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We report an experimental study of the motion of a clapping body consisting of two
flat plates pivoted at the leading edge by a torsion spring. Clapping motion and forward
propulsion of the body are initiated by the sudden release of the plates, initially held
apart at an angle 2θo. Results are presented for the clapping and forward motions, and
for the wake flow field for 24 cases, where depth-to-length ratio (d∗ = 1.5, 1 and 0.5),
spring stiffness per unit depth (Kt), body mass (mb) and initial separation angle (2θo =
45◦ and 60◦) are varied. The body initially accelerates rapidly forward, then slowly retards
to nearly zero velocity. Whereas the acceleration phase involves a complex interaction
between plate and fluid motions, the retardation phase is simply fluid dynamic drag
slowing the body. The wake consists of either a single axis-switching elliptical vortex
loop (for d∗ = 1 and 1.5) or multiple vortex loops (for d∗ = 0.5). The body motion is
nearly independent of d∗ and most affected by variation in θo and Kt. Using conservation
of linear momentum and conversion of spring strain energy into kinetic energy in the fluid
and body, we obtain a relation for the translation velocity of the body in terms of the
various parameters. Approximately 80 % of the initial stored energy is transferred to the
fluid, only 20 % to the body. The experimentally obtained cost of transport lies between 2
and 8 J kg−1 m−1.

Key words: swimming/flying, propulsion, vortex dynamics

1. Introduction

In aquatic habitats, the two common types of propulsion are through the flapping of fins
or tails and through pulsed jets. Whereas the former has been extensively studied, pulse
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jet propulsion has received far less attention. A recent review gives (Gemmell et al. 2021)
an overview of the different types of pulsed propulsion found among marine invertebrates
and a detailed comparative analysis of their swimming performances. Jellyfish and squids
use the pulse jet propulsion mechanism. In both creatures, contraction of the body cavity
produces a jet. Most of the studies on pulsed propulsion have looked at the structure of the
wake (e.g. Dabiri et al. 2005; Dabiri, Colin & Costello 2006; Bartol et al. 2009). Bartol
et al. (2009) have showed the existence of two types of jetting patterns behind a squid
Lolliguncula brevis: the first one consists of the isolated vortex ring, and the second one
consists of the vortex ring followed by a trailing jet. In a later study Bartol et al. (2016)
studied the interaction between fin motion and short pulse jets in the same species. Pulsed
jet propulsion has also been used in several aquatic robots, such as Robosqid (Nichols,
Moslemi & Krueger 2008) and CALAMAR-E (Krieg & Mohseni 2008), and flexible
robots with eight radial arms (Bujard, Giorgio-Serchi & Weymouth 2021).

Clapping motion provides an alternative way to produce pulse jets, though most
studies have been in the context of the flight of butterflies (Brodsky 1991; Johansson &
Henningsson 2021). Kim, Hussain & Gharib (2013) have made a detailed study of the flow
created and the thrust generated due to the clapping of two plates in otherwise quiescent
fluid. In a comparative analysis between flapping and clapping, Martin et al. (2017) show
that clapping produces a higher thrust, whereas the flapping form of propulsion is more
efficient.

The relation between the pulsed jet and the thrust is quite clear when the body is
stationary in initially quiescent fluid. In pulsed jet propulsion systems, however, the body
accelerates and moves forward due to the inherently unsteady thrust. The fluid flow affects
the body motion, and the body motion, in turn, affects the fluid flow. The nature of the body
motion and the effect of the body motion on the pulsed jet itself are important fundamental
questions that need to be answered to better understand the propulsion of creatures such
as jellyfish and squids. In the present study, we use a simple model of pulsed propulsion
to study these issues. We have a body that rapidly moves forward due to the action of a
pulsed jet. The self-propelling body consists of two rigid thin plates, pivoted at the front
and held together by a torsion-like spring. In the natural state, both plates touch each other;
the interplate angle is zero degrees. Initially, the plates are held at some angle, in the range
of 45◦ − 60◦, in quiescent water. The release of the holding force brings the plates rapidly
together, expelling the water between the plates, creating a jet, and propelling the body
forward. Figure 1 shows a schematic of the set-up. Our interest is to study the kinematics
of the body motion and the flow and the interaction of the two.

In this paper, § 2 describes the apparatus design. A brief discussion of the overall
analysis, § 3, is followed by a detailed analysis of body kinematics, § 3.1, a quantitative
description of the wake from two-dimensional (2-D) particle image velocimetry (PIV)
data, § 3.2, and wake momentum and energy considerations, § 3.3. The concluding
remarks are presented in § 4.

2. Experimental set-up

The requirements that need to be satisfied for the body to move in a horizontal direction
subsequent to the clapping motion are that it has to be neutrally buoyant, that the centre
of mass (COM) and centre of buoyancy (COB) coincide, and that the thrust force passes
through the COM. In this neutrally buoyant configuration, the total vertical force acting on
the body is zero:

Fnet = FBuoyancy − Fmass = 0. (2.1)
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Figure 1. (a) The clapping body at rest with an initial torque To and interclap angle 2θo, held by the fishing
thread (0.25 mm in diameter and shown by the black dashed line) that loops over two stationary solid rods. The
plane Z = 0 is located at the mid-depth of the body. (b) The clapping body moves with a velocity ub along the
X-direction subsequent to cutting of the thread. The vortex pair, with a core separation equal to Scr , moves with
a velocity uv . The blue colour indicates water masses travelling with the body and the wake vortex pair.

These requirements required careful design and fabrication. The main components
of the body include balsa wood (specific gravity (SG) 0.22 gm cc−1), hard plastic (SG
0.89 gm cc−1), ‘Bond-Tite’ glue (SG 1.05 gm cc−1), fishing thread (SG 1.22 gm cc−1) and
steel plate (SG 8.09 gm cc−1). The balsa wood mainly provides the buoyant force to
balance the weight of the steel plates.

Figure 2 shows different views of one of the clapping bodies and its different
components. Each arm of the clapping body consists of a steel plate of length LSteel on
which a balsa piece having an aerofoil shape is attached at the front end. The steel plate
provides the necessary spring action. A rectangular sheet of hard plastic is attached at the
back end of the steel plate; another piece of balsa is glued onto the plastic sheet at the
back. A canopy made of a thin plastic sheet (0.17 mm thickness) is attached at the back to
change the body’s mass mb. It envelopes the back balsa piece and the rigid plastic plate.
A detailed analysis of the distributions of weight and buoyancy is required to ensure the
requirements of neutral buoyancy and coincidence of COM and COB to arrive at the final
body configuration. The clapping body is created by gluing two identical arms over the
front end with ‘Bond-Tite’, see figure 2(c).

The parameters that we vary are body mass, mb, the length (L) and depth (d) of the
body, initial clapping angle 2θo and spring stiffness κ . The body length is the same in
all experiments (L = 89 mm); three values of depth were used, d = 45 mm, 89 mm and
133 mm. The canopy was used to increase the mass from the base (no canopy) value. The
extra body mass is mainly due to the water that occupies the space between the streamlined
plastic canopy and rigid plastic with it of length denoted by LPlastic (figure 2a,b). Bending
of the steel plates over the length Le gives the spring action. The Euler–Bernoulli beam
theory was used to determine Le such that the steel plates were still in the elastic limit for
an angular deformation of 30◦. Plates of two different thicknesses (0.14 mm and 0.10 mm)
and lengths (40 mm and 35 mm) were used to make bodies with two spring stiffnesses. The
spring stiffness of the steel plate with depth d is κ and it is defined as a proportionality
constant correlating the initial strain energy with the initial clapping angle (see (3.17)).
The value of κ is determined experimentally for each body. The κ for all 12 clapping
bodies are listed in table 1. The details of spring stiffness calculations are discussed in
the Appendix A. We also use the spring stiffness per unit depth, which we denote by
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Front balsa

d

Back balsa
Tough plastic

Thin plastic canopy

L = 89 mm

L Plasti
c

L e L

d = [45, 89, 133] mm

Le = {40 mm : Kt1
35 mm : Kt2

Steel plate

Kt = Kt1 M∗ = 1.5

Kt = Kt2 M∗ = 1.5

Canopy
tBody /2

tBody /2
Canopy

(a)

(b) (c)

Figure 2. (a) Isometric view of one of the plates that form the clapping body. The thicknesses of the various
components are: steel = 0.14 mm for Kt1 and 0.10 mm for Kt2; front balsa aerofoil = 2.7 mm for Kt1 and 2.2 mm
for Kt2; back balsa = 2 mm for Kt1 and 1.15 mm for Kt2, rigid plastic = 0.8 mm. (b) Canopy for of the body with
M∗ = 1.5 and Kt = Kt1, and for of the body with M∗ = 1.5 and Kt = Kt2. The thicknesses of a clapping plate
tBody/2 before and after canopy addition: 3 mm and 4.7 mm for Kt1; 2 and 3 mm for Kt2. (c) Top view of the
clapping body with d∗ = 0.5, M∗ = 1.0, and Kt = Kt1 with the plates pulled apart. The leading portion of the
body shows steel plates glued together and sandwiched between two balsa wood aerofoils.

