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1. Introduction. Let Bn denote the unit ball and U" the unit polydisc in C . In this
paper we consider questions concerned with inner functions and embeddings of Hardy
spaces over bounded symmetric domains. The main result (Theorem 2) states that for a
classical symmetric domain D of type I and rank(D) = s, there exists an isometric
embedding of Hl(Us) onto a complemented subspace of Hl(D). This should be compared
with results of Wojtaszczyk [13] and Bourgain [3, 4] which state that H*(Bn) is isomorphic
to Hl(U) while for n>m, Hl(U") cannot be isomorphically embedded onto a comple-
mented subspace of Hx(Um). Since balls are the only bounded symmetric domains of rank
1 and they are of type I, Theorem 2 shows that if rank(D,) = 1, rank(D2) > 1 then H\DX)
is not isomorphic to H1(D2). It is natural to expect this to hold always when
r a n k ^ ) #= rank(D2) but unfortunately we were not able to prove this.

The existence of an isometric embedding of HP(US) into HP(D) is closely related to
the existence of s independent inner functions on D (Theorem 1). The problem of
existence of inner functions on arbitrary bounded symmetric domains has been solved by
Aleksandrov's and L0w's constructions for the unit ball [1, 8]. Inner functions on other
symmetric domains can be then obtained by a simple averaging argument (cf. [2]). In this
paper we construct families of independent inner functions on various classical domains
and obtain isometric embeddings of HP(US) into HP{D). These constructions depend on
[1] but are different than the general construction of one function as in [2].

2. Notation and definitions. Let D be a classical symmetric domain in its standard
realization (cf. e.g. [7] or [12]); then D is circular and convex. The Bergman-Shilov
boundary bD of D is circular, it is a compact real-analytic submanifold of C" and it has a
unique ro-invariant measure oD. (Fo stands for the isotropy subgroup of the group of all
holomorphic automorphisms of D.)

For 0 < p < ° ° the Hardy space HP{D) is denned as consisting of all functions /
holomorphic in D and such that

sup f \f(rz)\"doD(z)<co.
Kr< l Jhr>0<r<lJb D

For p = 0° the space H°°(D) consists of all bounded holomorphic functions in D. Every
function/eHP(D) has radial limits (denoted by/*) aD-a.e. on bD and when we identify
/with /*, the space HP(D) can be viewed as the closure of holomorphic polynomials in
Lp(bD, oD). The most appropriate reference to this subject seems to be [12].

Classical symmetric domains are divided into four groups. We will only need explicit
forms of types I and II. Other types will be only mentioned, the reader is referred to [7]
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or [12]. Let Mmn denote the set of all m x n complex matrices, Mn = Mnn. I will stand for
the identity matrix of an appropriate size, Z', Z* for transposed and hermitian conjugate
matrix of Z. Z > 0 means that Z is positive definite.

Riim, n) = D = {Ze Mmn:I- Z*Z > 0} (m > n),

bD = {ZeMm.n:I = Z*Z},
rank(D) = n,

Rn(n) = D = {ZeMn:I- Z*Z > 0, Z = Z'},
bD = {ZeMn:I = Z*Z, Z = Z'},

rank(D) = n.

(For the definition of rank see e.g. [6, p. 354].) Note that R\(m, n) is the unit ball in Mmn

with the operator norm and similarly Ru(n) but restricted to symmetric matrices.
bRi(m, n) consists of all unitary embeddings of C into Cm and bRu(n) of all symmetric
unitary matrices on C .

A function g is called inner in D if geH°°(D) and |g*| = l a.e. on bD. By
independent inner functions we mean functions g, such that gf are independent as random
variables on (bD, aD) or equivalently that whenever au . . . , as eZ , not all zero, we
have

JbD

(if a < 0 then z a means z"*1).
We will use the standard notation: U for the unit disc, T for the unit circle, Bn, Sn for

the open unit ball and the sphere in C". dm, dmn, don will be the normalized Lebesgue
measures'on T, T", Sn respectively.

The author would like to thank P. Wojtaszczyk, R. M. Timoney and J. Grabowski
for helpful conversations.

3. Inner functions and embeddings. Let D be a bounded symmetric domain and
0<p ^oo. Consider the two conditions.

(a) There exists an isometric embedding T:HP(US)^HP(D) preserving the constant
functions.

(b) These exist s independent inner functions on D.
We have

THEOREM 1. For every 0<p <°° (b) implies (a); if in addition p±2 or °o then (a)
implies (b).

