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UNIFORM SPACES AS NICE IMAGES OF NICE 
UNIFORM AND METRIC SPACES" 

BY 

RICHARD WILLMOTT 

1. Introduction. The classical theorem that a complete separable metric 
space is the image under a one-to-one continuous function of a closed subset of 
the irrational numbers has been extended in two directions, the first leading to 
various characterizations in descriptive set theory of Borel and analytic sets or 
generalizations of them as continuous images of certain subsets of the irration
als, or generalizations of them (see, e.g. [3] and references cited there; [4]; [6]). 
The second direction originates in the observation that a closed subset of the 
irrationals is a complete O-dimensional metric space (under a suitable metric), 
and leads to the general question asked by Alexandroff [1], "Which spaces can 
be represented as images of 'nice' (e.g. metric, O-dimensional) spaces under 
'nice' [e.g. one-to-one, open, closed, perfect] continuous mappings?" (See, e.g. 
[7], [9] and the survey articles [1], [2] and [11].) 

Two representative results in this area are the following theorems. (The 
weight of a topological space is the least cardinal of a base for the topology.) 

THEOREM A (Stone [14], Lemma 3.3, corollary and observations in Section 
2). If X is a complete metric space of weight ^K«, then X is the image of a 
complete, O-dimensional metric space of weight <Ktt under a function which is 
continuous, one-to-one and is such that the image of each open set is a countable 
union of closed sets. 

THEOREM B (Ponomarev [10]). If X is a normal space, then X is the image of 
a normal O-dimensional space of the same weight under a function which is 
continuous, closed and is such that the inverse image of every point is compact. 

In this paper we first establish the result (contained in Theorem 2), typical of 
the first direction indicated above that a complete uniform space (with a certain 
cardinality restriction) is the image, under a continuous one-to-one function, of 
a closed subset of a certain space (which is a generalization of the irrationals). It 
follows from this theorem or one of Kruse [6] that (see Theorems 3 and 4) a 
complete uniform space (with a certain cardinality restriction) is the image, 
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under a continuous one-to-one function, of a complete 0-dimensional uniform 
space of the same or smaller weight, a result in the second direction in the same 
spirit as Theorems A and B. Finally we use the fact that the domain space in 
the above result may be taken to be a metric space and obtain in Theorems 5 
and 6: a complete uniform space (with a certain cardinality restriction) is the 
image, under a continuous one-to-one function of a complete 0-dimensional 
metric space of the same or related weight (depending on some other cardinality 
conditions), a theorem again in the direction of Theorems A and B but in 
which the domain space has a nicer property (metric) than the given space 
(uniform). 

In much of the work in the direction indicated by Alexandroff, including 
Theorems A and B, the nice space, particularly in the case of 0-dimensionality, 
has been a subset of a product of discrete spaces. When these products, which 
include the generalizations of the irrationals called the Baire spaces, are taken 
over more than countably many factors, they are not metrizable. We work with 
a second generalization of the irrationals which under certain conditions 
(occurring for arbitrarily high cardinals) gives a metrizable space (see Section 
3). 

I am indebted to A. H. Kruse for comments and suggestions on aspects of 
this paper. 

2. Preliminaries. We adopt a development of ordinal numbers in which each 
ordinal is just the set of all preceding ordinals. (For notational convenience, 
cardinals are not identified with initial ordinals). Lower case Greek letters will 
be used to denote ordinals and, as usual, <o will denote the function on the 
ordinals such that û>a is the least ordinal of cardinal Ka. <o0 is thus the set of 
nonnegative integers. An ordinal number (oa is cofinal with <o0 if <oa = Unecu0 Pn 
for some strictly increasing sequence {pn} of elements of coa. cott is cofinal with 
(o0 if and only if a = 0 or is cofinal with co0. For any ordinal 7, 7 + co0 is cofinal 
with <o0. 

The pair of cardinals (K«, K3) will be said to have property E if for every 
non-zero cardinal k <X 3 , X^ = K«. For such a pair, of course, a > 0. We remark 
that if a^ 0 is not a limit ordinal, then since K*—1 = 2K« % we have that (Xtt, Xa) 
has property E if and only if K« = 2K~-». Thus GCH implies that (K«, X<J has 
property E if a is not a limit ordinal, while, for example, (Ka, Xa) fails to have 
property E if a is cofinal with co0 ([8], Theorem 23.8). (K«, K0) of course has 
property E for any Ktt. 