Kt (= κ/d). We denote by Kt1 the stiffness per depth corresponding to steel plate
with the higher thickness (= 0.14 mm), and by Kt2 for the plate with the lower
thickness (= 0.10 mm). Due to the unavoidable variations in the construction of
the different clapping bodies, we find the measured values of Kt1 vary between
0.8–1.1 mJ mm−1 rad−2, and of Kt2 between 0.3–0.5 mJ mm−1 rad−2. Similarly, there are
variations of the values of M∗ and values of θo. In all calculations, the values of Kt, M∗
and θo corresponding to the particular body or experiment were used. The values of mb, κ

and centroid of the clapping body Xc are given in table 1.
The experiment required the design of an arrangement to hold the arms at an initial

clapping angle 2θo and a release mechanism to allow the arms to quickly come together
to give the clapping action. A fishing thread (Caperlan) with a diameter of 0.25 mm was
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tSteel mb d κ Le LPlastic Xc
(mm) Kt M∗ d∗ (gm) (mm) (mJ rad−2) (mm) (mm) (mm)

0.14 Kt1

1.0
1.5 33.4 133 114.4

40 30.0

∼361.0 21.2 89 99.3
0.5 10.6 45 40.5

1.5
1.5 48.8 133 111.1

∼371.0 31.2 89 74.4
0.5 15.3 45 46.6

0.10 Kt2

1.0
1.5 23.1 133 36.9

35 35.0

∼391.0 15.0 89 26.9
0.5 7.5 45 20.9

1.5
1.5 32.3 133 55.0

∼411.0 22.0 89 37.5
0.5 11.1 45 20.6

Table 1. Design data of the clapping bodies.

used to construct a loop connecting both arms, where both arms experience initial effective
torque To (see figure 1a). The release stand consists of a pair of rigid acrylic circular rods
mounted on an aluminium base. The initial clapping angle was adjusted by changing the
separation distance between the rods. All experiments were done in quiescent water in
a tank of dimension 80 cm × 80 cm × 30 cm (height). The clapping body was placed
at a depth of 15 cm from the water surface. The body was set in motion by cutting the
thread using a laparoscopic scissor. The scissor with an arm of 30 cm and 5 mm diameter
minimized disturbance in the water during the cutting.

Much care was required to achieve neutral buoyancy and coincidence of COM and
COB. The neutral buoyancy condition gets easily disturbed by tiny air bubbles on the
body surface, formed during the insertion of the body into the water. A jet from a syringe
was used to remove these bubbles. The balsa wood was coated with ‘Plastik 70’ to prevent
the absorption of water. The placement of small masses of steel or balsa was required for
balancing to achieve the requirements listed above.

Two-dimensional PIV was used to measure the flow field in the unsteady wake. The
guidelines given by Raffel et al. (2018) were followed. The PIV set-up consists of a
continuous wave 5 W power, 532 nm wavelength laser, a high-speed camera and two
plano–concave lenses. Two plano–concave lenses of radius 6 mm are positioned opposite
to each other to increase the divergence angle of the laser sheet; the laser sheet thickness
was 2–3 mm. Silver-coated particles (CONDUCT-O-FIL, Potters Inc) of 10–15 µm were
used as tracers. A high-speed camera (Photron-SA5) with 1024 × 1024 pixel2 resolution
recorded the flow field at 1000 f.p.s. using a Nikon lens of 105 mm focal length. The
postprocessing of the PIV database was performed using ‘IDT-ProVision’ software. The
2-D PIV measurements were performed on the XY plane at Z = 0 and the XZ plane at
Y = 0. The term ‘top view PIV’ corresponds to the XY plane, whereas ‘side view PIV’
corresponds to the XZ plane.

In the top view PIV, as shown in figure 3, the laser light sheet is along the mid-XY plane
located at half the body depth. The top view of the PIV set-up shows a green laser sheet
illuminating the interplate cavity, and the black region represents the shadow on the back
side of the cavity. For the top view, a mirror at 45◦ placed on top of the tank was used.
The interrogation window size was 24 × 24 pixel2, where 1 pixel ≈ 0.3 mm. The region of
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2-D PIV setup : XY plane

Photron : SA5

f.p.s. : 1000

Laser:

5.0 Watt-CW

Mirror

[at 45°]

Water tank : 

80 × 80 × 30 cm3

Plano–concave

lens [R : 6 mm]

Top view

Side view

ub

PIV image

Figure 3. Schematic of the PIV set-up for measurement of the flow field in the XY plane. Also shown is a
photograph of the particles illuminated by the laser sheet.

interest ROI varies between 1002–1202 mm2 for the clapping bodies corresponding to Kt1
and Kt2. In the side view PIV, the camera directly recorded the flow field. The interrogation
window size was the same as for the one in the top view PIV. The ROI varies between
150 × 120 mm2 to 120 × 120 mm2 based on the d∗ variations.

The flow was visualized on the XY plane using planar laser-induced fluorescence (PLIF).
A thin layer of dye paste containing a mixture of Rhodamine B, acrylic binder
(Daler–Rowney Slow Drying Gel) and honey was applied along a line at mid-depth on
the inside surfaces of the clapping plates; honey provides the required fluidity to the gel.
The methodology is adapted from that described in David et al. (2018). RhodamineB emits
light at 625 nm when excited with the green laser light. The same high-speed camera and
continuous wave (CW) laser were used for the dye visualization.

The body kinematics has been extracted using the Kanade–Lucas–Tomasi (KLT)
feature-tracking algorithm in MATLAB. The trajectory of the self-propelling body is
recorded both in top and side view (figure 3). The high-speed camera at 1000 f.p.s. is
used to record the rapid clapping action from the top view, whereas a regular camera
(Nikon-COOLPIX) at 25 f.p.s. is used to record the trajectory of the body in the side view
until it comes to rest.

We denote the ratio of the body mass with a canopy to the body mass without a canopy
by M∗, and depth is non-dimensionalized by L to give d∗ (= d/L). We use Kt1 or Kt2 to
denote the high and low stiffness springs, respectively, in the presentation of the results.
We performed experiments covering a parametric space of 24 cases, with M∗ = 1.5 and 1;
2θo = 45◦ and 60◦; d∗ = 1.5, 1.0 and 0.5; Kt = Kt1 and Kt2. Experiments were repeated
three times for each of the 24 cases in the parametric space. The aim of the study is to
find out how the values of the various parameters such as body speed (ub), plate angular
velocity (θ̇ ), circulation, etc. vary as the values of input parameters (M∗, d∗, θo and Kt) are
changed.
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Figure 4. (a) Variation of the translational velocity ub of the body with time up to 0.35 s. (b) Time evolution
of ub until the body translates along the X-direction with negligible displacement in the Z-direction. Here
M∗ = 1.0, 2θo = 60◦ and d∗ = 0.5.

3. Results and discussion

First, we give an overview of the body motion and the flow created by the clapping motion
of the body following the cutting of the thread. We choose one case with the following
parameters: Kt = Kt1, M∗ = 1.0, 2θo = 60◦ and d∗ = 0.5. The cutting of the threaded loop
initiates the rotation of each plate. Ejection of the fluid from the interplate cavity due to the
rapid clapping motion creates a transient jet. During this time, the high fluid pressure on
the inner surfaces of the two plates provides the propulsive force to the clapping body. The
body has two phases of translatory motion: a rapid acceleration during the clapping motion
followed by slow retardation. The body velocity is calculated by differentiating the position
of the front balsa aerofoil with time. Figure 4(a,b) show the body’s translational velocity
(ub) with time, the former focuses on the initial phase. After attaining a maximum velocity
of 0.71 m s−1 at 50 ms, the drag force slowly reduces the body velocity tending to zero over
approximately 1.56 s. The total distance travelled by the body is approximately three body
lengths (BL). The body is tracked until it is primarily moving in the X direction; when
the body speed becomes low, even a slight mismatch between weight and buoyancy force
makes the body deviate from the horizontal path. The high-speed camera at 1000 f.p.s.
records clapping action from the top view, whereas the Nikon camera at 25 f.p.s. records
the side view. Data is extracted manually during the clapping action, and the KLT tracker
is used after the end of the clapping motion until the body comes to rest. During the
impulsive phase, images are analysed at 250 f.p.s. instead of 1000 f.p.s., which gives more
than one-pixel displacement per frame. A reduction in body velocity during the retardation
phase allows the velocity calculation with a time resolution of 125 f.p.s.. Figure 4 shows
the data points along piecewise polynomial fits (sixth degree fit for t ≤ 0.16 s and fourth
degree fit for t > 0.16 s).

Figure 5(a) shows the corresponding variation of semiclapping angle (θ ) with time
starting with the initial value of 30◦, and figure 5(b) shows polynomial fit (fifth degree) for
angular velocity (θ̇ ) variation. Note that the angular velocity is the rate of change of half of
the interclap angle. Both clapping plates are set into an impulsive rotation once the thread
is cut. The angular velocity attains maxima of 13.1 rad s−1 at θ = 10◦, at approximately
20 ms. The body reaches its maximum translation velocity at approximately when the
angular velocity becomes zero.

