ργN−1)(ρrN−1 − 2δ) + (rN − 2δ)2)

≤ (p1−N
2 w2(N − 1) + p−1

2 pN
2 )q((ρrN−1)2 + r2N)

≤ 2C(p1−N
2 + p−1

2 )δ2+α+ε .

For the other six terms,

EN
3 ≤ µ(Bρr+2δ(S2N−11(0, 0)))q(ργN + rN − ργN−1)δ

≤ w2(N − 1)q(rN + ρrN−1)δ ≤ 2Cδ2+α+ε .

The proofs for EN
4 ≤ Cδ2+α+ε and EN

5 ≤ Cδ2+α+ε are similar. EN
6 can be estimated as

follows:

EN
6 ≤

∫ ργN−1+δ

ργN−1

∫ ρrN−1−δ

0
µ(Bδ(x, y))q dx dy

≤ µ(Bρr+δ(S1(0, 0)))q(ρrN−1 − δ)δ ≤ pq
1ρrN−1δ

≤ pq
1 p−Nq

2 pNq
2 δ2 ≤ 2C(p1 p−N

2 )qδ2+α+ε .

The proofs for EN
7 ≤ Cδ2+α+ε and EN

8 ≤ Cδ2+α+ε are similar. This proves part (4); part
(5) can be proved similarly. �

Proof (Theorem 1.4). Combining Theorem 1.1 and Proposition 5.3, we have τ(q) = α.
Let

G(q, α) := (1 − pq
2r−α)(1 − pq

3r−α)
∞∑

k=0

w2(k)q(ρrk)−α + r−α
4∑

i=2

pq
i − 1.

Similar to the proof of Theorem 1.2, we can show that G(q, α) is C1 and that
Gα(q, α) , 0 for any (q, α) satisfying G(a, α) = 0. The implicit function theorem now
implies that τ is differentiable on (0,∞) and the formula for dimH(µ) follows by
computing τ′(1) = −Gq(1, 0)Gα(1, 0)−1. This completes the proof. �

Figure 11 shows graphs of τ(q) and f (α) for one of the measures. For this example,
dimH(µ) = τ′(1) ≈ 1.13748 and dimH(K) = −τ(0) ≈ 1.18726, where K is the self-
similar set.
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Figure 11. Graphs of τ(q) and f (α) for a self-similar measure in Example 2.22, with r = 7/20 and
ρ = pi = 1/4 for i = 1, 2, 3, 4.

6. Comments and questions

The spectral dimension of certain infinite IFSs has been computed in [21]. The
method in this paper can be applied to those IFSs to obtain τ(q).

It is interesting to compute τ(q) for q < 0 and see whether there is any phase
transition. Our method cannot be applied to this case. We do not know whether the
condition in Theorem 1.1 can be removed. Finally, we are not sure whether the method
in this paper can be applied, after modifications if necessary, to infinite Bernoulli
convolutions associated with Pisot numbers other than the golden ratio.
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