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The purpose of the present note is to give a partial answer
to a question raised by Professor Coxeter, namely, if an orthog-
onal transformation is expressed as a product of orthogonal
involutions, how many involutions do we need? Our answer
is partial because we are going to consider only non-degenerate
symmetric bilinear forms of index 0 and fields of characteristic

# 2. Under these conditions we prove that any orthogonal trans-
formation is the product of at most two orthogonal involutions,
which implies that we can write any orthogonal transformation
as the product of two involutions. '

‘In section 1 we recall the relevant definitions‘. For more
detail see [1] or [2].

1. Let M be a left vector space of dimension n over a
commutative field k of characteristic # 2, and (x,y), where
X,y € M, a non-degenerate sy&nmetric bilinear form. The
linear transformations T of M which satisfy (xT,yT) =(x,y)
for all x,y € M are called orthogonal transformations. They
form a group called the orthogonal group of M relative to the
bilinear form (x,y). The most simple orthogonal transforma-
tions are the ones whose square is the identity I; such trans-
formations are called orthogonal involutions. Now, if T is an
orthogonal involution, M can be decomposed in the direct sum

of two subspaces, M =M @ M, suchthat xT =x if xe M+A
and yT=-y if ye M . Moreover, since (x,7) =(xT,yT)

+
=(x,-y) =-{x,y), any vector x in M 1is orthogonal to any

vector y in M, thatis (x,y) =0. This condition together
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- + -
with M =M+ ® M  implies that M and M are orthogonal
+
complements of each other, andthe restrictions of (x,y) to M

and M are non-degenerate bilinear forms. Conversely,
given a subspace N such that the restriction of the bilinear

form to N is non-degenerate, let N* be its orthogonal
complement, that is, N* = {y | (x,y) =0 for all xe N};
then M=N @ N*, and the transformation T which leaves
invariant any vector of N and yT =-y for all ye N* isan
orthogonal involution with M' =N and M =N*. T can

be simply described as the reflection in the subspace M+.

In particular, if (x,x) # 0 and H is the hyperplane orthogonal
to the subspace [x] generated by x, the reflectionin H is
‘called the symmetry relative to H.

Let xi, xz, ey xr be non-isotropic orthogonal vectors,

that is, (x,x)# 0, i=1,2,...,r and (%) =0 for 14
then the product of the symmetries, sisz. .. Sr, where Si is
the reflection in the hyperplane H, orthogonal to [xi] , is the

involution T with M+=H1ﬂ H,N ... VH_ and

M = [xi, Xyreo e xr] the subspace spanned by the X,

A theorem of E. Cartan and J. Dieudonné asserts that any
orthogonal transformation is the product of at most n sym-
metries {(n=dimension of vector space), and there exist
orthogonal transformations which can not be expressed using
less than n symmetries. If instead of symmetries we use

any kind of involutions, how many do we need? Since the
product of symmetries relative to orthogonal hyperplanes is

an involution, our problem in connection with Cartan- Dieudonné
theorem is to choose carefully the symmetries so that their

product is decomposed in a minimum number of involutions.
2. From now on we always assume that the bilinear form
(x,y) has index 0; this means that (x,x) =0 if and only if

x = 0. Then the restriction of (x,y) to any subspace N # 0
is non-degenerate.
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If T is an orthogonal transformation of M, not neces-
sarily an involution, we still define the plus- and minus-spaces

as M+={x]xT=x} and M ={x | xT =-x}. When we

want to specify that these are the plus- and minus-spaces of

T we write Mfr and M; . Now if T 1is not an involution
- + -

M+®M # M, but we can write M=M ® M @ M',

+ -
where M' is the orthogonal complementof M (® M .
We will call this decomposition of M the canonical decomposi-

+ -
tion of M relative to T. The subspace M (®) M can be

2
characterized as the kernel of the linear transformation I - T .

The idea of the proof of the next lemma rests on the
following well-known facts:

() If x- xT # 0 then xTS =x, where S is the sym-
metry relative to the hyperplane orthogonal to x-xT, and if
x+xT # 0 and S' is the symmetry relative to the hyperplane
orthogonal to x+xT xTS' = -x. This follows immediately

x+xT x-xT

2 -3 and (x-xT, x+xT) =(x,x) - (xT,xT)=0.

from xT =

(b) Conversely, if xTS =x and xT # x then the sym-
metry S must be the symmetry relative to a hyperplane orthog-
onal to. x-xT, and if xT =x S must be a symmetry relative
to a hyperplane containing x. If xTS =-x, then, when
x+xT # 0, S is the symmetry relative to the hyperplane
orthogonal to x+xT and, when x+xT =0, S must be a
symmetry relative to any hyperplane containing x.