Vorticity is shed from the trailing edges of the plates, culminating in the formation of
a three-dimensional (3-D) vortex loop that appears as two vortex patches in the XY plane.
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Figure 5. (a) Variation of semiclapping angle θ with time. (b) Variation of angular velocity θ̇ of the clapping
plate with time. Here M∗ = 1.0, 2θo = 60◦ and d∗ = 0.5.
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Figure 6. (a) The Z-vorticity field ωZ showing the starting vortices at the end of the clapping motion,
t = 60 ms. The two yellow lines show the superimposed clapping body, and the grey colour shows a shadow
of the body. (Figure 2c shows the correspondence between the yellow lines and the clapping body.) (b) The
wake visualized using the PLIF shows at 45 ms. The starting vortices are marked with red dashed circles. Here
M∗ = 1.0, 2θo = 60◦ and d∗ = 0.5.

Figure 6(a) shows the PIV velocity and vorticity fields in the central plane. The position
of the clapping body is marked with yellow lines, whereas the shadow in the top view PIV
image is shown in grey colour. There is an indication of the expected bound vortex (shown
schematically in figure 7a) around each plate in figure 6(a). The bound vortices in the PIV
field are not clearly visible due to insufficient spatial resolution and the shadow behind the
plates. Figure 6(b) shows the dye initially on the inner sides of the plates, being shed into
the wake as the body moves forward. The red circles indicate the starting vortices.

The fluid velocity near the trailing edge of the plate during the clapping phase (figure 8a)
shows a jet-like flow between the plates and a signature of the two vortices being formed.
Towards the end of the clapping phase (t∼ 61 ms), a wake-like velocity profile is observed
(figure 8b). At this time, the plates are almost touching and a small amount of fluid is
trapped between them, and dragged along with the body.

The circulation around each vortex is calculated using

Γ =
∫

ω dAc, (3.1)
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Figure 7. (a) Schematic showing starting (black circles) and bound vortices (dashed line). (b) Core separation
Scr as a function of time. Here M∗ = 1.0, 2θo = 60◦ and d∗ = 0.5.
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Figure 8. Profiles of the X-component of the fluid velocity, ux, across the line joining the trailing edges: (a) at
the midclapping phase; (b) after the end of the clapping phase. The plates of the clapping body are shown by
dashed grey lines, black dots show the flow velocity data points and the line joining the data points is a smooth
spline fit, and θ is the instantaneous semiclapping angle. Here M∗ = 1.0, 2θo = 60◦ and d∗ = 0.5.
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Figure 9. (a) Circulation magnitudes of the left and right starting vortices. (b) The displacements (S) in the X
and Y directions of the left vortex (L) and right vortex (R). The black dashed lines indicate the time interval
during which we calculate the steady wake vortex velocity uv in the X-direction. Here M∗ = 1.0, 2θo = 60◦ and
d∗ = 0.5.

where Ac is the area enclosed by a contour within which the vorticity is higher than a cutoff
value of 5 s−1, which is ω ≤ 0.05ωmax for this case. The circulation evolution is shown
in figure 9(a). The circulation increases rapidly until approximately 30 ms, then gradually
reduces until approximately 150 ms, after which the reduction is more rapid. Note that
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the circulation values in the two vortices are nearly identical. The distance between the
vortices Scr (see figure 7b) also gradually reduces up to 150 ms, after which, it becomes
nearly constant when the vortices touch each other. The reduction in circulation at this
time (figure 9a) is due to vorticity cancellation in the vortex reconnection zones, discussed
in § 3.2.2 and § 3.2.3. The displacements of the left and right vortices in the X-direction
(SX) closely match, and so do the displacements in the Y-direction (figure 9b). The SX–t
plot shows (see figure 9b), an initial phase with a slightly lower velocity followed by
one with a higher velocity when the two vortices come together. The time period when
each vortex has negligible Y displacement, marked by two dashed lines, is used for vortex
velocity (uv) calculation. In this case, uv is 0.18 m s−1, four times lower than the maximum
body velocity of 0.71 m s−1. For each case in parametric space, the reported values of the
variables ub, θ̇ , Γ and Scr are averaged over three experiments. The error bars are shown
in some plots that indicate the scatter obtained from three repeated experiments.

In the following sections, we look at how various parameters (non-dimensional depth d∗,
spring stiffness per unit depth Kt, initial clapping angle 2θo and mass ratio M∗) influence
the body kinematics (§ 3.1) and the flow, in particular in the wake (§ 3.2).

3.1. Body kinematics
The two main kinematic parameters are the body translation velocity and the angular
velocity of the clapping plates.

3.1.1. Translational velocity of the body
The body velocity (ub), throughout the parametric space, exhibits the same behaviour of
rapid increase followed by a slow reduction. For each case in the parametric space, the
translational velocity curve is averaged over three experiments. The average of standard
deviations over time in ub is less than 6 % of the maximum body velocity. The maximum
body velocity (um) lies in the range 0.16 m s−1 to 0.73 m s−1 (See table 2). The acceleration
phase is in the range of 50–110 ms, whereas the deceleration phase continues for more
than 1000 ms. The acceleration of the body is between 0.3 g and 3.5 g, where g is the
acceleration due to gravity. In all the cases, ub attains the maximum value close to the
end of the clapping motion when the clapping angle is 6◦–8◦. We illustrate the effect of
a particular parameter by plotting kinematic data by changing only that parameter value,
with others fixed.

In general we found change in the body aspect ratio d∗, does not produce noticeable
change in the variation of the body velocity with time. Figure 10(a) illustrates this
observation: ub versus t curves for three values of d∗, are nearly identical, especially during
the acceleration phase. The relative standard deviation (RSD) in um due to d∗ variations
is less than 10 % except for Kt2 and M∗ = 1.5 case where RSD of 17 % is observed. This
invariance with d∗ for the other cases may be seen in table 2, which lists the um values for
all the different conditions.

The equation of motion for the body in the accelerating phase is

(mb + madd)
dub

dt
= Fb. (3.2)

The net force Fb (= Thrust FT – Drag FD) acting on the body is balanced by an inertial
force, where madd is the additional mass of fluid that accelerates with the body. The
estimation of madd is difficult to assess due to the complex motion of fluid during clapping.

In the accelerating phase, independence of ub with d∗ implies that the thrust force per
unit depth, and madd per unit depth, must be approximately constant. As it to be expected,
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2θo um tum u̇m θ̇m
Kt M∗ d∗ (deg.) (m s−1) (ms) (m s−2) (rad s−1) Cd

Kt1 1.0 1.5 60 0.73 47.04 34.05 11.61 0.037
45 0.62 50.92 22.29 7.89 0.043

1.0 60 0.69 49.12 34.80 11.04 0.044
45 0.54 53.47 17.59 6.98 0.051

0.5 60 0.71 49.25 30.09 13.05 0.050
45 0.57 48.22 25.78 9.32 0.056

1.5 1.5 60 0.62 64.46 20.98 10.86 0.058
45 0.38 69.34 13.18 5.70 0.070

1.0 60 0.61 61.98 21.67 11.49 0.060
45 0.40 62.71 17.14 6.52 0.076

0.5 60 0.54 56.14 23.57 10.83 0.071
45 0.42 57.39 18.83 7.86 0.082

Kt2 1.0 1.5 60 0.52 80.80 14.82 7.17 0.045
45 0.38 87.22 9.58 4.07 0.047

1.0 60 0.48 86.22 12.16 6.51 0.054
45 0.33 89.38 6.05 3.42 0.059

0.5 60 0.43 78.12 13.04 7.02 0.058
45 0.27 75.98 7.75 3.80 0.066

1.5 1.5 60 0.31 109.77 6.67 4.31 0.055
45 0.18 115.58 2.70 2.18 0.082

1.0 60 0.31 102.18 9.01 5.33 0.057
45 0.19 104.98 4.96 2.75 0.072

0.5 60 0.28 90.39 7.53 6.11 0.103
45 0.16 96.48 3.63 3.18 0.146

Table 2. Body kinematics.

both the spring stiffness per unit depth (Kt) and the initial clapping angle (2θo) influence
the body velocity. The increase in spring stiffness per unit depth from Kt2 to Kt1, increases
the um by 1.4–2 times, whereas the time corresponding to the velocity maximum (tum)
shows a reduction from 76–121 ms to 47–70 ms (see table 2 and figure 10b,c). A higher
initial clapping angle or a lower body mass results in a larger body velocity, though the
time to reach maximum velocity does not change much (see figure 10b,c and table 2). A
higher body mass reduces the maximum body velocity. The maximum distance covered by
the bodies along the X-direction is approximately: 3 BL for Kt = Kt1 and M∗ = 1; 2–3 BL
for Kt = Kt1 and M∗ = 1.5; 1.5–2 BL for Kt = Kt2 and M∗ = 1; 1–1.5 BL for Kt = Kt2
and M∗ = 1.5.