We follow Kruse ([6], p. 11) in making the following definitions. (For 
uniformity notation and concepts see Kelley [5], Chapter 6.) A uniform space 
(X, °U) is uniformly K^-Lindelof if for each Ue% the cover {U[{x}] : x e X} of 
X has a subcover of at most Ka elements. An (a, (3)-space is a complete 
uniformly K«-Lindelof uniform space (X, °U) such that °U has a base of cardinal 
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<K3 and X with the uniform topology is Hausdorff. Any closed subset of an 
(a, 0)-space is again an (<*, |8)-space under the relative uniformity. 

Although we do not specify that Na and Xp be the least cardinals with the 
stated properties, even if they were, it would not necessarily follow that 
K« > Kp. For example, any non-first countable compact Hausdorff space would 
be Lindelof (N0-Lindelof) and would have a minimum cardinal K3 exceeding 
K0. It is easy to verify, using an extension of the usual argument that a Lindelof 
metric space is second countable, that if a > 0, the weight of an (a, 0)-space is 
at most Ka. 

3. The spaces (/(a, 0), 9) and (f (a, 0), 3) . Let I(a, 0) = < * , which can be 
considered as the û^-fold product of the set o)a with itself or as the set of all 
transfinite sequences of length œ^ with values in <oa. Using the first interpreta
tion we will denote by SP the product topology on I (a, 0) when wa is given the 
discrete topology. (I(a, 0), 9) is an (a, 0)-space ([6], Prop. 4.5); it is metrizable 
if and only if 0 = 0; its weight is max{Xa, K3}; and it is 0-dimensional (in the 
sense of small inductive dimension ind). This space was introduced and used 
extensively by Kruse [6] (whose notation is different). In the case 0 = 0, it is the 
standard Baire space B(X«) (see, e.g. [14]). 

Considering now I(a, 0) as a space of sequences, for iel(a, 0), ye<o3, the 
restriction of i to y, i\y is an ordered y-tuple of elements of coa, i.e. a function 
on y to (oa. For iel(a, 0), yeco3, we define 

I(i\y) = {jel(a,p):j\y = i\y}. 

To define a topology $ on I(a, 0) we take as a base for the neighborhood 
system of a point i the set of all I(i | y), yeco3. That is, 3 = {G <=/(«, 0) : if 
i G G, then for some y e cop, I(i | y) c G}. The space (I(a, 0), $) is a special case 
of spaces studied in [13], where it is shown that such a space is normal, regular, 
Tl9 totally disconnnected, perfect, separable if and only if a = 0 = 0, and 
metrizable if 0 = 0 . A slight extension of the proof of the last assertion shows 
that it is metrizable also if 0 is cofinal with co0. This property occurs for 
arbitrarily high ordinals, as y + co0 is cofinal with <o0 for any ordinal y. It is easy 
to check that the sets I(i \ y) are open and closed ([13], Lemma 2), 
homeomorphic to (I(a, 0), 3) , and that any two of them are either disjoint, or 
one is contained in the other ([13], Lemma 1). Clearly, too, if y <cop, the set of 
i G I (a, 0) with any particular ones of the coordinates up to y fixed is open and 
closed. It follows readily from Theorem 4, Section 2, Chapter 6, p. 250 of [4], 
and the fact that the elements I(i | y) of a base for the topology are open and 
either disjoint or nested, that (I(a, 0), $) is strongly 0-dimensional and hence 
([4], Section 1, Chapter 7, comments following the definitions) has small 
inductive (ind), large inductive and covering dimension 0. 
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If for each 7 e <o3 we let 

Uy= U I(i\y)xl(i\y) 
i e l (a ,3 ) 

and then let £ft = {Uy : y e (*)$}, it follows easily that ^ is a base for a uniformity 
°U on I(a, |3) whose topology is 3L As $ft is a nested well-ordered base for % 
transfinite sequences of length cop are sufficient to handle convergence in 
(I(a, |3), °U) and it is clear that (I(a, (3), °IL) is complete, i.e. every Cauchy 
transfinite sequence of length co3 converges to a point in I (a, |3). (Loosely 
speaking, the points (sequences) in a Cauchy transfinite sequence in I(a, |3) just 
have more and more coordinates fixed.) 

The sets I{i j y) form a base for S and there are X ^ ^ K^1 of them (where |y| 
is the cardinality of 7). Thus if (Ka, X3) has property E, (I(a, |3), £5) has weight 
<Ka, and since for any iel(a, |3) and 7Gco3, L^[{i}] = I(i | 7), we have that 
(I(a, |3), °U) is uniformly K^-Lindelof and is hence an (a, |8)-space. 