Proof, (a )^(b) follows, with only a little work, from Theorem II of [10].
(b)=>(a). Put <&:D-*US equal to (gi,..-,gs). Then (1) guarantees that any

polynomial F in z, and z, satisfies

f F°4>*doD= \ Fdms. (2)
JbD JT
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By density we obtain the same for all F e L^T*, dms). This easily implies that Tf =f°®
is an isometric embedding of HP(US) into HP(D).

4. Domains of type I.

THEOREM 2. Let D be a product of classical symmetric domains of type I and
mnk(D) = s. Let 1 < / ? < ° O . Then HP(US) can be isometrically embedded onto a
1-complemented subspace of HP(D).

As an immediate consequence of main results of [13] and [3] and Theorem 2 we get

COROLLARY. Let DcC" be as in Theorem 2 and D ' c C " a bounded symmetric
domain of rank one (i.e. D' = Bm); then Hl(D) is isomorphic to HX(D') iffiank(D) = 1.

REMARK 1. If p = °°, a more general version of Theorem 2, due to R. M. Timoney
[11], is known. Namely if D is any bounded symmetric domain with rank(D)=s then
H°°(US) can be isometrically embedded onto a 1-complemented subspace of H"(D). It
should be however noted that in this case the proof is fairly easy and does not use the
inner functions.

Proof of Theorem 2. As there is no difficulty in generalizing Theorem 2 to products
of domains we will assume that D = R\(m, n) and treat it as contained in the natural way
in Mm_n = C " x . . . x C m .

Let ek denote the kth unit vector in C . Define nk:Mmin^>Cm as nk(Z) = Zek, i.e.
nk(Z) is the kth column of the matrix Z.

LEMMA 1. nk(D) = Bm and Jtk(bD) = Sm.

Both equalities can be easily shown using the operator descriptions of D and bD.
Now we will show that a counterimage of a set of measure zero by nk is still of

measure zero.
On any smooth manifold we can define a collection of sets of measure zero without

specifying an exact measure, by taking the counterimages of sets of measure zero by the
local coordinates. It is easily seen that on the Bergman-Shilov boundary of a symmetric
domain sets of measure zero in the above sense coincide with sets of aD measure zero.

LEMMA 2. Let M, N be connected real-analytic manifolds and n:M^*N a real-
analytic surjection. Suppose E cN is of measure zero; then so is n~\E).

Sketch of the proof. We use Sard's theorem, together with the fact that zero sets of
real-analytic functions are of measure zero, to show that the set where the derivative of n
is not surjective is of measure zero. This allows us to omit this set and the rest of the
argument is quite simple.

REMARK 2. Lemma 2 will be also used in Section 4. In the case of domains of type I
there is a more elementary way of proving Lemma 2 and it can be in fact shown that in
this case nk are measure preserving (i.e. oD(nk

l(E)) = om(E)). This can be done, for
instance, by showing that E—> aD(nk (E)) is a unitary-invariant measure on Sm.
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Let G be an inner function in Bm, G(0) = 0. Define
gk = G°nk;

then it immediately follows from Lemmas 1 and 2 that gk[D are inner in D. We will now
prove that they are independent and even satisfy a stronger condition than (1).

LEMMA 3. Let h e Hl{D). Then for all ocx, . . . , an e Z, such that for some k, ak>0
we have ,

h*.(g*ly'...(g*ny"doD = o. (3)
•IbD

Proof. We may assume that h is an analytic polynomial. Let ak > 0 and for Z e Mmn

define rz:C—*Mmn as the multiplication of the kth column by the variable AeC. It is
easily seen that for A e T the mapping Z-> rz(A) is in ro(£>). Hence

I
f f

= I I /i(Tz(A))(g*(rz(A)))'ri . . . (g*(Tz(A)))'r" dm(A) doD(Z). (4)
JbD JT

Notice that for/*A:, g/(Tz(A))=g/(Z) and g**(rz(A)) = G*(%(T Z (A) ) ) = G*(Awt(Z)).
Hence the right-hand side of (4) can be written as

f \h(Tz(X))G*(kjzk(Z))dm(k)Ylg*(Z)doD(Z). (5)
JbD JT ; # *

The function U a X—*h(rz(X))G(Xjik(Z)) is an //""-function with boundary values
h(Tz(X))G*(Xnk(Z)) and vanishing at zero, so the inner integral in (5) must vanish.

Since, obviously (3) is stronger than (1), the operator Tf =/°4>, O = (gu . . . , gn) is
an isometric embedding of HP(U") into HP(D). Now we will construct a projection onto
its image.