The translational velocity profiles during the acceleration phase are similar: data from
all 24 cases, when plotted as ub/um versus t/tum, collapse onto a single curve (figure 11a).
During the retardation phase, reasonable collapse is obtained when ub is scaled with um,
and time is scaled with time corresponding to when the body velocity has reduced by half
from its maximum value (see figure 11b).

3.1.2. Angular velocity of the clapping plates
The angular velocity shows a rapid increase until it reaches a maximum (θ̇m) at the time,
tθ̇m, and slower reduction to zero as the two plates come close to each other. The influence
of change of the various parameters on the time variation in θ̇ is similar to that observed
for the time variation in ub: the θ̇ curves do not change with change in d∗; reduction in the
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Figure 10. Variation of translational velocity ub with time: (a) for different d∗ values, and Kt = Kt1, 2θo = 60◦
and M∗ = 1.0; (b) for different values of Kt and clapping angle 2θo, and with d∗ = 1.5 and M∗ = 1.0; (c) for
different values of M∗ and Kt, and with d∗= 1.5, 2θo = 60◦.
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Figure 11. Normalized body velocity versus normalized time for all 24 cases during (a) acceleration phase
and (b) retardation phase: um is the maximum body velocity; tum is the time when ub = um; and t0.5 um is the
time when ub = um/2 during the retardation phase.
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Figure 12. (a) Variation of angular velocity θ̇ with time, for different d∗ values, and Kt = Kt1, 2θo = 60◦ and
M∗= 1.0. (b) Variation in θ with time, for different d∗ values, and Kt = Kt1, 2θo = 60◦ and M∗= 1.0. Angular
velocity θ̇ variation with time: (c) for different values of Kt and clapping angle 2θo, and with d∗= 1.5 and
M∗= 1.0; (d) for different values of M∗ and Kt, and with d∗= 1.5, 2θo = 60◦.

maximum value of angular velocity (θ̇m) is significant when Kt is reduced or when M∗ is
increased. Figure 12(a,c,d) show data on angular velocity from a selected few cases that
illustrate these features. Table 2 lists the values of (θ̇m) for all the 24 cases. The average
of standard deviations in θ̇ is less than 7 % of the maximum angular velocity. In all the
experiments, we observed symmetric clapping, both plates had the same angular velocity.
The maximum angular velocity (θ̇m) ranges from 2 rad s−1 to 13 rad s−1 (see table 2).

The rotational equilibrium of each plate is given by (3.3). In the equation, applied torque,
T (= 2κθ ) is proportional to spring stiffness (κ) and semiclapping angle (θ). Reactive
torque can be given as the product angular acceleration (θ̈) and total rotational inertia (It)
which is the sum of mass moment of inertia of the plate (Ib) and added inertia of water
(Iadd). The clapping motion involves complex 3-D unsteady flow due to the simultaneous
translation and rotation of the plates. Here Iadd is not negligible in such a flow field, but
analytical expressions for it are unavailable. The second term on right-hand side of the
following equation is an additional torque (Tf ) due to the fluid that could depend on angular
velocity and displacement, analogous to the drag and history forces on bodies moving
unsteadily in a fluid:

T = (Ib + Iadd)θ̈ + Tf (θ̇, θ). (3.3)

Since T/d and Ib/d do not vary with d∗, the angular velocity curves being nearly
independent of d∗ (see figure 12a) implies added moment of inertia per unit depth, and
Tf per unit depth is nearly the same for all bodies. The differences in θ̇m with d∗ are due
to the slight and inevitable variations in κ in the different models (table 1), see table 2.
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Figure 13. Normalized angular velocity versus normalized time for all 24 cases during (a) acceleration phase
and (b) retardation phase: θ̇m is the maximum angular velocity; tθ̇m is the time when θ̇ = θ̇m; and t0.5θ̇m is the
time when θ̇ = θ̇m/2 during the retardation phase. The data legends are given in figure 11.

Figure 12(b) shows θ–t variations for the same three cases as in figure 12(a) and show
near collapse. There is some variation in the initial clapping angle, of the order of 3◦.

Change in Kt produces a noticeable change in θ̇ . The increase in spring stiffness per unit
depth from Kt2 to Kt1 increases θ̇m by a factor of 1.6–2.5 and reduces the time scale over
which θ̇ reduces to zero. Similarly, the higher initial clap angle results in a higher θ̇m; the
increase in θ̇m is 1.5–2 times when θo changes from 45◦ to 60◦ (see table 2, figure 12c).

The influence of body mass on θ̇m is marginal, and some of the variation can be
attributed to the differences in the actual stiffness value for the same steel plate thickness
(see figure 12d). The maximum value of angular velocity is observed at an angular
displacement of 8◦–11◦ for 2θo = 60◦, and 5◦–9◦ for 2θo = 45◦. The time (tθ̇m) when
angular velocity reaches its maximum value is most influenced by the spring stiffness per
unit depth Kt and not so much by in M∗, d∗ and θo; for Kt1, the tθ̇m lies in the range
19–28 ms, and for Kt2, the range is 28–53 ms.

As in the case of ub, the θ̇–t profiles are similar in the acceleration and in the deceleration
phases, and collapse when suitably scaled (figure 13a,b). In the angular acceleration and
retardation phase, the θ̇ is scaled by its maxima θ̇m. For the acceleration phase time is
scaled with time when angular velocity (tθ̇m) reaches the maximum value and for the
retardation phase by the time (t0.5θ̇m) when θ̇ reaches half its maximum value.

3.1.3. Acceleration phase
The acceleration phase, as discussed above, occurs over a short period and lasts
approximately until the clapping motion is occurring. A relevant question is how are the
body translation velocity and tip velocity of the plates related. The forward motion of the
clapping body strongly depends on the rotation motion of the clapping plate. Figure 14(a)
shows that maximum body velocity, um, and the maximum tip velocity of the clapping
plate uTm (= Rcθ̇m) are linearly related across the 24 experimental cases, the linear fit
giving um = 0.87uTm + 0.09, with R2 = 0.86. The body and tip velocities averaged over
time (not shown) also are linearly related: ūb = 1.54ūT − 0.01, with R2 = 0.84.

A scaling for the thrust force, acting at least at the initial time, may be obtained by
looking at the moment balance on one of the plates:

2κθ = Ibθ̈ + Fp
Rc

2
. (3.4)
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Figure 14. (a) Plot of maximum body velocity um versus maximum plate tip velocity uTm (= Rθ̇m). (b) The
maximum net force acting on the clapping body Fbm is plotted with the thrust force scaling given in (3.7).

The torque due to the spring is balanced by the force due to fluid pressure assumed to
act at Rc/2, Rc being the radius of rotation of clapping plate shown by the yellow dashed
line in the figure 2(c). The same pressure force also provides the forward thrust, Ft and
is = FP sin θ . Assuming sin(θ) ∼ θ and using (3.4), we get the thrust force acting on a
clapping plate is

Ft = 4κθ2

Rc
− 2Ibθ̈ θ

Rc
. (3.5)

On substituting (3.5) in (3.2), the force equilibrium for the accelerating clapping plate is
obtained as

mb + madd

2
u̇b = 4κθ2

Rc
− 2Ibθ̈ θ

Rc
− FD

2
. (3.6)

In the (3.6), FD and madd are the unknowns. In the initial phase, the body attains maximum
acceleration (u̇m) and first two terms on right-hand side in (3.6) are of comparable
magnitude. We plotted, the maximum force on the clapping body Fbm(= mbu̇m) with
κθ2

o /Rc to correlate the force in the initial phase with the input parameters. This plot
(figure 14b) shows a linear fit with R2 = 0.91; hence the scaling for the initial maximum
force can be given as

Fbm ∼ κθ2
o

Rc
. (3.7)

The body velocity is small in the initial phase of motion (see figure 4a), and the
drag force (FD) can be assumed to be negligible. We may define a thrust coefficient,
CT = Fbm/(0.5ρūT

2Rcd) and, we find its value to lie between 1.9 to 4.5 for Kt = Kt1 and
1.5 to 4.2 for Kt = Kt2. For comparison, Martin et al. (2017) obtained maximum thrust
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Figure 15. Time at which body attains maximum velocity, tum, is plotted with analytically predicted time
scale (3.9). The data points legends are given in figure 14.

coefficient values of approximately 15 in their study of clapping propulsion, but where the
body was not allowed to translate.

The maximum acceleration u̇m gained by the clapping body is proportional to um/tum
(see table 2). On substituting u̇m ∼ um/tum in (3.7), scaling for tum is obtained as

tum ∼ Rcmbum

κθ2
o

. (3.8)

From energy considerations (§ 3.3), we derive a scaling relation for um (3.26). Substituting
(3.26) in (3.8), the scaling relation for tum becomes

tum ∼
√

2mb

κ

Rc

θo
. (3.9)

In figure 15, the experimentally obtained values for tum are plotted against analytically
predicted time scale using (3.9); we can see approximately linear trend with R2 value of
0.57.

