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REVERSES OF THE CAUCHY-BUNYAKOVSKY-SCHWARZ
INEQUALITY FOR n-TUPLES OF COMPLEX NUMBERS

S.S. DRAGOMIR

Some new reverses of the Cauchy-Bunyakovsky-Schwarz inequality for n-tuples of
real and complex numbers related to Cassels and Shisha~Mond results are given.

1. INTRODUCTION

Let a = (a1,...,an) and b = (b,...,b,) be two positive n-tuples with the property
that there exists the positive numbers m;, M; (i = 1,2) such that

(1.1) OD<m€a; M <oo and 0<my € b; < My < oo,

foreach i€ {1,...,n}.
The following reverses of the Cauchy-Bunyakovsky-Schwarz inequality are well
known in the literature:

1. POLYA-SZEGO’S INEQUALITY [§]

(1 2) Z::l a’z Z::l bz < _];( M1M2 + m1m2>2.
' Crorabe)? T a\Vmum, VMM, )’

2. SHISHA-MOND’S INEQUALITY [9]

13) Stk _Thaon (M [

3. OZEKI'S INEQUALITY [7]

n n n 2
1
(1.49) St - (Lashe) < 0~ mum?
k=1 k=1 k=1
4. D1AZ-METCALF’S INEQUALITY (1]
. moMy <~
< [ == 4 =
(10) zbk mlM < ak x ( + ) Zakbk
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If the weight w = (w1,...,wy) is a positive n-tuple, then we have the following
inequalities, which are also well known.
5. CASSELS’ INEQUALITY [10}

If the positive n-tuples a = (a;,...,a,) and b = (by,...,b,) satisfy the condition

(1.6) 0<mg b_k M < oo foreach ke {l,...,n},

where m, M are given, then

ko1 WO 3oy webf (M +m)?

1.7 s <
a7 (3 k=1 weaxbe)? amM

6. GREUB-REINBOLDT’S INEQUALITY (4]
If a and b satisfy the condition (1.1), then

2 r1 Wkat > op; wib < (MM + mymy)?

1.8 v <
( ) (Zkzl wka’kbk)2 dmymyoM, M,

7. GENERALISED DIAZ-METCALF INEQUALITY (1] (see also [6, p. 123))
If u,v € [0,1) and v € u, u + v =1 and (1.6) holds, then one has the inequality

(1.9) u Z wib? +vmM Z wia? < (vm + uM) Z Wi arby.

k=1

" 8. .KLAMKIN-MCLENAGHAN’S INEQUALITY (5]
If a and b satisfy (1.6), then we have the inequality

n n n 2 n n
(1.10) Z u;kaz Z wkbz - (Z wkakbk) S (\/M - \/ﬁ)z z wkakbk Z wkai.
k=1 k=1 k=1 k=1 k=1

For other reverse results of the Cauchy—Bunyakovsky-Schwarz inequality, see the
recent survey online {3].

The main aim of this paper is to point out some new reverse inequalities of the
classical Cauchy-Bunyakovsky—Schwarz result for both real and complex n-tuples.

2. SoME REVERSES OF THE CAUCHY-BUNYAKOVSKY-SCHWARZ INEQUALITY

The following result holds.
THEOREM 1. Leta = (a1,...,8,), b= (b1,...,b,) € K*, where K = R,C and
p = (p1,...,Pn) € R} with Zp, =1 Ifb # 0,31 € {l,...,n} and there exists the

constant a € K and r > 0 such that forany k € {1,...,n}

(21) ZeD(ar)={€K|lz-al<r},
k
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then we have the inequality

(2.2) Zpk lak|> + (Jef* - r?) Zpk x| < 2Re [&(Zpkakbk)]
k=1 k=1 k=1

> praxby|.

k=1

The constant ¢ = 2 is best possible in the sense that it cannot be replaced by a smaller

< 2lal -

constant.

