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COALESCENT LINEAGE DISTRIBUTIONS

ROBERT C. GRIFFITHS,∗ University of Oxford

Abstract

We study identities for the distribution of the number of edges at time t back (i.e. measured
backwards) in a coalescent tree whose subtrees have no mutations. This distribution
is important in the infinitely-many-alleles model of mutation, where every mutation is
unique. The model includes, as a special case, the number of edges in a coalescent
tree at time t back when mutation is ignored. The identities take the form of expected
values of functions of Zt = eiXt , where Xt is distributed as standard Brownian motion.
Associated identities are also found for the distributions of the time to the most recent
common ancestor, the time until loss of ancestral lines by coalescence or mutation, and
the age of a mutation. Hypergeometric functions play an important role in the identities.
The identities are of mathematical interest, as well as potentially being formulae to use for
numerical integration or simulation to compute distributions that are usually expressed
as alternating-sign series expansions, which are difficult to compute.
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1. Introduction

A coalescent tree is a random binary tree representing the ancestry of a sample of genes in
mathematical genetics models. Kingman (1982) is the seminal paper on the coalescent. Griffiths
(1980) is an earlier paper with many coalescent ideas, and later well-written expository papers
are Tavaré (1984), Watterson (1984), Hudson (1991), and Nordborg (2001). Edges in the
coalescent tree coalesce exchangeably at a rate of 1 per unordered pair, with a total coalescence
rate of

(
k
2

)
, k being the number of leaf edges in the tree. Coalescence is fast enough to begin

with an entrance boundary of an infinite number of leaves, representing the entire population of
genes. In the infinitely-many-alleles model of mutation, mutations occur according to a Poisson
process along the edges of the coalescent tree at rate θ/2, each mutation producing a unique
allele type. The distribution of the configuration of alleles in the leaves of an n-coalescent
tree is Ewens’ sampling formula (Ewens (1972)), and the relative frequency distribution in an
infinite-leaf coalescent tree is Poisson–Dirichlet (Kingman (1993, Chapter 9)).

There are a number of post-coalescent proofs of Ewens’ sampling formula; a direct com-
binatorial proof with connections to this paper can be found in Griffiths and Lessard (2005).
The distribution back in time of edges in a coalescent tree which have no mutations in their
subtended family subtrees is important. Once a mutation occurs in an edge with a nonmutant
family, it then determines the allele type of the family. This process of how mutant families arise
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in the history of a sample of genes is determined by the forest obtained by tracing edges in the
coalescent tree from the leaves up to first mutations, which become roots in the forest subtrees.
The infinitely-many-sites model with no recombination is a refinement of the infinitely-many-
alleles model where mutations occur at positions never before mutant in DNA segments. The
distribution of numbers of genes in families of different types in this model is identical to that
in the infinitely-many-alleles model. Let Aθ

n(t) be the number of nonmutant lineages at time
t back (i.e. measured backwards) in a coalescent tree of a sample of n genes. Griffiths (1980)
and Tavaré (1984) studied the distribution theory of Aθ

n(t), which is now summarised. We have

P(Aθ
n(t) = j) =

n∑
k=j

ρθ
k (t)(−1)k−j (2k + θ − 1)(j + θ)(k−1)n[k]

j ! (k − j)! (n+ θ)(k)

(1.1)

for j = 0, 1, . . . , n, where ρθ
k (t) = e−k(k+θ−1)t/2. We write a(j) = a(a + 1) · · · (a + j − 1)

and b[j ] = b(b − 1) · · · (b − j + 1). Equation (1.1) also holds for n = ∞, formally setting
n[k]/(n+ θ)(k) = 1, in which case

P(Aθ∞(t) = j) =
∞∑

k=j

ρθ
k (t)(−1)k−j (2k + θ − 1)(j + θ)(k−1)

j ! (k − j)! . (1.2)

The process {Aθ
n(t), t ≥ 0} is a death process with edges lost by coalescence or mutation at

rates j (j + θ − 1)/2, j = n, n− 1, . . . , 1. If θ = 0 then A0
n(t) is the number of edges at time

t back in the coalescent tree. The distribution (1.1) satisfies the forward equations

d

dt
P(Aθ

n(t) = j) = −j (j + θ − 1)

2
P(Aθ

n(t) = j)+ (j + 1)(j + θ)

2
P(Aθ

n(t) = j+1) (1.3)

for j = 0, 1, . . . , n− 1, with

d

dt
P(Aθ

n(t) = n) = −n(n+ θ − 1)

2
P(Aθ

n(t) = n).