3.1.4. Retardation phase
After the end of the clapping motion, the body experience net drag force that slows down
the body. At the end of the clapping motion (t = tζ ), when the angular velocity of the
clapping plate is zero, the corresponding translational velocity ub can be expressed as
ζ um: we found ζ ∼ 0.75, for all 24 cases. The motion of the body in this retardation phase
is modelled as a submerged body undergoing retardation due to a net drag force:

(mb + madd)
dub

dtr
= −FD. (3.10)

Here mb and madd represent the body mass and any added mass of water that is carried
along with the body, which we will assume to be zero, as the plates are in close contact; tr
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Figure 16. The translational velocity of the body in the retardation phase for the case with d∗ = 1.0, Kt = Kt1,
M∗ = 1.0 and 2θo = 45◦. Blue curve represents a fit to the experimental data, and the red curve is data obtained
using (3.12); φ = 9.5 for this case.

(= t − tζ ; tr ≥ 0) represents time during the retardation phase. We may write

FD = 0.5CdρApu2
b, (3.11)

where by Ap(= Ld) and ρ are planform area of the plates and fluid density and Cd is the
drag coefficient. The solution to (3.10) and (3.11) subjected boundary conditions at the
starting of retardation phase when ub = ζum (ζ = 0.75) at tr = 0 is

ub =
(

φtr + 1
ζum

)−1

, (3.12)

φ = 0.5CdρAp

(mb + madd)
. (3.13)

Due to the assumption of madd ∼ 0, Cd derived from (3.13) is given as

Cd = 2φmb

ρAp
. (3.14)

For each case, the value of φ is obtained by fitting the experimental data of ub versus
tr in (3.12), from which value of Cd is calculated using (3.14). A sample case (d∗ = 1.0 ,
Kt = Kt1, M∗ = 1.0 and 2θo = 45◦) is shown in figure 16, which shows (3.12) is a good
model; for this case, we get φ = 9.5, and Cd = 0.051. The Reynolds number Re (= Lum/ν)
for this case is 5.5 ×104 . For comparison, at the same Re, Cd for a symmetric aerofoil with
18 % thickness to chord ratio is 0.041 and the Cd for NACA 0012 aerofoil is 0.023. Table 2
lists the Cd values, and figure 17 shows the Cd versus Re for the 24 cases, along with Cd
values given in the literature for an 18 % thick and NACA 0012 aerofoils. We notice that
the Cd values for M∗ = 1.5 bodies are higher due to the presence of the canopy. Several
of the Cd values are close to the Cd curve corresponding to the 18 % thick aerofoil (see
figure 17).

3.2. Wake dynamics
In this section, we characterize the wake of the clapping body from dye visualizations
in the XY plane and from the 2-D PIV data obtained in the XY and XZ planes. The PIV
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1 2 3 4 5 6 7

(×104)

0

0.05

0.10
Cd

Re

0.15

Figure 17. The calculated values of Cd plotted versus Reynolds number Re for the 24 cases. The black line
represents Cd for a 18 % thick symmetric aerofoil at zero angles of attack and the Cd data is extracted from
Munson et al. (2013). The blue line shows Cd values for NACA 0012 aerofoil (National Advisory Committee
for Aeronautics) and the data is extracted from Laitone (1997). The data points legends are given in figure 14.

data from the mutually perpendicular planes allows us to get the approximate structure of
3-D vortex loops, which are discussed in § 3.2.2. The effect of parametric variations on
vorticity field, core separation and circulation is presented in the following subsections.

3.2.1. Vorticity field in the XY plane: ωz
The PIV fields at different instants after the start of clapping correspond to the body with
Kt = Kt1, M∗ = 1, d∗ = 1.5 and 2θo = 60◦ are shown in figure 18, where grey colour is
used to mark shadow, and yellow is used to identify the rotating portion of the clapping
plate. The red and blue patches identify the region with non-zero vorticity, whereas green
represents regions with approximately zero vorticity.

Opposite-signed vortices begin to form at the trailing edges of the two plates soon
after the motion starts; these are clearly seen at t = 0.0195 s (figure 18b). As the body
propels forward, the vortices detach and are left behind. As we shall see below, the
circulation around each vortex increases rapidly during the initial time, and by t = 0.0395 s
(figure 18c) it would have reached its peak value. During clapping and just after, as
the body moves forward, there is hardly any change in the location and strength of the
vortex; at t = 0.1395 s, the body has moved approximately 75 mm, whereas the vortex pair
movement is only approximately 5 mm (figure 18i). The large difference in the velocities
of the body and vortex-pair is observed across all the cases in the parametric space (see
um in table 2 and uv in table 3).

The velocity field shows some important features. Two distinct regions are seen during
the initial clapping phase (figure 18b,c), one where the fluid has an x-velocity component
in the forward direction and the other where the fluid, which is in between the vortices, is
moving in the opposite direction. At later times, when the vortex pair has separated from
the body, fluid between the plates essentially moves with the body. A distinct wake also
can be seen just behind the body (figure 18 f –i). However, the vortex patches are isolated
with no trailing jet connected to the body. Such type of wake has also been observed in
fast-swimming jellyfish by by Dabiri et al. (2006) and in the squid by Bartol et al. (2009).
Most of the flow features during and just after the clapping described for the case shown
in figure 18 are observed for other cases in the parametric space. Main differences arise in
the evolution of the vortex loops, significantly when the body aspect ratio (d∗) changes.
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Figure 18. The Z-component vorticity fields at different time instants for the body with Kt = Kt1, M∗ = 1.0,
2θo = 60◦ and d∗ =1.5.

3.2.2. Vorticity field in the XZ plane: ωy
The flow field in the XZ plane at Y = 0 reveals the 3-D structure of the vortex loop. The
clapping action results in a high-pressure region between the plates that produces not
only a downstream jet but also jets from the top and bottom sides of the interplate cavity.
Vorticity shed from the top and bottom edges of the plates finally reconnect to form vortex
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2θo uv Γm Rv SE KEb KEf KEf
Kt M∗ d∗ (deg.) (m s−1) (cm2 s−1) (mm) (mJ) (mJ) (mJ) (%)

Kt1 1.0 1.5 57.87 0.14 136.58 57.35 54.72 8.78 45.94 83.95
45.89 0.13 136.44 54.28 33.85 6.38 27.47 81.16

1.0 59.44 0.15 137.82 50.44 44.87 5.00 39.87 88.85
43.23 0.12 109.06 46.74 22.14 3.10 19.04 85.99

0.5 62.50 0.18 138.79 40.58 21.00 2.71 18.29 87.11
48.97 0.19 127.93 38.45 12.41 1.73 10.68 86.02

1.5 1.5 64.24 0.17 181.12 58.54 69.48 9.29 60.19 86.63
44.66 0.12 130.00 53.89 33.54 3.55 29.99 89.41

1.0 62.17 0.19 189.33 50.89 40.84 5.73 35.10 85.96
42.87 0.15 143.47 46.63 18.86 2.53 16.33 86.58

0.5 63.02 0.20 160.05 40.65 22.38 2.27 20.11 89.87
47.81 0.21 135.98 38.22 11.89 1.37 10.52 88.45

Kt2 1.0 1.5 58.83 0.08 57.87 57.55 18.73 3.11 15.62 83.40
40.37 0.04 42.49 52.44 8.70 1.65 7.05 81.08

1.0 61.73 0.08 50.64 50.82 13.26 1.70 11.56 87.20
40.78 0.07 32.13 46.00 5.34 0.80 4.54 85.07

0.5 58.81 0.08 45.12 40.09 7.17 0.68 6.49 90.47
41.45 0.08 25.97 36.81 2.80 0.28 2.52 90.07

1.5 1.5 55.19 0.07 51.08 56.76 18.77 1.51 17.26 91.97
39.16 0.06 32.48 52.00 8.15 0.50 7.65 93.85

1.0 57.63 0.09 59.69 50.12 13.01 1.09 11.92 91.61
40.12 0.07 36.56 45.79 5.15 0.40 4.75 92.24

0.5 58.31 0.09 54.49 40.02 6.58 0.44 6.14 93.34
40.38 0.08 24.62 36.55 2.31 0.14 2.17 94.05

Table 3. Wake dynamics.