The space (I(a, 0), 3) was also introduced by Kruse [6], but was not much 
studied or used there. It and (I(a, |3), SP) are both generalizations of the 
irrationals I between 0 and 1, for (1(0, 0), 3), (1(0, 0), 0>) and I with the usual 
topology are homeomorphic. We remark that while (I(a, 0), 3) and (I(a, 0), 0>) 
are homeomorphic, 3 strictly contains 9 on I (a, 0) if 0 > O . 

4. The image theorems. The first two theorems are similar in form, but 
differ somewhat in aspects of the hypotheses and conclusions. The first is due 
to Kruse ([6], Theorem 15.13) who works with (J(a, 0), SP), while the second 
uses (I(a, 0), 3). If cF is the family of closed sets of some topological space, 
Borel (a)&r is the smallest family of sets containing & and closed under 
complementation and unions of Ktt elements of &*. 

THEOREM 1. Suppose a > 7 > 0 and X is an (a, 0)-space. If B is a Borel 
(y)ZF-set in X, then B is the image, under a continuous one-to-one function, of a 
closed subset of (I(a, 7), 0>). 

THEOREM 2. Suppose X is an (a, @)-space, a > 0, and (Xa, Xa) has property 
E. If B is the union of Xa closed sets in X, then B is the image, under a 
continuous one-to-one function, of a closed subset of (I(a, 0), $) . 

Proof. The proof is based on the idea in a proof of Rogers ([12], Lemma 2). 
Let {Uy : 7 G cop} be a base for a uniformity for X consisting of closed symmet
ric members of the uniformity ([5], Theorem 6.8). Given yew^, choose v so 
that UV°UV<^ Uy, and then by the uniformly K«-Lindelof property, choose K« 
sets of the form Lfv[{x}] which cover X. X is then the union of X« closed sets 
each of whose cross product with itself is contained in Uy. We have then, for 
each 7 e co3, 

X= U A(y,8), 
Seca,* 
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where for each 8 G o)a, A (7, 8) x A (7, 8) c Uy, and A (7, 8) is closed. By taking 
intersections with the Ka closed sets of the form A(0, 8), we may express B as 
a union of X« closed sets B = \Jyeoia B(y), where for each 7 G a)a, B(y) x £(7) c 
U0. We now form systems of sets F(i | 7), iel(a,p), yecop. Let F(empty 
sequence) = X. For each i e I(a, |3) let F(i | 1) = B(i | 1) = B(i(0)). Consider any 
17 G <o3\2. Having defined closed sets F(i \ y) for all i e I(a, (3) and all 7 < r\ such 
that if 7 is not a limit ordinal or the successor of a limit ordinal, F(i | 7) x 
F(i I 7) c C/y, we now define the sets F(i | TJ), i e I(a, |8) as follows, distinguish
ing two cases. 

(1) TJ a limit ordinal or the successor of a limit ordinal. Let F(i \r\) = X for 
all iel(a,p). 

(2) TJ not a limit ordinal or the successor of a limit ordinal. 
We introduce some notation. If h is a function on the ordinal 7, then h ; 8 

denotes h U {(7, 8)}, that is, the function on 7 + 1 that agrees with h on the 
subset 7 of 7 + I, and takes the value 8 at the element 7 of 7 + I. Thus, for 
example, if 7 is not a limit ordinal, (j | y) = (j \ 7 — 1 ; J(Y — 1)). Suppose je 
I(a, (3). The set 

U F(/h-2;S) 
8<j (n-2) 

is a union of <|/(TJ —2)| closed sets, where |/(TJ—2)|<Ka since j'(i7-2)e<oa. 
Now if F is closed, then for each 7 G CO3 there exists open GT, with F c G 7 c 
l/y[F] and so 

F ^ H G T ^ H Uy[F] = F 

and F is the intersection of <KP open sets. Thus the difference set 

X- U F 0 " h - 2 ; S ) 
S<j(-r,-2) 

is the intersection of < | / ( T J - 2 ) | open sets, each of which is the union of <K3 

closed sets. Hence for some function E on / ( T | - 2 ) X O > 3 to closed sets, 

X- U F G " h - 2 ; 8 ) = fi U E(p,y) 
S < J ( T | - 2 ) pej(-n-2) 7eo)3 

= u n E(Ah(p)), 
hea>3J(iri-2) pej'(-n-2) 

the second equality following from a standard general distributive law (see e.g. 
the proof of Lemma 4.8 in [3]). The last expression is a union over Kp(T1~2)1 

closed sets, where tt£(T,-2)l<Ka, since X 3 <X a , |/(r?--2)|<Xa and (K a ,K j has 
property E. We enumerate these sets as follows, using the empty set if 
necessary. 

