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The purpose of the present note is to give a par t ia l answer 
to a question raised by Professor Coxeter, namely, if an orthog
onal transformation is expressed as a product of orthogonal 
involutions, how many involutions do we need? Our answer 
is part ial because we are going to consider only non-degenerate 
symmetric bilinear forms of index 0 and fields of character is t ic 
j 2. Under these conditions we prove that any orthogonal t r ans 
formation is the product of at most two orthogonal involutions, 
which implies that we can write any orthogonal transformation 
as the product of two involutions. 

In section 1 we recal l the relevant definitions» For more 
detail see [ l ] or [2]. 

1. Let M be a left vector space of dimension n over a 
commutative field k of character is t ic 4 2, and (x, y), where 
x,y € M, a non-degenerate symmetric bilinear form. The 
linear transformations T of M which satisfy (xT,yT) = (x,y) 
for all x,y € M are called orthogonal t ransformations. They 
form a group called the orthogonal group of M relative to the 
bilinear form (x,y). The most simple orthogonal t ransforma
tions are the ones whose square is the identity I; such t r a n s 
formations a re called orthogonal involutions. Now, if T is an 
orthogonal involution, M can be decomposed in the direct sum 

of two subspaces, M = M © M ~ , such that xT = x if x e M 

and yT =-y if y c M . Moreover, since (x,y) = (xT,yT) 

- (x, -y) = - (x ,y) , any vector x in M is orthogonal to any 

vector y in M , that is (x, y) = 0. This condition together 
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with M = M © M implies that M and M are orthogonal 

complements of each other, and the res t r ic t ions of (x, y) to M 

and M are non-degenerate bilinear forms. Conversely, 
given a subspace N such that the res t r ic t ion of the bil inear 

form to N is non-de generate, let N1, be its orthogonal 

complement, that i s , N4* = {y J (x,y) =0 for all x € N} ; 

then M = N (J) N x , and the transformation T which leaves 

invariant any vector of N and yT = -y for all y * N x is an 

orthogonal involution with M = N and M = N A . T can 

be simply described as the reflection in the subspace M . 
In par t icular , if (x, x) $ 0 and H is the hyperplane orthogonal 
to the subspace [x] generated by x, the reflection in H is 
called the symmetry relat ive to H. 

Let x , x , . . . , x be non» isotropic orthogonal vec to r s , 

that i s , (x,,x.) 4 0, i = 1 ,2 , . . » , r and ( x . , x . ) = 0 for i ^ j ; 

then the product of the symmet r ies , S S . . . S , where S. is 

the reflection in the hyperplane H. orthogonal to [x.] , is the 

involution T with M = H, O H - O . . . O H and 
1 2 r 

M = [x , x - , . . , x 1 the subspace spanned by the x.. 1 2 r J ir ir j 1 

A theorem of E. Cartan and J. Dieudonne a s s e r t s that any 
orthogonal t ransformation is the product of at most n sym
m e t r i e s (n = dimension of vector space), and there exist 
orthogonal t ransformations which can not be expressed using 
less than n symmet r i e s . If instead of symmetr ies we use 
any kind of involutions, how many do we need? Since the 
product of symmetr ies relat ive to orthogonal hyperplane s is 
an involution, our problem in connection with Cartan-Dieudonne 
theorem is to choose carefully the symmetr ies so that their 
product is decomposed in a minimum number of involutions. 

2. From now on we always assume that the bil inear form 
(x, y) has index 0; this means that (x, x) =0 if and only if 
x = 0. Then the res t r ic t ion of (x,y) to any subspace N # 0 
is non-degenerate . 
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If T is an orthogonal transformation of M, not neces
sarily an involution, we still define the plus- and minus-spaces 

as M = { x | x T = x } and M " = { X | XT = -x} . When we 
want to specify that these are the plus- and minus-spaces of 

T we write M and M_ . Now if T is not an involution 
T T 

M 0 M* i M, but we can write M = M © M* 0 M1 , 

where M* is the orthogonal complement of M 0 M . 

We will call this decomposition of M the canonical decomposi

tion of M relative to T. The subspace M 0 M can be 
2 

character ized as the kernel of the linear transformation I - T . 