PRrOOF: From (2.1) we have |ax — a5,,|2 < r|be)? for each k € {1,...,n}, which is
clearly equivalent to
(2.3) la)® + (laf® — %) b f* < 2Re[a(axbs)]

for each k € {1,...,n}.

Multiplying (2 3) with pr 2 0 and summing over k from 1 to n, we deduce the first
inequality in (1.2). The second inequality is obvious.

To prove the sharpness of the constant 2, assume that under the hypothesis of the
theorem there exists a constant ¢ > 0 such that

20 Yl (bl - ) Cmlnf < che[a(3nawn)]
k=1

provided ax /b € D(a,7), k € {1,...,n}.

Assume that n =2, py =po=1/2, by = by =1,a =7 >0 and a; = 2r, a; = 0.
Then |ay/b — | =7, a1 /by —a| =7 showing that the condition (2.1) holds. For these
choices, the inequality (2.4) becomes 2r% < cr?, giving ¢ > 2. 0

The case where the disk D(c, r) does not contain the origin, that is, |a| > r, provides
the following interesting reverse of the Cauchy-Bunyakovsky-Schwarz inequality.

THEOREM 2. Leta, b, p as in Theorem 1 and assume that || > r > 0. Then
we have the inequality

n n n 2
(2.5) épkhklzkz::lpklbk'z < az—l_T;{Re[E(Zpkakbk)]}

s
|01|2 — 2 Zpkakbk

The constant ¢ = 1 in the first and second inequality is best possible in the sense that it
cannot be replaced by a smaller constant.

PROOF: Since |a| > r, we may divide (2.2) by \/[a| — 72> 0 to obtain

ZPH ax|? +V|0‘|2—7'22Pk|bk|2 \/ﬁ e[&'(gpkakbk)].

(2.6)

\/___
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On the other hand, by the use of the following elementary inequality

1
(2.7) 'ﬂ‘p+ﬁq?2\/p_q for >0 and p,g>0,

we may state that

n 1/2 n
(2.8) 2(21’1: |0k|2) : (Zpklbk|2>
k=1 k=1
P Np—
< === _plal + V]e — 2> pelbil:
lof? —r2 i kz=1

Utilising (2.6) and (2.8), we deduce

1/2

172

n 1/2 n 1 : n
(gpkladi’) .(;Pklka) s—la\/_ﬁRe[a(gpkakbk)],

which is clearly equivalent to the first inequality in (2.6).

The second inequality is obvious.

To prove the sharpness of the constant, assume that (2.5) holds with a constant
¢ > 0, that is,

n n n 2
(2.9) kz_-lpk Iakl2 ;pk ,bk|2 S |a|2+r2{Re [&(gpkakbk)] }

provided ax/bx € D(e,7) and |a| > 7.
Forn=2,by=b=1,p1 =p2=1/2,a3,01 €R, o,7 > 0 and a > r, we get from
(2.9) that

2 2 2
ay + a5 co (a1+a2 2

< .

(2.10) 2 T a?-r2 2 )

If we choose a; =a +7,a; =a ~r, then Ja;—a| < r,i=1,2 and by (2.10) we deduce

cat

a?+rig ,

a? — 12
which is clearly equivalent to
(c—Da*+7*>0 for a>r>0.

If in this inequality we choose a = 1, r = ¢ € (0,1) and let £ — 04, then we deduce
cz 1l 0

The following corollary is a natural consequence of the above theorem.
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COROLLARY 1. Under the assumptions of Theorem 2, we have the following
additive reverse of the Cauchy-Bunyakovsky-Schwarz inequality

n n n

(2.11) 0< Zpk |ak|22pk lbx|” —
k=1
Zpkakbk

The constant ¢ = 1 is best possible in the sense mentioned above.

kQx by

lozl2

REMARK 1. If in Theorem 1, we assume that [e| = r, then we obtain the inequality:

(2.12) Zpk lak|2 < 2Re [E(Zpkakbk)]
k=1

k=1

n
> praxb].
k=1

< 2o

The constant 2 is sharp in both inequalities.
We also remark that, if r > |a|, then (2.2) may be written as