When the transformation I - T2 is 1 -1, thatis,

M+ =M =0, forany x¢M we get x=y(I-TZ) and if S is
the symmetry relative to the hyperplane orthogonal to x the
plus-space of TS is [y(I+T)] and the minus-space is [y(I-T)].

LEMMA. Let M be a finite dimensional vector space
over a commutative field k of characteristic # 2, with a non-
degenerate symmetric bilinear form (x,y) of index 0. Then
given a vector u and an orthogonal transformation T, such

2
that x =xT if and only if x =0, there exists a symmetry S
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such that ue€ M;S + M:I’S' and u belongs also to the hyper-

plane which defines S.

Proof. If u=0 any symmetry will satisfy the properties.
So we assume u# 0. Then by our assumption on T,

uT-1 - uT # 0; moreover
-1 -1
(1) (u,uT -uT)=(u,uT )-(u,uT)=(uT,u)-(u,uT)=0.

Let S be the symrmetry relative to the hyperplane
-1
orthogonal to uT - uT. Then (1) shows that S satisfies

-1
the last condition. Now {(uT TS =uS =u and since

-1 -1
uT +uT_uT -uT S=uT-1

-1 -1
(uT +uT,uT -uT)=0, uTS= 2 > ;

-1 -1 -
hence if y=utuT , yTS ={(uT +u)TS =utuT 1 =y, so

+ . -1 -1 .
vy € M‘TS and if z =u-uT then zTS =uT -u=-z, thatis,
- y+z + -
€ . £ =S .
z _MTS Therefore u 2 € MTS + MTS

THEOREM. Let M,k and (x,y) be as in the lemma.
Then any orthogonal transformation T is the product of at
most two involutions.

Proof. Let M= M; ® M;, ® M' be the canonical

decomposition of M relativeto T. If M' =0, T isan
involution and there is nothing to be proved. So we assume

M' # 0. Since M' is taken onto itself by I - ‘I’2 for any
non-zero vector z'1 € M', we get Zi '-'x1 (I—TZ) with 0 # xie M'.
Let Si be the symmetry relative to the hyperplane H1
orthogonal to zy then the canonical decomposition of M

relative to TS1 is

+ + - . "
M =(MT+[X1(I+T)])T51® (MT+[X1(I-T)DT51® M,
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Let u1 be the projection of z, on M" relative to this

decomposition. By the lemma we know that we can choose an

element z2 € M'" such that (ui, ZZ) =0, and if S2 is the sym-

metry relative to the hyperplane I—I2 orthogonal to Z5 and

M =[] @ [y,] @ M

is the canonical decomposition of M" relative to TSisz, then
3 - 11

u, € [xz] + [YZ]' Since (ui, z,) =0 and 2z, € M" we have

(zi, zZ) =0.

Now let u, be the orthogonal projection of z, on M
and take z, € M''""  such that (uz, z3) =0 and u, belongs to
[x3] @ [Y3] where M'! =[X3] @ [y3] ® M(w) is the canonical
decomposition of M''' relative to T515253. Since (uz, z3) =0
and z3 € M'"' we have (zi, z3) = (zZ, 23) =0. Proceeding in
this way we get a transformation 'I‘SiSZ. .. Sr, where

r =-1- dim M', which is an involution U.. Since S S_...S =U

2 . 1 12 r 2
is also an involution we obtain T = UiUZ' Now, U1 is the
product of r + dim M'-I' symmetries, therefore T 1is a rotation
if and only if dim M'.I‘ is even. Hence when T is nota

tation, M_ # 0.
rotation MT#

The proof shows also that S1 can be any symmetry whose

hyperplane contains M; ® M

T
REFERENCES
1. E. Artin, Geometric Algebra, Interscience, New York,
(1957).
2. J. Dieudonné, La géométrie des groupes classiques,

Springer, Berlin, (1955).
University of Toronto

383

https://doi.org/10.4153/CMB-1964-036-1 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1964-036-1

