NEW AND MISCLASSIFIED PLANETARY NEBULAE

L. Kohoutek Hamburg Observatory Hamburg-Bergedorf, W.Germany

ABSTRACT. 75 objects have been classified as new planetary nebulae since 1982. They are summarized in Table 1 which gives the designations, names, coordinates and references to the discovery. In the list of misclassified PN (Table 2) 41 objects have been included; Table 3 presents objects with incorrect identification in CGPN. The main properties of a PN and of its nucleus are given in a summary which can be useful for a correct classification of planetaries.

This third supplementary list to the "Catalogue of Galactic Planetary Nebulae" (CGPN - Perek,Kohoutek,1967)contains 75 discoveries which were published mainly between 1982 and 1986. As in the previous lists the designations, names, coordinates and references to the discovery as PN are given in Table 1. An asterisk affixed to the galactic number means an uncertain classification (suspected,possible or probable PN).

It is suggested to remove 41 objects (Table 2) from the CGPN or from the previous supplementary lists (Kohoutek,1978 - Paper I, 1983 - Paper II):they are mostly M stars without H_{α} emission, galaxies, reflection nebulae or plate faults. There are numerous further objects the classification of which as PN is still questionable: it is possible to find them in both the list of planetaries and the list of other emission-line objects. The catalogue of symbiotic stars given by Allen (1984) contains 40 stars also classified as planetaries. We are rather reserved concerning their reclassification alone on the basis of symbiotic behaviours: let us mention the symbiotic object 330+4.1 (Cn 1-1) which was removed from the list of PN (Paper I) whereas the recent papers of Lutz (1984) and Bhatt,Mallik (1986) classify it again as a PN.

It is useful to present a list of planetary nebulae with incorrect identification in CGPN (Table 3). Besides

29

S. Torres-Peimbert (ed.), Planetary Nebulae, 29-37. © 1989 by the IAU.

(1982-1986
NEBULAE
PLANETARY
NEW
TABLE 1

~

					the second secon
Design. Name	R.A. (19	50) Decl.		Discovery	Rem.
124+10.1* EL0103+73 128 -4.1* S 22 148-48.1* GR0155+10 136 +5.1 HEFE 1 138 +4.1* HTDe 2	1 ^h 03 ^m 6 1 27.4 1 55.3 2 59.53 3 06.9	+73°17′ +58°07 +10°43 +64°430 +62°4301	E . E . E . E .	Ellis,al. 1984 Arkhipova,Lozinskaya Ellis,al. 1984 Heckathorn,al. 1982 Hartl,al. 1983	1978 R
149 -9.1* HtDe 3 137+16.1* ELO419+72 166 -6.1* CRL 618 158 +0.1* Sh 2-216 205-26.1* MaC 2-1	3 23.8 4 19.4 4 39.56 5 01.25	+45 13 +72 42 +36 01.2 +46 44 1 -6 13.7	(ru	Hartl,al. 1983 Ellis,al. 1984 Proto-PN in Paper I Reynolds 1985 MacConnell 1982	Ц
203-18.1* Mac 2-2 156+12.1* HtDe 4 204-16.1* Mac 2-3 173 +2.1* PP 40 204-13.1* Mac 2-4	5 26.42 5 336.42 5 35.71 5 35.73 45.02	-0 43.1 +55 30 +0 12.8 +35 41.0 1 +0 37.7	(Eu	MacConnell 1982 Hartl,al. 1983 MacConnell 1982 Turner,Terzian 1985 MacConnell 1982	
197 -6.1 WeDe 1 218-10.1* HtDe 5 192 +7.1* HtDe 6 231 -8.1* Y-C 34 221 +4.1* Y-C 36	5 56.64 6 21.2 6 37.2 6 49.64 7 19.73	+10 41.5 1 -10 11 +21 28 -20 10.8 -5 50.0	Č.	Weinberger,al. 1983 Hartl,al. 1983 Hartl,al. 1983 Cesco,al. 1984 Cesco,al. 1984	Ж
221 +5.2* Y-C 37 223 +4.1* Y-C 39 219 +7.1* RWT 152 247 -4.1* FEGU 248-5 235 +4.1* Y-C 40	7 23.99 7 24.46 7 27.4 7 40.48 7 47.80	-5 16.0 -7 26.8 -2 00 -32 40.7 1 -17 44.4	(the	Cesco,al. 1984 Cesco,al. 1984 Pritchet 1984 Fesen,al. 1983 Cesco,al. 1984	Ц
211+18.1* HtDe 7 211+22.1* BN0808+11 271 -8.1* Y-C 41 214+31.1* Y-C 42 221+46.1 BN0950+13	7 52.2 8 08.5 8 33.46 8 43.24 9 50.3	+9 43 +11 06 -54 53.3 +12 48.2 +13 59 1	6. fr	Hartl,al. 1983 Ellis,al. 1984 Cesco,al. 1984 Cesco,al. 1984 Ellis,al. 1984	