The idea of the proof of the next lemma res t s on the 
following well-known facts: 

(a) If x - xT 4 0 then xTS = x, where S is the sym
metry relative to the hyper plane orthogonal to x-xT, and if 
x+xT i 0 and S1 is the symmetry relative to the hyper plane 
orthogonal to x+xT xTS* = -x. This follows immediately 

x+ xT x- xT 
from xT =—-— - . and (x-xT, x+xT) = (x, x) - (xT, xT) = 0 . 

(b) Conversely, if xTS =x and xT i x then the sym
metry S must be the symmetry relative to a hyperpiane orthog
onal to. x-xT, and if xT = x S must be a symmetry relative 
to a hyperpiane containing x. If x T S = - x , then, when 
x+xT ^ 0 , S is the symmetry relative to the hyperpiane 
orthogonal to x+xT and, when x+xT = 0, S must be a 
symmetry relative to any hyperpiane containing x. 

2 
When the transformation I - T is 1 - 1 , that i s , 

4* 2 
M =M =0, for any x c M we get x = y(I-T ) and if S is 
the symmetry relative to the hyperpiane orthogonal to x the 
plus-space of TS is [y(I+T)] and the minus-space is [y(I-T)]. 

LEMMA. Let M be a finite dimensional vector space 
over a commutative field k of charac ter is t ic 4 2, with a non-
degenerate symmetric bilinear form (x,y) of index 0. Then 
given a vector u and an orthogonal transformation T, such 

2 
that x s xT if and only if x = 0, there exists a symmetry S 
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such that u * M + M , and u belongs also to the hyper-
To To 

plane which defines S. 

Proof. If u = 0 any symmetry will satisfy the proper t ies , 
So we assume u.^ 0. Then by our assumption on T, 

-1 
uT - uT # 0; moreover 

(1) (u ,uT* 1 -uT) = ( U , U T ~ V { U , UT) = ( U T , U ) - ( U , U T ) =0 . 

Let S be the symmetry relative to the hyper plane 

orthogonal to uT - uT. Then (1) shows that S satisfies 

the last condition. Now (uT )TS = uS = u and since 

-1 -1 -1 
hence if y = u+uT , yTS = (uT + u)TS=u+uT =y, so 

+ -1 -1 
y * M and if z = u-uT then zTS = uT -u = - z , that i s , 

To 
z € M ~ . Therefore u = ~ ~ « Mm„ + M~ „ -

TS 2 TS TS 

THEOREM. Let M, k and (x,y) be as in the lemma. 
Then any orthogonal transformation T is the product of at 
most two involutions. 

Proof. Let M = M* © M* © Mf be the canonical 

decomposition of M relat ive to T. If Mt - 0, T is an 
involution and there is nothing to be proved. So we assume 

2 
M' i 0. Since M! is taken onto itself by I - T for any 

2 
non-zero vector z. € Mf , we get zJ = x. (I-T ) with 0 4 xJ e M1 

1 1 1 1 
Let S be the symmetry relat ive to the hyperplane H. 

1 1 
orthogonal to z , then the canonical decomposition of M 

1 
relat ive to TS is 

1 

M M M S ^ I I I T ) ] ) ^ © (M^+Ex^I-T)])^ © M" 
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JLet u be the projection of z on M,f relative to this 

decomposition. By the lemma we know that we can choose an 
element z € Mff such that (u . z ) = 0, and if S is the sym-

metry relative to the hyperplane H orthogonal to z , and 

M" =[x2] © [ y 2 ] © M»" 

is the canonical decomposition of M" relative to TS S , then 

u € [x ] + [y~]. Since (u , z ) = 0 and z * Mn we have 

( V 2 2 ) = 0 ' 

Now let u be the orthogonal projection of z on M IM 

and take z € MTlf such that (u , z ) = 0 and u belongs to 

[x ] © [y ] where M , M = [x ] © [y ] © M is the canonical 

decomposition of MIM relative to TS S S . Since (u , z ) = 0 

and z_ « M , f l we have (z , z ) = (z , z ) = 0. Proceeding in 
3 1 3 Z 3 

this way we get a transformation T S S ^ . . .S , where 
1 2 r 

r =~ dim M' , which is an involution U » Since S S . . . S = U-, 
2 1 1 2 r 2 

is also an involution we obtain T =U U_. Now, U is the 
1 2 1 

product of r + dim M symmetr ies , therefore T is a rotation 

if and only if dim M is even. Hence when T is not a 

rotation, M # 0 . 

The proof shows also that SJ can be any symmetry whose 
1 

hyperplane contains M © M . 
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