(2.13) > pelael® < (72 = lal®) > pelbel + 2Re [&(Zpkakbk)]
k=1 k=1 k=1

> praxby|.

k=1

The following reverse of the Cauchy-Bunyakovsky-Schwarz inequality also holds.

n
< (r? - lef’) Zpk |bx|” + 2o
k=1

THEOREM 3. Leta, b, p be asin Theorem 1 and assume that a € K, o # 0 and
r > 0. Then we have the inequalities

n 1/2 n 1/2
(2.14) 0< (Zpklakl") : (Zpk!bklz) -
k=1 k=1

< (kZ:lp"lakP)lﬂ- (§pk|bk|2>1 - Re[ (Zpkakbk)]
;

kQrby

2 n

r 2
c = > bl
laf £

The constant 1/2 is best possible in the sense mentioned above.

PRrROOF: From Theorem 1, we have

n n n n
(213) D pelarf +laf 3 peloel® < 2Re [a(z pkakbk)] +7° > e loel’
k=1 k=1 k=1 k=1
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Since « # 0, we can divide (2.15) by |«|, getting

1 n n 2 n
(216) 3 prlarl + 1ol S i fbef? 2Re[ (Z pkakbk)] + ﬁ S palbil?.
k=1 k=1 k=1

Utilising the inequality (2.7), we may state that

n 9 1/2 n 1/2 1 n n
(2.17) 2(2pk|ak|) -(me’) <o Yopelosl +lal 3 pe el
k=1 k=1 k=1 k=1

Making use of (2.16) and (2.17), we deduce the second inequality in (2.14).

The first inequality in (2.14) is obvious.

To prove the sharpness of the constant 1/2, assume that there exists a ¢ > 0 such
that

n

1/2 n 1/2 — n 2 n
a7
18) (Coda?) (o) -Re| (S man)] <c TS plbl
k=1 k=1 k=1

k=1

provided lax/bx — ol<r,a#0,r>0.
If we choosen =2, a >0, b, =by =1,a; = a+r, as =a —r, then from (2.18) we
deduce
2

(2.19) \/7‘2+a2—a<c%.

If we multiply (2.19) with V72 + a2 + a > 0 and then divide it by 7 > 0, we deduce
VP& +a
1{—— ¢

(2.20) =

forany r >0, a > 0.
If in (2.20) we let 7 — 0+, then we get ¢ 2 1/2, and the sharpness of the constant
is proved. 0

3. A CasseELs TYPE INEQUALITY FOR COMPLEX NUMBERS

The following result holds.

THEOREM 4. Leta = (al,... an), b = (b,...,b,) € K*, where K = R,C and

= (p1,..-,Pn) € R} with Zp, =1 Ifb #0,i€ {1,...,n} and there exist the
constants v, I € K with Re(I‘“) > 0 and T # v, so that either

(3.1) = — ﬂ < —|I‘ v| for each k € {1,...,n},
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or, equivalently,

a
(3.2) Re [(F_b_k)(i_ )];0 for each k& {1,...,n}
holds, then we have the inequalities
n n 1 _ n 2
(33) > pelarl? 3 pelbil? < ————){Re ((7+T) 3 peasty] }
k=1 k=1 k—l

/‘ Re

The constants 1/2 and 1/4 are best possible in (3.3).

ProoF: The fact that the relations (3.1) and (3.2) are equivalent follows by the
simple fact that for z,u,U € C, the following inequalities are equivalent
u+U I

1
5 <'2'1U‘U|

-
and
Re[(u-2)(z-7)] 20
Define o = (y+7T')/2 and r = |’ — %{/2. Then
C+9 [L-qf
4 4
Consequently, we may apply Theorem 2, and the inequalities (3.3) are proved.
The sharpness of the constants may be proven in a similar way to that in the proof
of Theorem 2, and we omit the details. 0
The following additive version also holds.

laf? —r? = = Re(I¥) > 0.