30

Design. Name	R.A. (19	50) Decl.		Discovery	Rem.
273 +6.1* HBDS 1	9 ^h 50.8	-46°03'	E4	Heber, Drilling 1984	R
299 -4.1* HtTr 1	12 13 82	-66 29.0		Hartl, Tritton 1983	Я
315+59.1* I-C 43 321 -3.1 Httr 2	15 26.17	-60 51.4		Cesco,al. 1984 Hartl.Tritton 1983	<u>α</u>
335+12.1* DS 2	15 39.7	-39 10	<u>ل</u> تبا	Drilling 1983	" ല്
336 -1.1* VERA 90	16 34.40	-48 36.8	Ē	Vega,al. 1980	I
333 -4.1 HtTr 3 336 -2.1* VERA 104	16 35.69 16 38.31	- 52 43.4 - 49 39.4	۴u	Hartl,Tritton 1983 Vega.al. 1980	Я
335 -3.1 HtTr 4 94+38.1* EL1647+64	16 41.13	-51 06.8 +64 18		Hartl, Tritton 1983 Ellis, al. 1984	Ж
343 -0.1* HtTr 5	16 57.90	-43 01.6		Hartl, Tritton 1983	ы
11+17.1* DeHt 1	17 04.17	-9 43.1	Éч	Dengel,al. 1979	Я
75+35.1 Sa 4-1	17 12.5	+49 19	É4	Sanduleak 1983	
36421.1* Y-C 44	17 36.12	- 20 JY + 12 42.6		Harti,al. 1903 Cesco,al. 1984	
36+20.1* Y-C 45	17 40.75	+12 21.9		Cesco,al. 1984	
332-16.1 HtTr 6	17 47.36	-60 22.6	Éч	Hartl, Tritton 1983	ж
332-16.2* HtTr 7	17 49.60	-60 49.4		Hartl, Tritton 1983	R
6 +1.1* HtTr 8 1 -3.3* SAWI 1	17 52.90	-22 58.6	ĥ	Hartl,Tritton 1983 Shaw,Wirth 1985	e:
1 -3.4* SAWI 2	17 59.85	-29 46.1	٤ų	Shaw.Wirth 1985	
1 -3.5* SAWI 3	18 00.08	-29 50.7	É	Shaw, Wirth 1985	
1 -3.6* SAWI 4	18 00.45	-29 46.0	μ	Shaw, Wirth 1985	
1 -3.7* SAWI 5	18 00.70	-29 51.6	Íч,	Shaw,Wirth 1985	
1 -3.8* SAWI 6	18 00.80	-29 27.0	۲щ.	Shaw,Wirth 1985	
1 -3.9* SAWI 7	18 01.88	-29 19.7	Ē	Shaw,Wirth 1985	
351-10.2 HtTr 9	18 05.41	-41 48.9		Hartl, Tritton 1983	8
22 +4.1* MA 2	18 12.52	-6 58.2	Í۳4	Maehara 1982	
23 +4.1* MA 3	18 15.13	-6 49.6	í-	Maehara 1982	
30 +6.1* Sh 2-68	18 22.43	+0 49.9	É4	Fesen,al. 1983	ж
23 +1.1* MA 13	18 27.80	-7 29.8	í۳ı	Maehara 1982	

https://doi.org/10.1017/S0074180900137465 Published online by Cambridge University Press