loops whose configurations depend mainly on the aspect ratio d∗. The starting vortices
seen in the XY plane are cross-sections of these vortex loops. Figures 19 and 20 show
schematics of the vortex loops that form for the bodies with the d∗ = 1.5 and 0.5. These
schematics are based on the PIV measurements in both planes and the dye visualizations.
During the clapping motion, the rotation of plates forms the vortex loop enveloping the
trailing, top and bottom edges. In the case of d∗ = 1.5, at 40 ms, as the body gains forward
velocity, a portion of the vortex loop previously attached to the trailing edge detaches
(figure 19a) and a process of reconnection with the corresponding loop element from the
other plate starts; a similar reconnection happens between the vortex elements from the
top and bottom edges. At a later time, around 400 ms, we observe three elliptical vortices
(figure 19b), one moving downstream and the other two in the lateral directions. At this
time, the lengths, respectively, of the major axis (aligned in the depth direction) and
the minor axis are approximately 100 mm and 50 mm; characteristic of elliptical rings,
we observe axis switching; at 1300 ms, axis switching is complete (figure 19c). For the
d∗ = 1.0 case, wake evolution is similar to the d∗ = 1.5 case. At 400 ms, the wake vortex
loop in d∗ = 1.0 case has major and minor axes of 75 mm and 35 mm, and at 700 ms,
the minor axis (= 45 mm) is in the vertical direction and the major axis (= 75 mm) is
horizontal. Axis switching (see, for example, Dhanak & Bernardinis (1981) and Cheng,
Lou & Lim (2016)) occurs primarily due to the inverse dependence on the radius of
curvature of self-induced velocities of vortex loops, given by the Biot–Savart law. The
flow development for the d∗ = 0.5 case, initially is same as for the d∗ = 1.5, 1.0 bodies,
but later shows a more complex structure: at 200 ms, six prominent vortex loops (ringlets)
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ub ub ub

(a) (b) (c)

Figure 19. Schematic showing the evolution of the wake for the body with d∗= 1.5. (a) The wake shows two
vortex loops (blue) enveloping the top, bottom, and trailing edges of clapping plates. (b) Reconnection of the
loops leads to formation of three elliptical vortices with one moving downstream having major axis in the Z
direction. (c) Elliptical vortex shown after axis switching. The wake evolution for d∗ = 1.0 body is similar. For
the particular case of Kt = Kt1, M∗ = 1.0 and 2θo = 60◦, the times corresponding to panels (a–c) are 40 ms,
400 and 1300 ms.

ub ub

(b)(a)

Figure 20. The wake for the body with d∗ = 0.5 has multiple ringlets (a) at 200 ms (b) out of which only two
survive at a later time = 360 ms. Other parameters are Kt = Kt1, M∗ = 1.0 and 2θo = 60◦.

are observed (figure 20a), of which only two vortex loops exist at later times (figure 20b).
In all three d∗ configurations, during the clapping action flow ejected in ±Z direction
results vortex loop being formed on both the top and bottom regions of the body, see
figures 19(b) and 20(a).

Figure 21 shows the flow fields at different instants in the XZ plane for d∗ = 1.5
(figure 21a,d), for d∗ = 1.0 (figure 21b,e) and for d∗ = 0.5 (figure 21c, f ). The grey thick
vertical line represents a stationary rod of 6 mm diameter, which is part of the release
stand. The d∗ = 1.5 case corresponds to the flow field shown in figure 18 in the XY plane.
At t = 0.3175 s (figure 21a), when the clapping action is complete, we see two oppositely
signed vorticity patches on either side of a high-velocity region; at this time, the body is out
of the picture, at x ≈ +14 cm. These two vortex patches connect to the vortices in the XY
plane as shown in figure 18 to form an elliptical vortex loop. The loop essentially forms
after the reconnection of independent vortex loops associated with each clapping plate
(figure 19a,b). A detailed discussion on vortex reconnection is found in Kida, Takaoka &
Hussain (1989) and Melander & Hussain (1989). The defocusing digital PIV for stationary
pair clapping plates performed by Kim et al. (2013) also shows similar vortex reconnection.
For the d∗ = 1.5 case, due to the axis switching (figure 19b,c), the vortex patches in the
Y–Z plane move closer with time (figure 21a and figure 21d).

The flow in the wake for the d∗ = 1.0 case (figure 21b) shows the strong backward flow
and two vortex patches that are less distinct than for the d∗ = 1.5 case. In addition, we can
observe outward flow in the Z-direction, created at the top and bottom edges. Towards the
left of the picture, forward flow associated with the immediate wake of the body is seen.
At a later time (figure 21e), two distinct vortex patches are seen, which is the cross-section
in the XZ plane of the elliptical loop with horizontal major axis.
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Figure 21. Flow fields in the XZ plane at different instants corresponding to the body with d∗ = 1.5 (a–d),
d∗ = 1.0 (b–e) and d∗ = 0.5 (c– f ). Other parameters are Kt = Kt1, M∗ = 1.0 and 2θo = 60◦.

For the lowest body depth (d∗ = 0.5), the initial flow behind the body shows the
six vortex-patch pairs (ringlets) (figure 21c). Later only two vortex ringlets (figure 20b)
remain, seen as two pairs of vortex patches in the XZ plane (figure 21 f ). Similar vortex
ringlets are observed in the studies of the head-on collision of two vortex rings (Lim &
Nickels 1992; Cheng, Lou & Lim 2018).

3.2.3. Strength of the starting vortices
In this section, we present the data on circulation obtained from PIV for the various cases.
Circulation is calculated using (3.1), with cutoff values ω ≤ 0.05ωmax for Kt1 (ωmax for
Kt1 = 110 s−1) and ω ≤ 0.07ωmax for Kt2 (ωmax for Kt2 = 67 s−1). The average of the
standard deviation is less than 12 % of the maximum circulation (Γm). It helps to view
the evolution of circulation keeping in mind the vortex structures depicted in figures 19
and 20.

In all cases, until the θ̇ of the plates becomes zero, the Γ increases rapidly and reaches
a maximum value (Γm) and its further evolution largely depends on d∗. The nature
of circulation variation until it reaches the maximum is nearly independent of d∗ (see
figure 22 and table 3). The RSD in Γm due to d∗ variations is less than 12 % for the
bodies with Kt1 and less than 25 % for Kt2. In the case of the body with d∗ = 1.5 and
1.0, the circulation becomes steady after reaching the maximum. In the case of the body
with d∗ = 0.5, the circulation shows rapid reduction (see figure 22a) after it reaches the
maximum because cancellation of vorticity as the two vortices come close to each other
(see figure 23c). A detailed discussion on circulation reduction due to the cancellation of
vorticity is found in Melander & Hussain (1989).

The higher spring stiffness results in higher Γm, bodies with Kt = Kt1 have 2.4–3.4
times higher Γm than those with Kt2 for M∗ = 1.0; for M∗ = 1.5 this ratio is 3.0–4.1.
The time to reach Γm also reduces with an increase in stiffness (see figure 22b). An
increase in θo increases the circulation slightly, this increase being much less than that
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Figure 22. Variation of circulation (Γ ) in the starting vortices with time: (a) for different d∗ values, and
Kt = Kt1, 2θo = 60◦ and M∗ = 1.0; (b) for different values of Kt and clapping angle 2θo, and with d∗ = 1.5
and M∗ = 1.0; (c) for different values of M∗ and Kt, and with d∗ = 1.5, 2θo = 60◦. For (a–c), circulation is
from flow fields measured in the XY plane. (d) The time evolution of Γ of the vortices in the XY (top view) and
XZ (side view) planes during different time periods. Other parameters are Kt = Kt1, 2θo = 60◦, M∗ = 1.0.
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Figure 23. Vortex pairs in the XY plane (a) for the body with d∗ = 1.5 at 300 ms, (b) for the body with
d∗ = 1.0 at 300 ms, (c) for the body with d∗ = 0.5 at 200 ms. Other parameters are Kt = Kt1, M∗ = 1.0,
2θo = 60◦.

due to variation in Kt (see figure 22b). The time corresponding to Γm is approximately
independent of clapping angle. The effect of M∗ on Γm is not clear. The increase in M∗
increases circulation in the case of bodies with Kt = Kt1, whereas this effect is negligible
for Kt2 cases (figure 22c).

Circulation of vortex patches in the side view (XZ plane) has been calculated for
the cases with Kt = Kt1, 2θo = 60◦, M∗ = 1.0 and d∗ = 1.5, 1.0 and 0.5. In this
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(b)(a) (c)

Figure 24. Dye visualization in the XY plane (a) for the body with d∗ = 1.5 at 300 ms, (b) for the body with
d∗ = 1.0 at 300 ms, (c) for the body with d∗ = 0.5 at 200 ms. Other parameters are Kt = Kt1, M∗ = 1.0,
2θo = 60◦.

plane, vortices appear only after the initial vortex reconnection. Figure 22(d) shows the
circulation in the side view from 400 ms onwards, and is almost same as the circulation in
the top view. In the case of the bodies with d∗ = 1.5 and 1.0, the magnitude of circulation
in the top view and side view is approximately the same, implying negligible circulation
reduction after the reconnection of vortex loops.

3.2.4. Core separation between the starting vortices
Analysis of core separation distance (Scr) between vortex cores provides an insight into
the wake dynamics and confirms the general picture of vortex evolution as depicted in
figures 19 and 20. The average of the standard deviation is less than 6 % of the initial tip
separation.

The Scr follows the reduction in the tip distance until the time corresponding to the
end of clapping motion, see figure 18. After that, the evolution of Scr depends on d∗.
Figure 23(a–c) show the vortex pairs some time after completion of clapping for the three
values of d∗, for Kt = Kt1, M∗ = 1.0 and 2θo = 60◦. Figure 24 shows PLIF-based dye
visualization with the laser sheet in the XY plane for the same parameter values as in
figure 23. Much of the dye is in the vortices, with some remaining in a trail connected to
the body.