It is straightforward to verify that the distribution (1.1) satisfies the forward equations (1.3): by
equating coefficients of ρθ

k (t) in (1.3) it is sufficient to show that

[k(k + θ − 1)− j (j + θ − 1)] (j + θ)k−1

j ! (k − j)! = [(j + 1)(j + θ)] (j + θ + 1)(k−1)

(j + 1)! (k − j − 1)! ,

which follows from writing

k(k + θ − 1)− j (j + θ − 1) = (k − j)(j + k + θ − 1)

and simplifying.
The lth falling factorial moment of Aθ

n(t) is

E(Aθ
n(t)[l]) =

n∑
k=l

ρθ
k (t)(2k + θ − 1)

(
k − 1

l − 1

)
(θ + k)(l−1)

n[k]
(n+ θ)(k)

,

with a similar equation,

E(Aθ∞(t)[l]) =
∞∑
k=l

ρθ
k (t)(2k + θ − 1)

(
k − 1

l − 1

)
(θ + k)(l−1),
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Coalescent lineage distributions 407

for the population lines. There are Poisson and normal limit theorems in Griffiths (1984) for
the distribution of Aθ

n(t) when Aθ
n(t)→∞ as t → 0 and n→∞, and Aθ∞(t) as t → 0.

The time while the number of nonmutant ancestor lines is greater than or equal to k is
distributed as Sθ

n,k = Tn+ · · ·+Tk, 1 ≤ k ≤ n, where Tj are independent exponential random
variables with rates j (j + θ − 1)/2, j = n, . . . , 1. The distribution function of Sθ

n,k satisfies

P(Sθ
n,k < t) = P(Aθ

n(t) ≤ k − 1),

and the density satisfies

f θ
n,k(t) =

k(k + θ − 1)

2
P(Aθ

n(t) = k), t > 0.

The time to loss of the last line is of particular interest. If θ > 0 then all lines are lost by
coalescence or mutation until the last line, which is then lost by mutation at time Sθ

n,1. If θ = 0
then all lines are lost by coalescence, and S0

n,2 is the time to the most recent common ancestor
in the tree. The Laplace transform of Sθ

n,k is

E[e−φSθ
n,k ] =

n∏
j=k

[
1+ 2φ

j (j − 1+ θ)

]−1

.

If θ →∞ then all lines are lost by mutation, and the limit distributions of θTj /2 are exponential
with rates j . It follows directly that the limit density of θSθ

n,k/2 is

n!
(k − 1)! (n− k)!e

−ks(1− e−s)n−k, s > 0,

and that the limit distribution of Aθ
n(2s/θ) is the binomial distribution(

n

k

)
e−ks(1− e−s)n−k, k = 0, . . . , n.

In this paper identities for the distributions of Aθ
n(t) and Aθ∞(t) are studied. The identities

take the form of expected values of functions of Zt = eiXt , where Xt is distributed as standard
Brownian motion. The functions of Xt are periodic with period 4π , and Xt can be replaced
by the wrapped Brownian motion Xt mod 4π . Associated identities are also found for the
distributions of the time to the most recent common ancestor, the time until loss of ancestor
lines by mutation, and the age of a mutation. Example identities follow.

The distribution of the number of nonmutant ancestor lineages in the population at time
t back is, from (2.14),

P(Aθ∞(t) = j) = et/8 �(2j + θ)

�(j + θ)j ! E
[
Z
−1/2
t (ρZt )

j (1− ρZt )

(1+ ρZt )2j+θ

]
(1.4)

for j = 0, 1, . . . , where Zt = eiXt and ρ = e−θt/2.
The distribution of the time to the most recent common ancestor of the population, T ◦, is,

from (2.34),

P(T ◦ < t) = et/8 E

[
Z
−1/2
t (1− e−tZt )

(1+ e−tZt )2

]
, (1.5)
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and the distribution of the time to the most recent common ancestor of a sample, T ◦n , is,
from (2.38),

P(T ◦n < t) = et/8 E[Z1/2
t (1− Zt)(1− V Zt)

n−2], (1.6)

where V is independent of Zt with a beta(2, n− 2) distribution.
The distribution of the age of a mutation, ξp, observed to have frequency p in the current

population is, from (2.49),

P(ξp ≤ t) = et/8

2(1− p)
E

[
Z
−1/2
t

(1− Z2
t )

R(Zt )

]
, (1.7)

where
R(Zt ) = [(1+ Zt)

2 − 4(1− p)Zt ]1/2.

Hypergeometric functions play an important role in the identities. For example, the distribution
of the number of nonmutant ancestor lineages in a sample of n genes at time t back is, from (2.5),

P(Aθ
n(t) = j) = �(n+ θ)�(2j + θ)

�(j + θ)�(n+ j + θ)

(
n

j

)
e(1/8)(θ−1)2t

× E[Z(2j+θ−1)/2
t (1− Zt)F (−n+ j + 1, θ + 2j ; n+ j + θ;Zt)] (1.8)

for j = 0, 1, . . . , n. The identities are of mathematical interest as well as potentially being
formulae to use for numerical integration or simulation to compute distributions that are
usually expressed as alternating-sign series expansions such as (1.1), which are difficult to
compute. Integrals where the normal density of Xt is replaced by the wrapped normal density
of Xt mod 4π are easiest to use for numerical integration. This is discussed in Subsection 2.6.
Each of the representations (1.4)–(1.8), for example, has the form E[g(t, Xt )], for a function g,
and can be calculated using coupled simulation for different values of t by averaging values of
g(t,
√

tYj ), j = 1, . . . , r , where Y1, . . . , Yr are independent, identically N(0, 1)-distributed
random variables, and r is the number of replicates. The hypergeometric function in (1.8) can
be evaluated by simulation from the representation (2.10), instead of formally using a series
expansion.