31

Kem.	Я	т 1986 в г	<pre>:. R Remarks.); Sh 2-188 955);Simeiz 288). achoff,al.(1984);). berts,1982). (1985). (1985). (1985). (1985). (1985).</pre>
Discovery	Cesco,al. 1984 Cesco,al. 1984 Hartl,Tritton 1983 Stephenson 1985	Hartl, Tritton 1983 Hartl, Tritton 1983 Hartl, al. 1983 Hartl, Tritton 1983 Hartl, Tritton 1983 Whitelock, Menzies Hartl, al. 1983 Hartl, al. 1983 Proto-PN in Paper Hartl, al. 1983	a. F Finding chart in Johnson (1955 (Sharpless, 1959) YM 22 (Johnson, 1954 Gaze, Shajn, 1954 Confirmed by Pas F Rubin, al. (1974 ESO 558-G01 (Laul LSS 1362 F Hartl, Tritton F Hartl, Tritton
R.A. (1950) Decl.	18 ^h 34 ^m 04 +10 ⁰ 16:2 18 34.37 -24 29.2 18 47.82 -1 43.7 18 58.75 +38 17.1 F	19 00.48 +2 57.9 19 01.32 +5 05.22 19 02.63 -25 28.5 19 05.52 +7 00.8 9 19 12.77 +17 17.5 19 28.7 -3 49 13.55 19 28.7 -3 49 28 19 55.1 -26 31 17.5 19 55.33 +39 41.5 52 22 28.1 +47 15 53	Possible planetary nebul 1985). (priv.comm.) berts,1982). ep.by Hartl.al. 1 (Gaze,Shajn, 219 +7.1 nson,1955). 1985 1985 1985 1985 1985 1985 1985 1985
Design. Name	40 +7.1* Y-C 46 9 -8.1* Y-C 47 31 -0.2* HtTr 10 68+14.1* SP 4-1	36 -1.2* HtTr 11 38 -0.1* HtTr 12 11-14.1* HtDe 10 36 -2.1* HtTr 12 41 -0.1* HtTr 14 51 +2.1* IRAS1912+172P0 34-10.1* HtDe 11 14-25.1* HtDe 12 75 +5.1* V1016 Cyg 99 -8.1* HtDe 13	REMARKS 6 +1.1 F Hartl, Tritton (11+17.1 Coord.Weinberger 11-14.1 ESO 524-G706 (Lau 30 +6.1 HtDe 9, discov.ind (1983); Simeiz 29 1954); YM 15 (John 36 -1.2 F Hartl, Tritton 36 -1.2 F Hartl, Tritton 38 -0.1 F Hartl, Tritton 41 -0.1 F Hartl, Tritton 41 -0.1 F Hartl, Tritton 124+10.1 HtDe 1, discov.ind (1983) No.1; see 128 -4.1 PN (Rosado, Kwitte

