MATHEMATICAL NOTES.

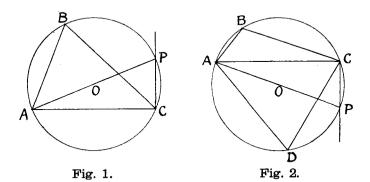
If instead of taking the projections of OU on the given chords, the projections on another set drawn through O at right angles to the given set are taken, a similar result is obtained for the sum of the sines of such a series of angles.

If the common difference of the angles is a multiple of $\frac{2\pi}{n}$, but not of 2π , the same results are obtained.

ALEX D. BUSSELL

Direct Proofs of Theorems in Elementary Geometry.

- (1) If the straight line joining two points subtends equal angles at two other points on the same side of it, the four points are concyclic
- (2) If a pair of opposite angles of a quadrilateral are supplementary, its vertices are concyclic.



(1) Let A, C be the two points and B one of the other points. Let $\angle ABC$ be acute (Fig. 1).

Let O be the circumcentre of $\triangle ABC$; join AO and produce it to meet the perpendicular to AC through C in P.

Then OA = OC and $\angle ACP = 90^{\circ}$. $\therefore OA = OP$.

- ... the circumscribing circle of $\triangle ABC$ passes through P. But $\triangle P = \frac{1}{2} \triangle AOC = \triangle B = \text{constant}$.
- \therefore B lies on the fixed circle which circumscribes the fixed right-angled triangle ACP in which $\angle P = \text{given } \angle B$.
- If $\angle B$ is obtuse (Fig. 2), B lies on the circumscribing circle of the fixed right-angled triangle ACP in which $\angle P = 180^{\circ} \angle B$
- (2) If in the quadrilateral ABCD the angles B and D are supplementary, D being acute (Fig. 2), then by the previous theorem B and D both lie on the fixed circle which circumscribes the fixed right-angled triangle ACP in which $\angle ACP = \angle D$.

R. F. BLADES.

An Elementary Proof of Feuerbach's Theorem.

Let O be the centre of the circumscribing circle of $\triangle ABC$, A_1 the middle point of BC, and EA_1OF the diameter at right angles to BC. Draw AX perpendicular to BC and produce it to meet the circle in K. Let H be the orthocentre of $\triangle ABC$; join OH and bisect it in N, the centre of the nine-point circle.

Draw OY perpendicular to and bisecting AK.

Join EA, which bisects $\angle BAC$ and contains the incentre I; draw ID, NM perpendicular to BC. Join AF and draw AG perpendicular to EF; also draw PIQ parallel to BC and meeting EF in P and AX in Q.

Then we have $AH = 2OA_1$, HK = 2HX, $AI \cdot IE = 2Rr$.

Also from similar triangles $\frac{PI}{IE} = \frac{FG}{AF}$ and $\frac{IQ}{AI} = \frac{AF}{FE}$.

Thus
$$\frac{PI.IQ}{AI.IE} = \frac{FG}{FE}$$
, so that $\frac{PI.IQ}{2R.r} = \frac{FG}{2R}$, and $PI.IQ = r.FG$.

Now the projection of
$$IN$$
 on $FE = ID - NM = r - \frac{1}{2}(OA_1 + HX)$
= $r - \frac{1}{4}(AH + HK) = r - \frac{1}{2}AY$.