COROLLARY 2. With the assumptions in Theorem 4, we have

(3.4) > pelal? > prlbel? - Zpkakbk T2l
k=1 k=1 k=1

L ——
4Re(Ty)
The constant 1/4 is also best possible.

n

Z Pkakbk -

REMARK 2. With the above assumptions and if Re(I'y) = 0, then by the use of
Remark 1, we may deduce the inequality

(3.5) > prlax/’ < Re [(7 +T)> pkakbk] <IT+1 | praebs|-
k=1 k=1 k=1

If Re(I'¥) < 0, then, by Remark 1, we also have

(36) > pu o’ < — Re(T) Yo bl + Re T+ 7) 3 prante
k=1 k_ k=1

~ Re( )Zpk lbx” + T + 7|

Z PkGib|.

k=1
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REMARK 3. If ai,br > 0 and there exist the constants m, M > 0 (M > m) with

(3.7 m < b < M foreach k€ {1,...,n},

k
then, obviously (3.1) holds with v = m, I' = M, also I'y = Mm > 0 and by (3.3) we
deduce

(3.8) Zpkak Zpkb (M * ) (Z Pkakbk) ;

that is, Cassels’ inequality.

4. A SHISHA-MOND TYPE INEQUALITY FOR COMPLEX NUMBERS
The following result holds.
THEOREM 5. Leta= (a),...,a,),b=(b,...,b,) € K*, where K = R,C and
= (p1,...,Pn) € RZ with ip,- = 1. Ifb; # 0, i € {1,...,n} and there exist the
constants v,I" € K such that f‘=;£ ~, —7 and either

r
(4.1) ‘;* t |\-|r 4| for each k€ {1,...,n},
k
or, equivalently,
ar
(4.2) [(F—E) (5—7)] 20 foreach k€ {1,...,n},

holds, then we have the inequalities

n 1/2 n 1/2 n
(4.3) 0< (Zpklaklz) . (Zpklbk|2> - Zpkakbk
k=1
n 1/
2 2} _
(Z“'“"' ) (g”""’*' ) Re[|r+ |Z”“’kb*]

1 r 2 &
| 7 EP“’IZ
k=

The constant 1/4 is best possible in the sense that it cannot be replaced by a smaller
constant.
PROOF: Follows by Theorem 3 on choosinga = (y+T')/2 # 0andr = [[—~v|/2 > 0.
The proof for the best constant follows in a similar way to that in the proof of
Theorem 3 and we omit the details. 0
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REMARK 4. If ai, b > 0 and there exists the constants m, M > 0 (M > m) with

(4.4) m < b < M foreach ke {l,...,n},
k

then we have the inequality

(4.5) (Zpkak) ( kbz)l/z—gpkakbk

1
<4 (M+ }:

k=

The constant 1/4 is best possible. For pr = 1/n, k € {1,...,n}, we recapture the result
from [3, Theorem 5.21] that has been obtained from a reverse inequality due to Shisha
and Mond [8].

5. FURTHER REVERSES OF THE CAUCHY-BUNYAKOVSKY-SCHWARZ INEQUALITY

The following result holds.
THEOREM 6. Leta=(a,...,a,), b=(by,...,b,) € K® and r > 0 such that for
> 0 with Zp, =1

i=1

(5.1) Zpt |b: _azl r?< Zpi Iatl

Then we have the inequality

(5.2) 0< > pilal®d pilbil -
i=1 =1 =1
n n n 2
< Zpi Jasf? Zpi fb:|* — [Re (Zpiaibi)]
i=1 i=1 i=1
n
T2 Zpi Ib,'lz .
i=1

The constant ¢ = 1 in front of r? is best possible in the sense that it cannot be replaced
by a smaller constant.

a:b;