REFERENCES TO TABLE 1

Y-C	Cesco C.U., Sanguin J.G., Sanchez G., Mira H., Cesco M.R., Vicentenla J.A., 1984, Bol.Asoc.Argent.Astron.
S	Arkhipova V.P.,Lozinskaya T.A.,1978,Sov.Astron.Lett. 4(1).7.
DeHt	Dengel H. Hartl H. Weinberger R. 1979. Mitt.AG 45.182.
DS	Drilling J.S., 1983, Astrophys. J. 270, L13.
EL,GR)	Ellis G.L., Grayson E.T., Bond H.E., 1984, Publ. Astron.
BN J	Soc.Pacific 96,283.
Sh 2]	Fesen R.A., Gull T.R., Heckathorn J.N., 1983, Publ.
FEGU	Astron.Soc.Pacific 95,614.
	Gaze V.F., Shajn G.A., 1954, Izv.Krym.AO 11, 39.
HtDe	Hartl H., Dengel J., Weinberger R., 1983, Mitt.AG 60, 325.
HtTr	Hart1 H., Tritton S.B., 1983, Mitt. AG 60, 328.
	Hart1 H., Tritton S.B., 1985, Astron. Astrophys. 145, 41.
HBDS	Heber U., Drilling J.S., 1984, Mitt.AG 62, 252.
HEFE	Heckathorn J.N., Fesen R.A., Gull T.R., 1982, Astron.
	Astrophys.114,414.
	Hrivnak B.J., Kwok S., Boreiko R.T., 1985, Astrophys.J. 294, L113.
	Johnson H.M., 1955, Astrophys. J. 121, 604.
	Kohoutek L., 1978, IAU Symp.No.76 (ed.Y.Terzian), D. Reidel Publ.Comp., p.47 (Paper I)
	Lauberts A., 1982, The ESO/Uppsala Survey of the ESO(B) Atlas, European Southern Observatory.
	Lynds B.T., 1965, Astrophys, J.Supp1, 12, 163.
MaC 2	MacConnell D.J., 1982, Astron. Astrophys. Suppl. 48, 355.
MA	Maehara H., 1982, Contr. Bosscha Obs. 71, 1.
	Pasachoff J.M.,Kwitter K.B.,Massey P.,1984,Bull.AA Soc.16,994.
RWT	Pritchet C., 1984, Astron. Astrophys. 139, 230.
Sh 2	Reynolds R.J., 1985, Astrophys.J. 288, 622.
	Rosado M.,Kwitter K.B.,1982,Rev.Mexicana Astron. Astrof.5,217.
	Rubin V.C.,Westpfahl Jr.D.,Tuve M.,1974,Astron.J. 79,1406.
Sa 4	Sanduleak N., 1983, Publ. Astron. Soc. Pacific 95, 619.
	Sharpless S., 1959, Astrophys. J. Suppl. 4, 257.
SAWI	Shaw R.A., Wirth A., 1985, Publ. Astron. Soc. Pacific 97, 1071.
SP 4	Stephenson C.B., 1985, Publ. Astron. Soc. Pacific 97,930.
РР	Turner K.C., Terzian Y., 1985, Astron. J.90, 59.
VERA	Vega E.I., Rabolli M., Muzzio J.C., Feinstein A., 1980, Astron, J.85, 1207.
WeDe	Weinberger R., Dengel J., Hartl H., Sabbadin F., 1983, Astrophys. J. 265. 249.
IRAS	Whitelock P.A., Menzies J.W., 1986, Monthly Notices Roy.Astron.Soc.223,497.

TABLE 2 MISCLASSIFIED PLANETARY NEBULAE

Desi	lgn.	Name	Remarks and references
0	+2.2	ES0-520-13	Plate fault (Fredrick, West, 1984)
0	-6.1	ES0-456-73	Plate fault (Fredrick,West,1984)
3	-3.1	Sa 3-119	M star without H _Q emission (MacConnell,1983)
3	-4.10	ESO-456-64	Plate fault (Fredrick,West,1984)
9	-6.1	ES0-522-29	Plate fault (Fredrick,West,1984)
28	-4.2	Th 1-I	M star without H _α emission (NacConnell,1983)
35	-2.1	к 4-14	M star without H_{α} emission (MacConnell, 1983)
37	-2.1	Ap 3-1	M star without H_{α} emission (MacConnell, 1983)
37	-3.1	к 4-18	M star without H_{α} emission (MacConnell, 1983)
43	+1.1	к 4-13	M star without H_{α} emission (MacConnell, 1983)
97	+3.1	A 77	Compact HII region (Sabbadin,al.,1986)
196-	-12.1	A 11	No em.lines, very probably a reflection nebula (Lutz, Kaler, 1983)
227-	+33.1	A 32	A galaxy or a plate deffect on POSS (Lutz,Kaler,1983)
239.	-18.1	ESO-426-13	Galaxy (Fredrick,West,1984)
241	-7.1	M 4-1	Emline galaxy (Kohoutek, Pauls, 1985)
242	-3.1	ESO-429-04	Galaxy (Fredrick,West,1984)
245	-3.1	ESO-429-17	Galaxy (Fredrick,West,1984)
247-	-21.1	К 2-13	Plate fault (Kohoutek, Pauls, 1985) Plate fault (West, Kohoutek, 1985)
248.	-12.1	ES0-367-03	Bar galaxy (Fredrick, West, 1984)
249.	-22.1	ES0-308-08	Plate fault (Fredrick, West, 1984)
251	-4.1	ES0-369-01	Plate fault (Fredrick, West, 1984)
265	+5.1	ES0-314-12	Probably a galaxy (Fredrick, West, 1984)
266	+2.1	Pe 2-3	M star without H_{α} emission (MacConnell, 1983)
274	-0.1	ES0-212-08	Plate fault (Fredrick,West,1984)
284.	-39.1	Lo 2	Probably a galaxy (West, Kohoutek, 1985)
292	-3.1	SP 2-14	M star without H_{α} emission (MacConnell, 1983)
308	-1.1	ES0-097-03	Plate fault (Fredrick,West,1984)
309	+6.1	Sm 2	M star without H_{α} emission (MacConnell, 1983)
310	+2.1	Sm 3	M star without H_{α} emission (MacConnell, 1983)
327.	+14.1	ES0-328-04	Among galaxies (Fredrick,West,1984)