X- U F G " h - 2 ; 5 ) = U F ( j | r , - 1 ; 7 ) 
S<j(m-2) -/ecutt 
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We may assume that the sets F(j | TJ - 1 ; 7) are such that F(j \ 7] - 1; 7) x 
F(j I T] - 1 ; 7) c: L^, for otherwise we may take intersections with the X„ closed 
sets of the form A(TJ, 8) giving still at most K« • Ka =K a closed sets. Carrying 
out this process for all j e I (a, 0) yields sets F(i | 17) for all i e I (a, 0), and thus 
the sets F(i\y) for all i G I (a, j8), 7 G CO3 are defined by transfinite induction. 

Now for i G I (a, 0) set 

F(t)= n FOI7), 
-YGo>3 

and since, for 7 not a limit ordinal or the successor of a limit ordinal, 
F(i | 7) x F(i | 7) c Uy, it follows that F(i) is a singleton or is empty. Let 
J = {ie I(a, |8) : F(i) # 0 } and define a function / on J to B by taking /(/) e F(i) 
for i e J. We check that / is a one-to-one continuous function on / onto B, and 
that / is closed in (I(a, |3), 3) . 

(a) / is one-to-one. Suppose UjeJ, i^j. Then for some T|Ga>3, 1(7) = j(y) 
for 7< i7 and (say) 1(17) < / (T? ) . Then 

F G ' h + 2 ) c X ~ U F(j\y];ô)czX-F(i\7];i(V)) 
S<jOn) 

Hence F(/ | T| + 2) n F(î | TJ + 1) = 0 , so F(/) n F(i) = 0 and /(Î) * /(/). 
(b) / is onto B. Suppose xeB. Let i(0) be the least element of coa such that 

xeF(i I l) = F(i(0)) = B(i(0)). Then xé Us<i(o) F(8) so 

X G X ~ U F(ô) = U F(i(0) , 7) , 
6<i(0) 7ewa 

and hence for some jel(a, (3) such that /(0) = É(0), X G F ( / | 2 ) . In general, 
suppose that for every 7<TJ, XGF(i | 7 +1) and 1(7) is the least element of <DŒ 

for which this is true. We have two cases. 

(1) If r] is a limit ordinal, then xeF(i \ r)) = F(i | rj; 0) = X, and we take 
Î(ÎÏ) = 0 . 

(2) If TJ is not a limit ordinal, then 

x£ U F( ih- l ;S) 
8<i ( -n- l ) 

and so 

X G X ~ U F ( Î | T , - 1 ; 8 ) = U F ( i h ; 7 ) . 
Ô < Ï ( T I - 1 ) 7ew„ 

Hence x G F ( J | V +1) for some j e I(a, 0) such that for 7 < rj, j \ y 4-1 = i | 7 + 1 . 
It follows that for some i G J(a, 0), x G F(i | 7) for every 7 G O>3, SO that 

XG R F(i\y) = F(i) 

and x =f(i). 
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(c) / is continuous. Suppose ieJ, G' is open in B and f(i)eG'. Let G be 
open in X, G' = GDB. Then for some U in the uniformity for X, f(i)e 
[ / [ / ( i ) ]cG. Choose yeû) 3 such that F(î | 7) x F(î | 7) c 17. Then F(i|7)<= 
U[f(i)] c G, for if y G F(i | 7), then (/(i), y) G F ( I | 7 ) x F(î | 7 ) c £/ and so y G 

Now suppose kejni(i\y), a neighborhood of i in J. Then /(k)G 
f U ^ F(fc J T|) c F(fc I 7) H F = F(i I 7) H F c G fï F - G', showing that / is con
tinuous. 

(d) J is closed in (I(a, (3), S). Suppose / is a limit point of J. Then for each 
7 G co3 there exists P G J such that P | 7 = j1 7. Hence for each TJ G CO3, 

F ^ n F O ' | 7 ) = n F ( i - | 7 ) ^ 0 . 

The sets F^ are closed; if 17 is not a limit ordinal or the successor of a limit 
ordinal, F^xF^czU^; and if TJ < 7 G G>3, FyaFr]. It follows by completeness ([5], 
Theorem 6.23, p. 193) that 

F(j)= n FX/i7)= n F ^ 0 . 
•veco3 -ye<o3 

Hence / G J, and J is closed. This completes the proof. 