PrOOF: From the first condition in (5.1), we have

S pillbsf? - 2Re(bies) + lal?] < 72,

i=1

giving

(53) Zpi Ib,’!z + Zpi |a,,~|2 - 7'2 < 2Re (Zpiaib,-).
i=1 i=1 i=1
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Since, by the second condition in (5.1) we have
n
ZP:‘ lai* ~ 72 > 0,
i=]
.. n 2 N .
we may divide (5.3) by \/Ei=1pi la;|* — 72 > 0, getting
. i1 Pilbil?
5.4 1=l + ilai|? —r2 <
(5.4) S o =12 Zp |as|

Utilising the elementary inequality

2 Re(z:?_l piaib;)
Ve pilei? =12

(5.5) £+qa = 2/pq for p,g 20 and a >0,

we may write that

L pilbif?
5.6) 2 i10:f2 < _ L Pbl +
(5.6) Zpl < Bl

Combining (5.5) with (5.6) we deduce

szlbl

Taking the square in (5.7), we obtain

n n n 2
Sonbl (Y pda? - 1) < [Re(Ypat)]
i=1 i=1 i=1

giving the third inequality in (5.2).

The other inequalities are obvious.

To prove the sharpness of the constant, assume, under the hypothesis of the theorem,
that there exists a constant ¢ > 0 such that

n n n 2 n
(5.8) D opila? Y pilbil® - [RG(Z piaibi>] <er? Y pilbl,
i=1 i=1 =1 i=1

provided

n
ZpilaiP -
i=1

Re(3°1L, piaib) '
V 21_1 pzlai|2 -2

(5.7)

szlb » r<2p1|a,

n

Let 7 = /e, € € (0,1), ai,e; € C, 7 € {1,...,n} with Zp,lall =3 pile)ff =1 and
i=1

Zpla e, = 0. Put b; = @; + /ze;. Then, obviously

bt
n n

Zpi |bi—¢_1?|2=7‘2, ZP.‘ ]a,-|2=1 >r
i=1 i=1
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and
n n n
dSonlblP =Y pilalf+ed pilel =1+¢
=1 i=1 =1
n n
Re (Zpiaibi) = ZP:‘ lai|* =1
i=1 i=1
and thus

n n n 2
D omilail® Y pilbil® - [Re(Zpiaibi)] =c.
=1 i=1 =1

Using (5.8), we may write
e <ce(l+e) for € €(0,1),

giving 1 € ¢(1 +¢) for € € (0,1). Making ¢ — 0+, we deduce ¢ > 1. 0
The following result also holds.
THEOREM 7. Letx=(z1,...,Z2), Yy =(¥1,---,¥%) €EK*, p=(p1,...,pn) €ERL
with 3. p;i =1 and v, T € K such that Re(qT') > 0 and either
i=1
(5.9) > piRe[ (07 — ) @ - Tw)] 2 0,
i=1

or, equivalently,

= y+T 2 1 o )
(5.10) E pi\Ii__z_'-y—i' < ZIF—’YI E piluil®.
i=1 =1
Then we have the inequalities
n n £ —_ n
1 {Re[(T +7) >, pizawi]}?
11 A2 ; i2<-' i=1
(5.11) .§=1 pilzi| .§=1p lvil” < 2 Re(D7)
1 T+ 2
<= > Pz -
S 1 Re(Dy) | & PT¥:

i=1
The constant 1/4 is best possible in both inequalities.

PROOF: Define b; = z; and a; = (T +%)/2 -y; and r = |[ - 'y|/2<ipi|yi|2)1/2.
Then, by (5.10) =t

n n

_ vy+T _)2
Elpilbi-aiP: Elpilxi_ 5 'yil
= 1=

1 n
< I =P midul* =7,
i=1
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showing that the first condition in (5.1) is satisfied.
We also have

n n
Zpilai|2 -7’ = ZP:'
=1 i=1

= Re(I) Zpi|yi|2 >0
i=1

T+y2 21 2% 2
=L f? - 210 -l > wlud

since Re(7T) > 0, and thus the condition in (5.1) is also satisfied.
Using the second inequality in (5.2), one may write

n n T, = 2
Zp,lr+7i vl ) pilzl® — [ReZpi(¥)ym]
i=] i=1
n n
NS %IF"YIZZMIMFZEI%I?,
i=1 i=1 .

