ON SOME POLYNOMIALS OF TOUCHARD

MAX WYMAN and LEO MOSER

In the preceding paper Touchard considers a set of polynomials $Q_{n}(x)$ defined by
(1) $\quad Q_{n+1}(x)=(2 x+1) Q_{n}(x)+\frac{n^{4}}{4 n^{2}-1} Q_{n-1}(x), \quad Q_{-n}(x)=0, \quad Q_{0}(x)=1$.

Touchard uses (1) to compute $Q_{n}(x)$ for $0 \leqslant n \leqslant 9$ and also finds $Q_{n}\left(-\frac{1}{2}\right)$. He remarks however "l'expression générale des polynômes $Q_{n}(x)$ nous echappe." The object of this note is to derive an explicit expression for $Q_{n}(x)$.

Under the substitution

$$
\begin{equation*}
Q_{n}=2^{n}\binom{2 n}{n}^{-1} W_{n} \tag{2}
\end{equation*}
$$

the conditions (1) become
(3) $\quad(n+1) W_{n+1}=(2 x+1)(2 n+1) W_{n}+n^{3} W_{n-1}, \quad W_{-n}(x)=0, W_{0}(x)=1$.

Now define the generating function

$$
\begin{equation*}
W(t)=\sum_{n=0}^{\infty} W_{n} \frac{t^{n}}{n!} . \tag{4}
\end{equation*}
$$

The conditions (3) then imply
(5) $t\left(t^{2}-1\right) \frac{d^{2} W}{d t^{2}}+\left\{3 t^{2}+2(2 x+1) t-1\right\} \frac{d W}{d t}+(t+2 x+1) W=0$,

$$
W(0)=1
$$

Equation (5) is a special case of Heun's equation. Its solution can be obtained in the following way: Let

$$
\begin{equation*}
W=(1-t)^{-(2 x+1)} w, \quad z=t^{2} \tag{6}
\end{equation*}
$$

Then (5) becomes

$$
\begin{equation*}
z(z-1) \frac{d^{2} w}{d z^{2}}+\{1-(1-2 x) z\} \frac{d w}{d z}-x^{2} w=0, \quad w(0)=1 \tag{7}
\end{equation*}
$$

This is the well-known hypergeometric equation. The only solution regular at $z=0$ and satisfying the boundary condition is

$$
\begin{equation*}
w=F(-x,-x, 1,+z) . \tag{8}
\end{equation*}
$$

Hence from (6) we obtain

$$
\begin{equation*}
W=(1-t)^{-(2 x+1)} F\left(-x,-x,-1, t^{2}\right) \tag{9}
\end{equation*}
$$

Received January 11, 1956.

Since

$$
W_{n}=\left.\frac{d^{n} W}{d t^{n}}\right|_{t=0}
$$

(9) implies

$$
\begin{align*}
W_{n} & =\left(\Gamma(-(2 x+1)) \Gamma^{2}(-x)\right)^{-1} \sum_{r=0}^{\left[\frac{1}{2} n\right]}\binom{2 n}{n} \frac{\Gamma(2 x+n-2 r+1) \Gamma^{2}(r-x)(2 r)!}{(r!)^{2}} \tag{10}\\
& =n!\sum_{r=0}^{\left[\frac{[2 n]}{}\right.}\binom{2 x+n-2 r}{n-2 r}\binom{x}{r}^{2}
\end{align*}
$$

By (2) and (10) an explicit expression for $Q_{n}(x)$ is

$$
\begin{equation*}
Q_{n}(x)=2^{n} n!\binom{2 n}{n}^{-1} \sum_{r=0}^{\left[\frac{[2 n]}{}\right.}\binom{2 x+n-2 r}{n-2 r}\binom{x}{r}^{2} . \tag{11}
\end{equation*}
$$

This of course checks with the values of $Q_{n}(x)$ computed by Touchard for $0 \leqslant n \leqslant 9$, and also gives his value of $Q_{n}\left(-\frac{1}{2}\right)$. Finally, the expression (11) simplifies considerably for x a positive or negative integer and for $2 x$ a negative integer. Thus for example

$$
\begin{equation*}
Q_{n}(0)=2^{n} n!\binom{2 n}{n}^{-1} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{n}(1)=2^{n} n!\left(n^{2}+n+1\right)\binom{2 n}{n}^{-1} \tag{13}
\end{equation*}
$$

Equation (13) provides still another simple check on values of $Q_{n}(x)$ computed from the recurrence formula.

University of Alberta