REMARKS. In the circumstances of Theorem 2, |3 = a, then each open set 
B is a union of X« closed ones and so satisfies the requirements of the theorem. 

If a > |3 and (Ka, K«) has property F, then so has (Xa, X3) and a closed subset 
of (I(a, |3), S) is an (a, |8)-space and so by Theorem 1 (with 7 = |8) is the image, 
under a continuous one-to-one function of a closed subset of (I(a, /3), $P). Thus 
Theorem 2 remains valid if S is replaced by 9*. As a subset of I (a, /3) closed 
under 9 is necessarily closed under S, Theorem 1 remains valid if SP is 
replaced by S. 

Properties of the I(a, (3) spaces are now used to obtain as corollaries to the 
above two theorems image theorems analogous to Theorems A and B of the 
introduction. 

THEOREM 3. Suppose that X is an (a, (3)-space, a > 7 > | 3 and B is a Borel 
(y)3F-set in X. Then B is the image, under a continuous, one-to-one function of 
a 0-dimensional (in the sense of small inductive dimension ind) (a, p)-space of 
weight ^K a . 

Proof. The closed subset of (I(a, |8), 9) obtained in Theorem 1 is again an 
(a, |8)-space and so satisfies the requirements of this theorem, as any subset of 
a regular 0-dimensional space is 0-dimensional ([4], Theorem 1, Section 1, 
Chapter 7, p. 264). 

THEOREM 4. Suppose that X is an (a, (3)-space, a > j3, (Ka, X«) has property E 
and B is the union of Xa closed sets in X. Then B is the image, under a 
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continuous one-to-one function, of a 0-dimensional (in any sense) (a, p)-space 
of weight ^X«. 

Proof. Since a>fi and (K«,K<J has property E, so does (Ktt, K3); so 
(I(a, |3), °U) is an (a, |3)-space of weight Ka. Again the closed subset of 
(I(a, |3), 3) obtained in Theorem 2 has the properties desired, as for normal 
spaces strong 0-dimensionality is hereditary with respect to closed sets ([4], 
Theorem 7, Section 2, Chapter 6, p. 251). 

We now employ the fact that there are spaces (I (a, |3), 3) for arbitrarily high 
|3 which are metrizable to get our given uniform spaces as images of metrizable 
ones. 

THEOREM 5. Suppose that X is an (a, p)-space, a > 7 > | 3 , B is a Borel 
(y)^-set in X, and either 

(i) 7 is cofinal with co0; or 
(ii) a > y + a>0 — v ; or 

(iii) a < y + co0 = v. 

Then B is the image, under a continuous one-to-one function, of a complete 
0-dimensional (in any sense) metric space of weight respectively: 

(i) =sL , 6 M , KLS|. 
(") sISe(0Xs|. 
(iii) ^Is.^Kl81. 

Proof. An (a, (3)-space is also a (8, v)-space if 8>a, v>&, and since ^ c ^ , 
a closed subset of any space (I(a, |3), ^ ) is also closed in (I(a, |3), 3) . By these 
facts and Theorem 1, then, B is the image, under a continuous one-to-one 
function of a closed subset of (I(a, y), 3) , (I(a, 7 + co0), 3) and ( I (Y + Û>0, 7 + 
(o0), 3) in cases (i), (ii) and (iii) respectively. These spaces are 0-dimensional 
complete metric spaces satisfying the stated restrictions on weight, so the same 
is true of closed subsets. 

The additional restrictions in the final theorem are due to the fact that if 
(X«, Xa) has property E and coa is cofinal with co0, then a = 0 (see e.g. [8] 
Theorem 23.8). The proof of Theorem 6 uses Theorem 2 and is analogous to 
that of Theorem 5. 

THEOREM 6. Suppose that X is an (a, (3)-space, a > |3, (Ka', X«0 has property 
E, B is the union of K^ closed sets in X and either 

(i) 0 is cofinal with <o0, a is not cofinal with (o0, and a = a ' ; or 
(ii) |3 is cofinal with a>0, a /s cofinal with o)0, and a ' = a + l ; or 

(iii) a > (3 + a>0, a is not cofinal with o)0, and a ' = a; or 
(iv) a > |3 + co0, a is cofinal with co0, and a' = a + 1; or 
(v) a <|3 +co0, and a ' = j3 + co0+l. 
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Then B is the image, under a continuous one-to-one function, of a complete 
0-dimensional (in any sense) metric space of weight ^Ka*. 
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