giving

| R L | 2
T+ 4| lZp,IyA?Zp‘Iz. < T+7) Zp,x,yz ,

i=1
which is clearly equivalent to the first inequality in (5.11).
The second inequality in (5.11) is obvious.
To prove the sharpness of the constant 1/4, assume that the first inequality in (5.11)
holds with a constant C > 0, that is,

] - - {Re[(T +7) =0, pizivil}’
(5.12) E pilz:|? E pilul* < C- = )
i=1 =1

Re(Iy)

provided Re(7T') > 0 and either (5.9) or (5.10) holds.
Assume that I,y > 0 and let z; = +%;. Then (5.9) holds true and by (5.12) we

deduce , 2 ( )2
~ T+ )% (Ch, pilysl?
2 . N 2 < ( i=1
7 (piut) <c - ,
giving
(5.13) I'y < C(T'++)? forany T,y >0.

Let £ € (0,1) and choose in (3.13) T =1+¢,7v=1—-¢ > 0toget1—e2 < 4C for any
e € (0,1). Letting ¢ — 0+, we deduce C > 1/4 and the sharpness of the constant is
proved.

Finally. we note that the conditions (5.9) and (5.10) are equivalent since in an inner
product space (H.(-,-)) for any vectors z,2z,Z € H one has Re(Z — z,z — z) > 0 if and
only if ||z = (z + Z)/2|| < ||Z - 2|/2 [1). We omit the details. 0
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6. MORE REVERSES OF THE CAUCHY-BUNYAKOVSKY-SCHWARZ INEQUALITY

The following result holds.

THEOREM 8. Leta = (ay,...,a,), b =(by,...,b,) € K" and p = (p1,..-,pn)
€ R} with Y p; = 1. If r > 0 and the following condition is satisfied

i=1

(6.1) > oplb - <2

1=1

then we have the inequalities
n n 1/2
(62) 0< (Zp,- Zpy ) -
(szlbl szla,l )
(ZP:IH szlazlz) - Zpi Re(a;b;)
i=1
1

n
Zpiaibi‘
=1

i Re(aib,-) ’

l\)

The constant 1/2 is best possible in (6.2) in the sense that it cannot be replaced by a
smaller constant.

Proor: The condition (6.1) is clearly equivalent to

(6.3) Zpi |6:]% + Zpi Jas? ZZp, Re(b;a;) +
i=1 i=1

i=1

Using the elementary inequality

n n 1/2 n n
(6.4) 2 <Z pi |b[? ZP-’ |ai|2) < ZP:‘ lb:|* + Zpi las|®
i=1 i=1 i=1 i=1

and (6.3), we deduce

n n 1/2 n
(65) 2 (Z Di |b,’|2 Zp, |a,-|2) S 2 Zp, Re(bia,-) + T2,
i=1 i=1 i=1

giving the last inequality in (6.2). The other inequalities are obvious.
To prove the sharpness of the constant 1/2, assume that

n n 1/2 n
(6.6) 0< (Zpi 6> mi Iai|2> - piRe(bia;) < er?
i=1 i=1 i=1
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for any a, b € K" and r > 0 satisfying (6.1).
Assume that a, e € H, e = (ey,...,e,) with Ep,la,] = Zp,]e, = 1 and
Ep,a,e, = 0 If r = /e, € > 0, and if we define b = a+\/_e where a=(a,...,8,)
]K" then Z P |b: — @|* = € = r2, showing that the condition (6.1) is satisfied.
On the other hand,

n n 1/2 n
(ZP:‘ |bi|22Pi |ai|2) - Zpi Re(b;a;)
i=1 i=1

i=1

n 1/2 n
= (Z @+ \/Eeilz) - Zpi Re[(a; + VEe)ai]
1=1 .