Let, for feH"(D),

be the conditional expectation with respect to the a-algebra generated by g*, . . . , g*.
This operator is a projection with norm equal to one in all Lp(bD, oD), l<p<oo . We
will show that P{H"{D)) = T(Hp(Un)). Of course, if / = go<D* then Pf =/ . On the other
hand if / = Ph. with h e HP(D) then there exists an //-function g on V such that
/ = g°O*. We only have to show that g corresponds to an analytic function, or
equivalently that

f g{z).z?...z?dmn(z) = 0

whenever as e Z and for some k, ak > 0. But, by (2),

f g(z). zV • • • za
n"dmn - f (go**). (g*)«.. . . (g*)«. doD

JT" JbD
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= f E(h | * ) . (gir • • • (gZ)*" doD = f E(h. (gf )«•. . . (g;)«-1 * ) rfaD

5. Other classical domains.

THEOREM 3. Let D be a product of classical domains of types R\{m, n), Ru(n),
^ni(2«), R\v(n) and suppose rank(Z)) = s. Then there exist s independent inner functions
on D.

Generalization to products is trivial so we consider only irreducible cases. That of Rt

is contained in Lemma 3. We will restrict ourselves to the case of Rn; the others can be
done similarly.

As before we have D c M , = C " x . . . x C " . We will denote variables in this product
by Z/j. It should be noted that D is not open in Mn as its dimension is only n(n + l)/2, but
it will be of no importance for the proof. Again we define nk{Z) = Zek.

LEMMA 4. nk(D) c Bn, nk(bD) = Sn.

Proof. Inclusions nk(D) a Bn, Jik(bD) a Sn are quite obvious. To show the equality
let z eSn. We may assume that k = \. If z = Ae1( A e T then we can take Z = A/ ebD and
get JTi(Z) = z. Now suppose z = aex + j8w with P>0, ||w\\ = 1 and w 1 ex. Take

"or P

T =

then T e bD. Take a unitary matrix V such that Ve{ = e, and Vw = e2; then Z =
V*TVebD and xx(Z) = z.

In [1] Aleksandrov constructed, for 1 ^ k s n, the inner functions Gk such that

GkiBnn{zk=o) = 0 .

Take these Gk and define

gk = Gk°7ik. (6)

These functions are well defined on Bn x . . . x Bn c Mn and, by Lemmas 2 and 4, gktD are
inner in D. To prove that gk satisfy (1) we will again need an auxiliary mapping T.

Fix ax, . . . , ocn e Z and for Z = (z,y) e Mn define xz: C -* Mn as

{Az,y if or,, o-y > 0,

Az,y if or,, ary<0,

z,y in other cases.
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Also let rk
z = nk°Tz and G = { Z e t / ) : V t 2 M ^ 0 } . G is of full measure in bD, for

instance because it is a complement of the zero set of an analytic function.

LEMMA 5.

(a) IfZebD then TZ(T) C bD and Z e G implies rz(U) c Bn X . . . x Bn.
(b) For every A e T the mapping Z-* rz(A) belongs to T0(D).
(c) The mapping Z, A-» rz(A) « continuous on bD x T.
(d) TZ is holomorphic if ak^0 and antiholomorphic in the opposite case.
(e) If Z eG then rz acts from U into Bn and if A e T, r—> 1 then rz(rk) converges to

TZ(A) e 5n nontangentially.

The elementary proof of this lemma is left to the reader.
Let <D = {gu . . . , gn), $* = (gf, . . . , g*) with g* being defined by (6). Then <I> is

defined and holomorphic in Bn x . . . x Bn c Mn. By Lemma 5 (a), for ZeG the
composition $ » r z gives a mapping from U into C" and, by (e), we get

If A e T is such that for every k the functions Gk have the nontangential limits at ,_,
Tz(A) then $ n t has, at A, the radial limit equal to * * ( T Z ( A ) ) . *• '

LEMMA 6. Let /i e Ll{bD, aD) and H cbD be a set of full measure. Then

I hdoD=( (h°Tz(X)dm(X)doD(Z).
JbD JH H

Proof. Since, for a fixed A e T the mapping Z-» TZ(A) belongs to ro(D), we have

f hdoD=\ h°Tz{k)doD{Z).
JbD JbD

x is continuous in both variables, so after integration of both sides in A we may change the
order of integration on the right-hand side and use the fact that aD(H) = 1.

