ON SOME POLYNOMIALS OF TOUCHARD

MAX WYMAN AND LEO MOSER

In the preceding paper Touchard considers a set of polynomials $Q_n(x)$ defined by

(1)
$$Q_{n+1}(x) = (2x+1) Q_n(x) + \frac{n^2}{4n^2-1} Q_{n-1}(x), \quad Q_{-n}(x) = 0, \quad Q_0(x) = 1.$$

Touchard uses (1) to compute $Q_n(x)$ for $0 \le n \le 9$ and also finds $Q_n(-\frac{1}{2})$. He remarks however "l'expression générale des polynômes $Q_n(x)$ nous echappe." The object of this note is to derive an explicit expression for $Q_n(x)$.

Under the substitution

(2)
$$Q_n = 2^n {\binom{2n}{n}}^{-1} W_n$$

the conditions (1) become

(3) $(n+1)W_{n+1} = (2x+1)(2n+1)W_n + n^3W_{n-1}, W_{-n}(x) = 0, W_0(x) = 1.$ Now define the generating function

(4)
$$W(t) = \sum_{n=0}^{\infty} W_n \frac{t^n}{n!}.$$

The conditions (3) then imply

(5)
$$t(t^2 - 1)\frac{d^2W}{dt^2} + \{3t^2 + 2(2x + 1)t - 1\}\frac{dW}{dt} + (t + 2x + 1)W = 0,$$

 $W(0) = 1.$

Equation (5) is a special case of Heun's equation. Its solution can be obtained in the following way: Let

(6)
$$W = (1-t)^{-(2x+1)}w, \quad z = t^{2}.$$

Then (5) becomes

(7)
$$z(z-1)\frac{d^2w}{dz^2} + \{1 - (1-2x)z\}\frac{dw}{dz} - x^2w = 0, \qquad w(0) = 1.$$

This is the well-known hypergeometric equation. The only solution regular at z = 0 and satisfying the boundary condition is

(8)
$$w = F(-x, -x, 1, +z).$$

Hence from (6) we obtain

(9)
$$W = (1-t)^{-(2x+1)}F(-x, -x, -1, t^2).$$

Received January 11, 1956.

321

Since

$$W_n = \left. \frac{d^n W}{dt^n} \right|_{t=0}$$

(9) implies

(10)
$$W_{n} = \left(\Gamma\left(-(2x+1)\right)\Gamma^{2}(-x)\right)^{-1}\sum_{r=0}^{\lfloor \frac{1}{2}n \rfloor} \binom{2n}{n} \frac{\Gamma\left(2x+n-2r+1\right)\Gamma^{2}(r-x)(2r)!}{(r!)^{2}}$$
$$= n!\sum_{r=0}^{\lfloor \frac{1}{2}n \rfloor} \binom{2x+n-2r}{n-2r} \binom{x}{r}^{2}$$

By (2) and (10) an explicit expression for $Q_n(x)$ is

(11)
$$Q_n(x) = 2^n n! {\binom{2n}{n}}^{-1} \sum_{r=0}^{\lfloor \frac{1}{2}n \rfloor} {\binom{2x+n-2r}{n-2r}} {\binom{x}{r}}^2.$$

This of course checks with the values of $Q_n(x)$ computed by Touchard for $0 \le n \le 9$, and also gives his value of $Q_n(-\frac{1}{2})$. Finally, the expression (11) simplifies considerably for x a positive or negative integer and for 2x a negative integer. Thus for example

(12)
$$Q_n(0) = 2^n n! {\binom{2n}{n}}^{-1}$$

and

(13)
$$Q_n(1) = 2^n n! (n^2 + n + 1) {\binom{2n}{n}}^{-1}.$$

Equation (13) provides still another simple check on values of $Q_n(x)$ computed from the recurrence formula.

University of Alberta

322