=1
n n 1/2 ° n
= (Zpi lai* + ¢ Z |€i|2) - EP:’ |a:?
i=1 i=1 i=1
=v1l+e—-1

Utilising (6.6), we conclude that
(6.7) Vi4+e—-1< ¢ forany € > 0.

Multiplying (6.7) by /1 + ¢ +1 > 0 and thus dividing by £ > 0, we get

(6.8) (Vi+e—1)c2>1 forany £ > 0.
" Letting € = 0+ in (6.8), we deduce ¢ > 1/2, and the theorem is proved. 0

Finally, the following result also holds.
THEOREM 9. Letx=(zy,...,Z), Y= (y1,-..,%) €EK", p= (p1,...,pn) €R?
with _pi =1, and v,I' € K with " # ~, -, so that either

i=1

(6.9) Zp, Re([(T% — i) (T — Ju:)] 2 0,
or, equivalently,

U I 2.0 A L NN 2
(6.10) En’z, 5 I IF 7l szlyzl

holds. Then we have the inequalities

n n 1/2
(6.11) 0< (Zpilzilzzmlyflz) -
i=1 i=1
< (ZPiIIiPZMyJZ) lZPz [ :yi]l
i=1 i=1

iTiYi
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n n 1/2 n r +75
< (ZPflIJZZPi |yi|2) - ZP:‘ Re [F——ziyi]
1 |F 7]2 - 12
The constant 1/4 in the last inequa.lity is best possible.
PRrOOF: Consider b; = z;, a; = (T +7%)/2 -y, 4 € {1,...,n} and

1 n 1/2
== - il
=g =L pin)

Then, by (6.10), we have

i 2 il ')’+F 2 1 z ¥
;pilbi_a—il =iz=l:pi’13i—7'yi‘ SZIP—vlzgpily.-I2=r2

showing that (6.1) is valid.
By the use of the last inequality in (6.2), we have

(Zp,|$,|22p,|r+7, |yi|2> sz Re[ :c,y,]
< §|F - 7l? Zpi|yi|2-
i=1

Dividing by |I" + v|/2 > 0, we deduce
1/2

n n n —
'+
< (zp,- el Sonlul) = peRe[ L]
i i=1 i=1 T +1
l |P 7|2 zﬂ: I |2
\ 4 IF + ’yl 1 1
which is the last inequality in (6.11).
The other inequalities are obvious.

To prove the sharpness of the constant 1/4, assume that there exists a constant
¢ > 0, such that

n , n ) 1/2 n r+7 IF _ 7|2 n
(6.12) (Zpilzil Zpilyil ) - ZP:’ Re[mliyi] e T ZPi|yi|2,
i=1 i=1 i=1 . i=

provided either (6.9) or (6.10) holds.
Let n=2y=(1,1),x=(21,2,) € R%, p=(1/2,1/2) and T,y > 0 with " > 7.
Then by (6.12) we deduce

PRy
(6.13) \/5\/1: +13— (11 +12) € 2 (F+? .
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Ifz; =T, zo = v, then (I'—z,)(z, —7) + (T —z;)(z2 —7) = 0, showing that the condition
(6.9) is valid for n = 2 and p, x, y as above. Replacing z; and z, in (6.13), we deduce

(6.14) VT2 4+ 4% - (T+7) < 2c%.

If in (6.14) we choose I’ =1 + ¢, vy =1 — ¢ with € € (0,1), we deduce

(6.15) VI+e?-1< 2l

Finally, multiplying (6.15) with v/1+ €2 + 1 > 0 and then dividing by €2, we deduce
(6.16) 1< 2¢(V1+€2+1) forany £>0.

Letting € — O+ in (6.16), we get ¢ > 1/4, and the sharpness of the constant is proved. [

REMARK 5. The integral version may be stated in a canonical way. The corresponding
inequalities for integrals will be considered in another work devoted to positive linear
functionals with complex values that is in preparation.
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