Now we prove (1). Let F{zx, . . . , zn) = z"'. . . z"a and let E be the set of all those
ZeG such that for almost every A e T the mapping $ ° xz has, at A, the radial limit equal
to $*(TZ(A)) . For Z e E consider the function

xpz = F°<&°TZ.

By Lemma 5(d) this function is holomorphic and | Vzl - 1 over U, so ipz e Ha(U). ZeE;
hence for almost every A the radial limit of xpz coincides with F(O*(rz(A)). Besides
V'z(O) - 0 s ' n c e f°r every k we have T Z ( 0 ) ^ = 0 which implies that g*(Tz(0)) = 0. Hence

0 = f i/4(A)dm(A)= f F°<S>*°Tz{X)dm{k).

If we show that oD(E) = 1 then, by Lemma 6, we are done. So let

K = {ZebD:VkGk has the nontangential limit at nk{Z)}
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Applying Lemma 6 to H = bD and h = %K we get

= f XK doD=\ \
JbD JbD J T

= f m({A e T: rz(A)

Hence, by (7), for almost all Z ebD the set of those A e T such that 3>° r z has the claimed
radial limit is of full measure in T. Now E is just the intersection of the set of all such Z
with the set G.

6. Remarks.

REMARK 3. If D is a product of domains of type I, then the fact that nk preserve
measure (cf. Remark 2) can be used to extend the nonfactorization results of Gowda [5]
and Rosay [9] to the case of such D. This is done by observing that g—>g°nk gives an
isometric embedding of Hp{Bm) into Hp{Rx{m, n)) and the restriction of a function to the
fcth column of Z e Ri(m, n) gives a projection. Then the function/ e Hl(Bn) which cannot
be written as/j ./2 with f1,f2eH2(Bn) can be "pulled" into ^(R^m, n)).

REMARK 4. The proof of Theorem 3 strongly uses the fact that the Bergman-Shilov
boundary of Rn consists of unitary matrices; this is also true for Rm(2k) but not for
Rm(2k + 1) and this is the reason why this case is not included.

REMARK 5. There is a natural question about the maximality of systems of
independent inner functions obtained in Theorem 3. This is an open problem even in the
simplest case of the unit disc. The situation in this case seems to be much simpler since
the existence of two such functions implies the existence of infinitely many.

REFERENCES

1. A. B. Aleksandrov, The existence of inner functions in the ball, Math. USSR-Sb. 46
(1983), 143-159.

2. A. B. Aleksandrov, Inner functions in compact spaces, Funktsional. Anal, i Prilozhen. 18
(1984), no. 2, 1-13 (in Russian).

3. J. Bourgain, The non-isomorphism of H'-spaces in one and several variables, J. Fund.
Anal. 46 (1982), 45-47.

4. J. Bourgain, The non-isomorphism of H'-spaces in a different number of variables, Bull.
Soc. Math. Belg. Sir. B 35 (1983), 127-136.

5. M. S. Gowda, Nonfactorization theorems in weighted Bergman and Hardy spaces on the
unit ball of C" (n > I), Trans. Amer. Math. Soc. Ill (1983), 203-212.

6. S. Helgason, Differential geometry and symmetric spaces (Academic Press, 1962).
7. L. K. Hua, Harmonic analysis of functions of several complex variables in the classical

domains (American Mathematical Society, 1963).
8. E. L0w, A construction of inner functions on the unit ball of C, Invent. Math. 67 (1982),

223-229.

https://doi.org/10.1017/S001708950000687X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950000687X


236 TOMASZ M. WOLNIEWICZ

9. J. P. Rosay, Sur la non-factorisation des elements de l'espace de Hardy HX{U2), Illinois J.
Math. 19 (1975), 479-482.

10. W. Rudin, Lp-isometries and equimeasurability, Indiana Univ. Math. J. 25 (1976),
215-228.

11. R. M. Timoney, Bloch functions in several variables. II, /. Reine Agnew. Math. 319
(1980), 1-22.

12. S. Vagi, Harmonic analysis on Cartan and Siegel domains, in J. M. Ash, ed., Studies in
harmonic analysis (Mathematical Association of America, 1976).

13. P. Wojtaszczyk, Hardy spaces on the complex ball are isomorphic to Hardy spaces on the
disc, 1 < p <«>, Ann. of Math. (2) 118 (1983), 21-34.

TOMASZ M . WOLNIEWICZ

INSTITUTE OF MATHEMATICS

NICOLAUS COPERNICUS UNIVERSITY

TORUN, POLAND

https://doi.org/10.1017/S001708950000687X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950000687X