Design.	Name	Remarks and references
329+12.1	ES0-328-40	A number of galaxies around the given position (Fredrick,West,1984)
336 -8.1	ES0-180-05	Plate fault (Fredrick,West,1984)
341+17.1	ESO-450-16	Probably a galaxy (Fredrick, West, 1984)
341-15.1	ESO-182-04	Galaxy (West,Kohoutek,1985)
343+16.1	ES0-451-03	Late-type star plus nebula (Fredrick, West,1984)
345+10.1	ESO-390-05	Emline galaxy (Fredrick, West, 1984)
346+19.1	ES0-515-19	Late-type star (Fredrick,West,1984)
347 +7.1	ESO-391-02	Plate fault (Fredrick, West, 1984)
349-10.1	ES0-280-02	Either a galaxy or a reflection nebula (West,Kohoutek,1985)
353-55.1	ES0-289-19	Probably a galaxy (West, Kohoutek, 1985)
358 -3.2	н 2-30	M star without \mathbb{H}_{α} emission (MacConnell, 1983)

REFERENCES TO TABLE 2

Fredrick L.W., West R.M., 1984, Astron.Astrophys.Suppl.56, 325.
Kohoutek L., Pauls R., 1985, Astron.Astrophys.Suppl.60, 87.
Lutz J.H., Kaler J.B., 1983, Publ.Astron.Soc.Pacific 95, 739.
MacConnell D.J., 1983, Rev.Mexicana Astron.Astrof.8, 39 (T.2).
Sabbadin F., Strafella F., Bianchini A., 1986, Astron.Astrophys.
Suppl.65, 259.

those objects given in this table we would like to point out 1-3.1 (H 1-47) and 1-3.2 (Ap 1-7): the identification of both objects is identical whereas the respective coordinates differ. Therefore the chart(s) must be incorrect.

In order to answer the question "what is not a PN" with the consequence to remove such an object from the respective list it is necessary to indicate what is a normal PN. We have therefore collected (using the current review literature) the main properties which correspond to the general conception of PN - in the following summary the typical values are given, but they are changing very much during the evolution of the nebulae and of their nuclei (the nebular parameters correspond to the main nebular structure). We believe that only a thorough discussion of <u>all</u> properties can lead to the decision whether or not the respective object belongs (with a certain probability) to the class of PN. For such a discussion not only extensive observations but also a comprehensive theory are necessary.

REFERENCES

Allen D.A., 1984, Proc.ASA 5(3), 369. Bhatt H.C., Mallik D.C.V., 1986, Astron. Astrophys. 168, 248.