Figure 25 shows plots of Scr versus time, obtained from PIV images, for a few selected
cases that show the effect of different parameters. Once the clapping motion is initiated,
the starting vortices appear, with the initial separation slightly less than the initial distance
between the tips. The subsequent evolution of Scr depends most strongly on d∗ as seen in
figure 25(a). For the same parameter values figure 26 shows Scr variation obtained from
dye visualization images where the vortices could be tracked over longer distances, and
we observe for the d∗1.5 and d∗1.0 cases, the vortex pairs travel a distance of 15 cm over
1.8 s, and that corresponding to the d∗0.5 case travels only around 5 cm.

For d∗ = 0.5 case, the vortices rapidly approach each other (see also figures 23c and
24c), and later, they disappear due to the vortex reconnection and cancellation discussed
above. This vortex pair seen in the XY plane corresponds to one of the several vortex loops
that form for d∗ = 0.5 (figure 20a). For d∗ = 1.0, there is some up and down variation in
Scr before a rapid increase at around 0.5 s, reaching a maximum value of 86 mm at 0.7 s
followed by a drop (figure 26); this variation is consistent with the axis switching of the
vortex loop shown in figure 19. For d∗ = 1.5 cases also axis switching is observed; core
separation is almost constant shows until 200 ms, after which there is a period of slow
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Figure 25. Variation of core separation (Scr) in the starting vortices with time: (a) for different d∗ values,
and with Kt = Kt1, 2θo = 60◦ and M∗ = 1.0; (b) for different values of Kt and clapping angle 2θo, and with
d∗ = 1.5 and M∗ = 1.0; (c) for different values of M∗ and Kt, and with d∗ = 1.5, 2θo = 60◦. For (a–c),
circulation is from flow fields measured in the XY plane. (d) The time evolution of Scr of the vortices in
the XY (top view) and XZ (side view) planes during different time periods. Other parameters are Kt = Kt1,
2θo = 60◦, M∗ = 1.0.

t (s)

0.5 1.0 1.5 2.0

S cr
 (

m
m

)

0

50

100

150
60°

d/L 1.5

d/L 1.0

d/L 0.5

Figure 26. Time variation of core separation Scr as obtained using PLIF visualization. Other parameters are
Kt = Kt1, 2θo = 60◦, M∗ = 1.0, d∗ = 1.5, 1.0 and 0.5.

increase followed by a rapid one reaching a maximum value of 126 mm at 1.4 s. Note that
for both these cases, the maximum vortex separation is close to the depth of the body (d)
(figure 26).
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Change in the initial clapping angle changes the initial vortex spacing but the nature of
the subsequent evolution in Scr is similar for both the 2θ0 values (figure 25b). Reduction
of the spring stiffness per unit depth from Kt1 to Kt2 slows down the switching process
(figure 25b), as is to be expected because both body and vortex propagation speeds reduce.
The mass of the body seems to have a negligible influence on the evolution of the vortex
spacing (figure 25c) compared with change in the stiffness value.

Figure 25(d) shows the vortex separation in the side view (XZ plane) for the d∗= 1.5
case, with the other parameters being same as in figures 25(a) and 26. As discussed above,
vortex cores are seen in the XZ plane only after the vortex reconnection, which happens
at around 300 ms. In figure 25(d), we see a gradual reduction in vortex separation in the
XZ plane. From the plots of vortex spacing in the two planes (figures 25d and 26), we
get get the values of the major and minor axis of the elliptical rings before and after
switching: initially major axis, oriented along the Z-direction, is approx = 130 mm, nearly
the same as body depth (figure 21a) and the minor axis is of slightly less than the initial
tip distance (figure 19a); at around 1300 ms, after the switching, the major axis is along
the Y direction = 126 mm (figure 26), and the minor axis is less than 40 mm. During this
phase, the circulation is nearly constant (figure 22d).

3.3. Momentum and energy considerations
In the previous sections, the wake structure obtained in the wake of the clapping body has
been discussed. Next, we look at the energy budget, i.e. the conversion of the strain energy
(SE) initially in the spring into kinetic energy in the body and in the fluid. At the end of the
clapping motion, the energy balance with the assumption of negligible viscous dissipation
of energy is

SE = KEb + KEf , (3.15)

KEb = 0.5(mb + madd)u2
m, (3.16)

where KEb in (3.15) represents the maximum kinetic energy attained by the body and
the fluid moving along with it (madd), corresponding to the time when body velocity has
reached its maximum value um, and KEf represents the kinetic energy in the fluid in the
wake. To account for all the kinetic energy in the fluid in the wake of the clapping body, we
need 3-D velocimetry data, which is not available. Since, at the end of the clapping motion,
both plates touch each other resulting in a thin, streamlined body configuration, we neglect
madd contribution. The energy stored in the two steel plates for the initial angular deflection
θo is

SE = 2κθo
2. (3.17)

In (3.17), κ is the stiffness coefficient which correlates the strain energy to angular
deflection. The details of SE measurement are provided in the Appendix A. In (3.15), SE is
calculated using the initial clapping angle, and the kinetic energy of the body is calculated
from um; the only unknown is KEf . Furthermore, table 3 shows that approximately 80 %
initial stored energy is transferred to the fluid.

We use an approximate relation based on the fluid volume and circulation to calculate
the kinetic energy of the fluid in the wake. In the case of bodies with d∗ = 1.0 and 1.5,
the wake can be modelled as a single vortex ring; furthermore, for scaling purposes,
we assume the ring to be circular. The vortex ring radius (Rv) can be assumed to scale
as the cube-root of volume (∀) of the fluid present in the interplate cavity; the volume
of the cavity is the product of body depth (d) and the area of the triangular region
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(0.5 R2
c sin(2θo)) indicated by the yellow dashed line (figure 2c); the approximate radius

of rotation of the clapping plate (Rc) is 58 mm:

Rv ∼ ∀1/3. (3.18)

Expressions are available for impulse (Iv) and kinetic energy (KEv) of thin vortex rings
(e.g. Sullivan et al. 2008) in terms of Rv , density ρ and circulation Γ . For our case we
write

KEv ∼ ρRvΓ
2

m, (3.19)

Iv ∼ ρR2
v Γm, (3.20)

where Γm is the maximum circulation.
At the end of the clapping action, the momentum of the body and of the fluid moving

forward with it must be equal to the momentum of the fluid moving in the opposite
direction in the wake. If we consider the time when the body has reached maximum
velocity, we get

(mb + madd)um = mvuv. (3.21)

In the above equation, the madd is the added mass associated with the body, and mv is
the mass of fluid associated with the vortex loop. In all the cases, we found um is always
higher than uv , implying that mv is always higher than total body mass (= mb + madd), see
tables 2 and 3. The steady velocity uv is in the range 12–21 cm s−1 for Kt1 and 4–9 cm s−1

for Kt2. The influence of change in d∗, 2θo and M∗ on uv is less, see table 3. The data
shows uv ∼ 0.32 Γm/Scr, where Scr is taken when Γ = Γm.

We may also write the momentum in the fluid in the wake in terms of the circulation
using (3.20) for the assumed ‘equivalent’ ring; neglecting madd, we get

mbum = c1ρR2
v Γm. (3.22)

In figure 27, the plot of mbum versus ρR2
vΓm, shows that the two are linearly related, with

a linear fit giving a value of c1 = 0.45, with R2 value of 0.93. The linear fit suggests that the
assumption of the linear momentum of the fluid being equal to that of an equivalent vortex
ring is valid, even for d∗ = 0.5 case. The um and Γm are obtained from measurements, and
Rv is obtained from (3.18). A plot of mbum versus mvuv shows a similar fit, on writing mv

as ρR3
v , and uv is the measured vortex velocity (table 3).

The equation for energy (3.15) at the end of clapping motion with the assumptions of
negligible added mass and negligible viscous dissipation of energy becomes

2κθo
2 = 0.5mbu2

m + c2ρRvΓ
2

m, (3.23)

where c2 is a constant obtained by equating KEf with KEv . Equations (3.22) and (3.23)
may be solved to obtain um and Γm in terms of the parameters

um = θo

√
2κ

mb

[
1
2

+ c2

c12
mb

ρRv
3

]−1/2

, (3.24)

Γm = θo

√
2κmb

ρR2
v

[
c1

2

2
+ c2

mb

ρ Rv
3

]−1/2

. (3.25)

The above expressions may be used to obtain the velocity of a self-propelling body and
circulation in the starting vortex due to the ejection of an impulsive jet in terms of the initial
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Figure 27. Plot showing the linear dependence between body momentum and fluid momentum. The data
points legends are given in figure 14.
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Figure 28. (a) Measured maximum body velocity (um) plotted versus the term obtained from (3.24). The black
shows a linear fit with R2 = 0.75. (b) Measured maximum circulation (Γm) plotted versus the term obtained
from (3.25) and the linear trend in this figure is captured by black line with R2 = 0.84. The data points legends
are given in figure 14.

strain energy or work done by the body. In the present study, the ratio of the mass of the
body (mb) to the mass of fluid (ρ Rv

3) is much less than one (0.2–0.3 for Kt1 and 0.1–0.2
for Kt2). However, estimated values of the c1 and c2 show that the second terms in (3.24)
and (3.25) are not negligible. Nevertheless, we plot um versus θo

√
2κ/mb (figure 28a) to

study the correlation between um and the input parameters, and see an approximate linear
fit with R2 = 0.75. Thus, we obtain the scaling for the maximum body velocity as

um ∼ θo

√
2κ

mb
. (3.26)

Similarly, based on (3.25), we see a linear relation between Γm and θo
√

2κmb/(ρR2
v)

(figure 28b). Thus, the scaling for Γm is given as

Γm ∼ θo

√
2κmb

ρR2
v

. (3.27)

Both figures 28(a) and 28(b) show among the parameters, Kt has the largest influence:
an increase in Kt from Kt2 to Kt1 results in a significant increase in um and Γm.
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Figure 29. Experimentally obtained COT (3.28) values plotted versus the analytically predicted values given
by (3.30) and data point legends are given in figure 14. The black line shows linear fit with R2 = 0.59.

