A SHORT PROOF OF THE CARTWRIGHT-LITTLEWOOD FIXED POINT THEOREM

O. H. HAMILTON

The purpose of this paper is to give a short proof of the Cartwright-Littlewood fixed point theorem (2, p. 3, Theorem A).

THEOREM A. If T is a (1-1) continuous and orientation preserving transformation of the Euclidean plane E onto itself which leaves a bounded continuum M invariant and if M does not separate E, then some point of M is left fixed by T.

We shall first prove a lemma suggested by Newman and proved by him independently (in an unpublished paper). We make use of his notation and some of his methods.

LEMMA 1. If T is a (1-1) continuous and orientation preserving transformation of the Euclidean plane E onto itself which leaves a bounded continuum M invariant but leaves no point of M fixed and if M does not separate E, then there is a (1-1) continuous and orientation preserving transformation T' of E onto itself which coincides with T on M and leaves no point of E fixed.

Proof. Since T, by hypothesis, leaves fixed no point of M, there exists a simple closed curve C_1 with inner domain D_1 containing M, such that if $x \epsilon \overline{D}_1$ then $T(x) \neq x$. Let C_2 and D_2 designate $T(C_1)$ and $T(D_1)$ respectively. By the Brouwer fixed point theorem for the 2-cell, neither of the domains D_1 and D_2 can contain the other. Hence $C_1 \cap C_2$ contains at least two points and, by a known theorem (3, p. 87; 4, p. 168) the component G of $D_1 \cap D_2$ containing M has for its boundary a simple closed curve J. (See Fig. 1.) We may suppose J is the unit circle since it can be made so by a suitable topological mapping of the entire plane E.

For r = 1, 2 the components $D_{\tau i}$ of $D_r - \bar{G}$ have each as frontier a simple closed curve composed of an arc $L_{\tau i}$ of J and an arc of C_r with common endpoints. For each pair of subscripts r and i, let $L'_{\tau i}$ be a circular arc of radius $1 - \delta$ with the same endpoints as $L_{\tau i}$, where $\delta > 0$ is small enough to ensure that no two arcs $L'_{\tau i}$ meet except in endpoints. This is possible since the arcs $L_{\tau i}$ of J are disjoint except for endpoints.

Let $\Delta_{\tau i}$ be the inner domain of $L_{\tau i} \cup L'_{\tau i}$. By a standard theorem there is a topological map $\phi_{\tau i}$ which maps $\bar{D}_{\tau i}$ onto $\bar{\Delta}_{\tau i}$ and leaves fixed each point of $L_{\tau i}$. Hence if

$$\bar{\Delta}_r = \bar{G} \bigcup \mathbf{U}_i \, \bar{\Delta}_{r\,i} \qquad (r = 1, 2)$$

the functions ϕ_r defined by

Received April 19, 1954. The research upon which this paper is based was done in part by aid of a grant from the Research Corporation.

$$\begin{aligned} \phi_r \mid \bar{G} &= 1 \text{ (the identity map)} \\ \phi_r \mid \bar{D}_{ri} &= \phi_{ri} \end{aligned} \qquad (r = 1, 2)$$

are topological maps of \overline{D}_r onto $\overline{\Delta}_r$ for r = 1, 2.

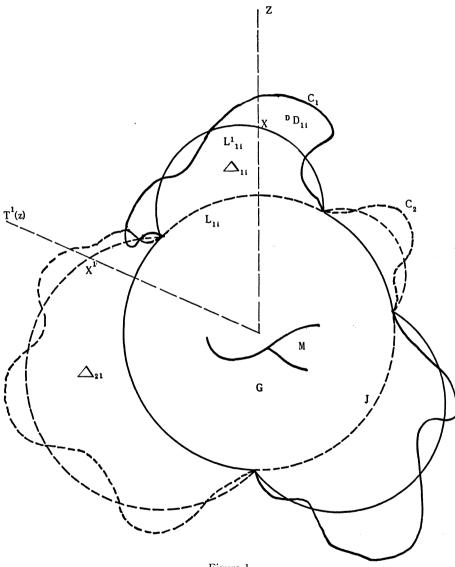


Figure 1

Let $T': \overline{\Delta}_1 \to \overline{\Delta}_2$ be defined as $T' = \phi_2 \circ T \circ \phi_1^{-1}$. Then T' | M = T | M since T = T' in G. T' has no fixed point in $\overline{\Delta}_1$. For if $x \in \overline{G}$, $T'(x) = T(x) \neq x$; and if $x \in \overline{\Delta}_1 - \overline{G}$, $x \notin \overline{\Delta}_2 = T'(\overline{\Delta}_1)$.

523

O. H. HAMILTON

Let T' be extended to the whole of E as follows: Let z be a point of $E - \overline{\Delta}_1$. Then z is expressible uniquely as $x + \rho\mu_x$, where $x \in \mathfrak{F}D_1$ and μ_x is the unit vector in the direction Ox, and $\rho > 0$. Let x' designate T'(x) and define $T'(z) = x' + \rho\mu_x'$. This a topological mapping of E onto E. Suppose T' has a fixed point z = T'(z). Then the directions from O to $z = x + \rho\mu_x$ and to $T'(z) = x' + \rho\mu_{x'}$ are the same and hence $\mu_x = \mu_{x'}$ and by subtraction x = x' = T'(x) which contradicts the fact that T' has no fixed point in $\overline{\Delta}_1$. Hence $T'(z) \neq z$, and T' is the desired transformation.

Proof of Theorem A. Suppose that under the hypotheses of the theorem T leaves fixed no point of M. Then by Lemma 1 there is an orientation preserving homeomorphism T' of the plane E onto itself which coincides with T on M and leaves no point of E fixed. If p is a point of M then by a theorem of Brouwer (1, p. 45, Theorem 8) the set of points in the sequence $T'^n(p)$ (n = 1, 2, ...) has no convergent subsequence. This contradicts the fact that M is compact. It follows that the assumption that T leaves no point of M fixed is false.

References

- 1. L. E. J. Brouwer, Beweis des ebenen Translationssatzes, Math. Ann., 72 (1912), 37-54.
- M. L. Cartwright and J. E. Littlewood, Some fixed point theorems, Ann. Math., 54 (1951), 1-37.
- 3. B. V. Kerékjartó, Topologie (Berlin, 1923).
- 4. M. H. A. Newman, Topology of plane sets of points (Cambridge, 1951).

Oklahoma A. & M. College