36

TABLE 3 MISIDENTIFIED PLANETARY NEBULAE

Design.	Name Remarks and references		
1 -0.1	Bl 3-11 The CGPN identif.chart incorrect (Sanduleak,1976). Misclassified PN (Paper II).		
2 +1.1	H 2-20 Probably incorrect identification, the object is a AO star without em.lines (Lutz, Kaler, 1983).		
59 -1.1	He 1-3 Misidentified in CGPN, correct chart given by Sab- badin.Bianchini (1979).		
164+31.1	NGC 2474/75 Not identical with NGC 2474/75 (Barbieri,Sulen- tic.1977). New name JnEr 1 proposed.		
324 -1.1	He 2-133 Finding chart incorrect, the PN is located 1.5mm to the north and 1.2mm to the east of the star (AOV) indicated in the CGPN (Lutz Kaler, 1983).		
353 +8.1	MyCn 26 A- or early F-type star, no em.lines. A misidenti- fication or not a PN (Lutz, Kaler, 1983).		
355 +2.3	Th 3-11 Not correctly identified on the CGPN chart (San- duleak, 1976).		
356 -0.1	Th 3-34 Lies Sp object marked on CGPN chart (Allen, 1979).		
358 +1.4	B1 B Lies Nn object marked on CGPN chart (Allen, 1979).		
3582,2	B1 3-6 Sanduleak (priv.comm.)finds the object 30"E of the identification given in CGPN (Allen, 1979). Misclassified PN (Paper II).		
REFERENCE	S TO TABLE 3		

Allen D.A., 1979, Obs. 99, 83.

Barbieri C., Sulentic J.W., 1977, Publ.Astron.Soc.Pac.89,261. Lutz J.H., Kaler J.B., 1983, Publ.Astron.Soc.Pacific 95,739. Sabbadin F., Bianchini A., 1979, Publ.Astron.Soc.Pac.91,65. Sanduleak N., 1976, Publ.Warner Swasey Obs.2, No.3,55.

Kohoutek L., 1978, IAU Symp.No.76 (ed.Y.Terzian), D.Reidel Publ.Comp., Dordrecht, Boston, p.47 (Paper I). Kohoutek L., 1983, IAU Symp.No.103 (ed.D.R.Flower), D.Reidel

Publ.Comp., Dordrecht, Boston, London, p. 17 (Paper II). Lutz J.H., 1984, Astrophys. J. 279, 714.

Perek L., Kohoutek L., 1967, Catalogue of Galactic Planetary Nebulae, Academia Praha.

symmetrical shape (mostly circular or ellip-**MORPHOLOGY:** tical disc or ring, sometimes bipolar structure) with apparently sharp outer boundary, often multiple shells (main nebula + faint outer structure or halo) -depending on: wavelength (stratification) intrinsic absorption -reflecting orientation in space diam. 0.1pc - 0.2pc (limits ~ 0.005pc, ~ 1pc) **DIMENSION:** -depending on wavelength (stratification) $10^3 \text{ cm}^{-3} - 10^4 \text{ cm}^{-3}$ (but <10³ cm⁻³ and >10⁴ cm⁻³ EL.DENSITY: possible for large and small nebulae) 9000° K - 15000[°]K (limits 8000° K,23000[°]K) EL.TEMPERATURE: $0.1M_{\odot} - 0.2M_{\odot}$ (limits ~0.001M_{\odot}, ~1M_{\odot}) TOTAL MASS: non-isotropic,~25km/s (limits 4km/s,60km/s) EXP.VELOCITY: SPECTRUM: Em.lines: recombination lines mostly of H and He collisionally excited (forbidden) lines of C,N,O,Ne,Mg,Si,S,C1,Ar fluorescent lines (rare) of OIII and NIII -depending on: exc.conditions (exc.class) stratification chemical composition I([0III]5007+4959)/I(Hβ)≈1 to 15 ≈0 to 1 for very low-exc.nebulae Continuum emission: free-bound, free-free, two-quantum processes, emission from grains (dust) CENTRAL STAR:

TEMPERATURE :	50000° K - 100000 [°] K (1imits 25000 [°] K,~20000 [°] K)
LUMINOSITY:	$\sim 5 \times 10^3 L_{\odot}$ (limits $\sim 10^4 L_{\odot}$, $\sim 10^1 L_{\odot}$)
RADIUS:	limits $\sim 0.005 R_{\odot}$, $\sim 1.5 R_{\odot}$
MASS:	~0.6Mg(progenitors from 0.8Mgup to 6-8Mg)
MASS LOSS:	$\sim 10^{-10} M_{\odot} / yr = 10^{-7} M_{\odot} / yr$
GRAVITY:	log g~4.5 - 7.0
SPECTRUM:	WR, Of, WR+Of, OVI, cont. O, sdO, peculiar