Equation (3.26) implies that KEb ∼ SE, which means KEf is also proportional to SE.
From the data, we get KEb = 0.14 SE, with R2 value of 0.895. In figure 28(b), one notices
a certain trend that our analysis does not capture. The data points corresponding to Kt1
bunch together, and similarly, those corresponding to Kt2, and in each of these groups of
points, data for d∗ = 1.5 lie to the right and ones for d∗ = 0.5 to left and the d∗ = 1.0 ones
lie in between; the model for scaling for Γm clearly needs to be modified to capture the d∗
influence more accurately. It is puzzling, though, that the model predicts the momentum
balance reasonably well (figure 27).

A commonly used performance metric for locomotory bodies, including underwater
ones is the cost of transport (COT) (Vogel 1988; Videler 1993), defined as the ratio of
work done by the body to mass times distance moved. In our case we may write

COT = SE
mb × 
S

, (3.28)

where SE is the initial energy stored in the body of mass mb and 
S is the distance
travelled.

We may obtain through simple analysis a scaling for COT for our clapping body. The
clapping body travels most of the distance in the retardation phase as the acceleration
phase ends in a short time, see figure 4(a,b). The total distance travelled by the body
is approximately the distance travelled in the retardation phase and can be obtained by
integrating the body velocity with time (= ∫

ub dtr). Using (3.12) and (3.13), and subject
to ub = ζum (at tr = 0) as the lower limit and ub = ηum (η 
 1) as upper limit that shows
body velocity until it reaches a small fraction(η) of um, we obtain


S ∼= −φ−1 log(η/ζ ). (3.29)

Obtaining SE (∼ mbu2
m) using (3.17) and (3.26), and obtaining 
S using (3.29), we get the

scaling for COT as

COT ∼ −ρL
2 log(η/ζ )

u2
mCdd
mb

. (3.30)

Figure 29 shows the values of COT obtained in the experiments using (3.28) plotted
versus the scale for COT given by (3.30); in the plot, η is taken as 0.1 and ζ is taken
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as 0.75. First, the COT values for the clapping body in our study vary between 2 and 8,
which lies between the COT of jellyfish and the COT of squid (Gemmell et al. 2013).
Second, the variation in COT is reasonably well captured by the scaling given by (3.30),
which indicates the dependence on the various parameters, body mass, body dimensions
and drag coefficient. The slower-moving bodies have a lower COT value. The lower COT
for jellyfish may be partly ascribed to their low speeds of the order of a few centimetres per
second. A general analysis of the energetics of bodies moving in a fluid (Arakeri & Shukla
2013), including self-propelling ones, shows that energy expended by the swimmer will be
lost as fluid kinetic energy in the wake and in viscous dissipation. In the clapping body,
we have seen that a substantial portion of the energy is lost in the fluid. What is included
in the above scaling is the viscous dissipation in the boundary layers on the body surface.
We may expect, for high Reynolds number self-propelling bodies, the kinetic energy lost
in wake to scale with ρu2

b, and the scaling in (3.30) may be more generally valid.

4. Concluding remarks

The hydrodynamics of a simple clapping propulsion-based self-propelling body is
investigated experimentally. The self-propelling body consists of two plates pivoted
together at the front with a ‘torsion’ spring. The clapping action is achieved by release of
the plates that are initially pulled apart at the other end. The clapping action of the plates
generates a jet that propels the body in a forward direction. Much effort went into making
the body neutrally buoyant and fixing the COMs and COBs to ensure stable straight-line
motion. Experiments were done by varying the spring stiffness per unit depth (Kt), body
mass (mb), body aspect ratio (d∗) and the initial clapping angle (θo). A total of 24 cases
were studied. We used high-speed imaging to obtain the body kinematics and PIV and
PLIF visualization to study the wake structure.

The body motion has two phases: a rapid linear acceleration accompanied by the rapid
reduction in the clapping angle, which is followed by a relatively slow deceleration of
the body until it stops. The first phase is when the forward thrust is produced due to
clapping action, and in the second phase, it is the drag force on the closed body that slows
it down. The drag coefficient obtained experimentally is in the range 0.04–0.13. In the
acceleration phase, we observe that maximum velocity of the body is linearly proportional
to maximum tip velocity of the clapping plate (figure 14a). We derived scaling relations for
the maximum force acting on the body (3.7) and the time at which it attains the maximum
velocity (3.9) in terms of system input parameters. We found that the translational velocity
of the body is nearly independent of d∗, though the wake structure showed large differences
with change in d∗.

The wake of the clapping body has complex vortex structures whose cross-section in
the XY plane shows an isolated vortex pair that travels opposite to the body with lower
translational velocity than the body. The initial circulation of the vortices is approximately
independent of d∗. The later evolution of the wake is strongly dependent on d∗: for the
d∗ = 1.0 and 1.5 bodies, the vortex loops display axis switching (figure 19) characteristic
of elliptical rings, whereas, for the shorter body (d∗ = 0.5), we observe multiple ringlets
(figure 20).

Using a simple vortex ring to model the wake, we use conservation of momentum and
energy to derive expressions for body velocity (3.24) and circulation (3.25) in the starting
vortex in terms of the initial stored strain energy in the spring and the other parameters,
d∗, mb and θo. These relations will be useful for calculating the velocity of self-propelling
bodies under pulsed jet propulsion. The energy budget shows that more than 80 % of
initially stored energy is transferred to the fluid. The COT of the clapping body varies
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between 2 to 8 J kg−1 m−1, which lies between COT corresponding to squid and jellyfish
(Gemmell et al. 2013). The COT scaling shows its strong dependence on the maximum
body velocity um (3.30). It must be noted that this COT calculation accounts for only
the acceleration phase of the body, though the additional energy required for opening the
cavity may not be much, especially if done slowly compared with the clapping motion.

Most of the earlier laboratory experiments of clapping propulsion have been with bodies
that are constrained from moving forward (Brodsky 1991; Kim et al. 2013). It is expected
that the clapping kinematics and the hydrodynamics will be different when the body is
allowed to move, and that is what we have been able to do in the present study reproducing
what happens in practice. Some studies have been done on freely swimming animals.
Bartol et al. (2009) measured the swimming speed of squid Lolliguncula brevis to be in the
range of 2.43–22 cm s−1. Dabiri et al. (2006) measured the swimming speeds of jellyfish
Aglantha digitale to be approximately 13BL/s in fast swimming. In our experiments, the
maximum speed attained by the clapping body is 73 cm s−1 (8 BL s−1). Our analysis has
revealed that the body speed depends on a variety of factors, including the stored strain
energy. This study offers an insight into the flow dynamics and the kinematics of a freely
moving clapping body, and can have direct practical utility in the design of aquatic robots
based on pulsed propulsion. A limitation of the present investigation is confined to one
phase, the jet ejection phase. The other phase when the plates open out and fluid enters the
cavity will bring in additional parameters and fluid mechanics. The body design will have
to be changed substantially to include both phases.
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Appendix A

Experiments have been conducted to measure initial strain energy (SE) stored in two steel
plates of the clapping body. In this experiment, force F is applied at the trailing edge of
the clapping plate, produces moment M on the steel plate of length Le. The M is given as a
sum of the constant moment (FLP) due to the rigid plastic plate of length LP and variable
moment (Fx), see (A2). Due to the applied moment M, the steel plate has an angular
deflection Θ at the end point. The corresponding strain energy is given by the right-hand
side of (A1) and is related to the angular deflection as follows:

κΘ2 = 1
2EI

∫
M2 dx; (A1)

M = −FLp − Fx. (A2)

The Young modulus E is experimentally measured as 212–239 Gpa for the steel plate
thickness of 0.14 mm (Kt = Kt1) and 175–208 GPa for the steel plate thickness of 0.10 mm
(Kt = Kt2). The SE versus Θ curve is parabolic in nature, and the second-order polynomial
fit gives the values for coefficient κ .
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