The distributions of the number of nonmutant lineages at time t back in a coalescent tree of
m genes, Aθ

m(t), and in a coalescent tree of a subsample of n < m genes, Aθ
n(t), are shown to

satisfy

P(Aθ
n(t) = j | Aθ

m(t) = l) = n!
(n− j)!

�(n+ θ)

�(j + θ)

(
l

j

)
�(l + θ)

�(n+ l + θ)

× (m− n)[l−j ](m+ θ)(j)

m[l]
(1.9)

for j = l − (m− n), . . . , l. In a subsample of n genes from the infinite-leaf coalescent tree,

P(Aθ
n(t) = j | Aθ∞(t) = l) = n!

(n− j)!
�(n+ θ)

�(j + θ)

(
l

j

)
�(l + θ)

�(n+ l + θ)
(1.10)

for j = 0, . . . , l. Formulae (1.9) and (1.10) generalise the corresponding formulae for lineages
in a subtree of a coalescent tree studied in Saunders et al. (1984). The latter formulae can be
obtained by setting θ = 0 in (1.9) and (1.10).
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2. Complex integral formulae for lineage distributions

A series expansion of the form
∞∑

k=0

ake−ck2+dk

with c > 0 and d ∈ R can be expressed as a convolution of the discrete series {ak} and a normal
distribution. This gives a way to represent the series by an inversion formula for its Fourier
transform. A lemma phrased in terms of probability distributions and characteristic functions
that allows this is the following.

Lemma 2.1. The convolution of a discrete distribution {pk} and an N(0, σ 2) distribution has
a continuous density

∞∑
k=0

pk

1√
2πσ

e−(1/2)(y−k)2/σ 2
, for y ∈ R. (2.1)

Let φ(ζ ) be the characteristic function φ(ζ ) =∑∞
k=0 pkeikζ . An inversion formula is then

∞∑
k=0

pk

1√
2πσ

e−(1/2)(y−k)2/σ 2 = 1

2π

∫ ∞
−∞

e−iyζ φ(ζ )e−(1/2)σ 2ζ 2
dζ. (2.2)

Proof. The density of the convolution is (2.1) with characteristic function

φ(ζ )e−(1/2)σ 2ζ 2
.

Identity (2.2) then follows from the inversion theorem for characteristic functions.

Corollary 2.1. Let {ak} be an absolutely convergent complex series and let

φ(ζ ) =
∞∑

k=0

akeikζ .

Then
∞∑

k=0

ake−(t/2)k(k+β−1) = e(t/8)(β−1)2
∫ ∞
−∞

e(β−1)iζ/2φ(ζ )
1√
2πt

e−(1/2)ζ 2/t dζ

= e(t/8)(β−1)2
E[e(β−1)iXt/2φ(Xt )], (2.3)

where β ∈ R and {Xt, t ≥ 0} is a standard Brownian motion process.

Proof. It is clear that the inversion formula (2.2) continues to hold with {pk} replaced by a
general absolutely convergent series {ak}. Multiplying both sides of (2.2) by

√
2πσe(1/2)y2/σ 2

and taking y = (1 − β)/2 and σ 2 = 1/t gives (2.3). In the last line of (2.3), Xt is N(0, t)-
distributed.

Remark 2.1. A second proof of Lemma 2.1 is based on a form of the Parseval relation in
harmonic analysis. Let U and F be probability distributions with respective characteristic
functions ω and ϕ. Then ∫ ∞

−∞
ω(η)F {dη} =

∫ ∞
−∞

ϕ(ζ )U{dζ }. (2.4)
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See, for example Feller (1971, Chapter XIX). Choose U to be the N(0, 1/σ 2) distribution,
with characteristic function ω(η) = e−(1/2)η2/σ 2

, and F to be a discrete distribution with atoms
{pk} at positions {−y + k} and with characteristic function ϕ(ζ ) = e−iyζ φ(ζ ). Apart from an
overall factor of

√
2π/σ , (2.4) is identical to (2.2) after evaluating the left-hand side as a series.

Corollary 2.1 is now applied to find a representation for the lineage distribution P(Aθ
n(t) = j)

from the series (1.1).

Theorem 2.1. The distribution of the number of nonmutant ancestor lineages at time t back in
a coalescent tree of a sample of n genes has a complex integral representation

P(Aθ
n(t) = j) = �(n+ θ)�(2j + θ)

�(j + θ)�(n+ j + θ)

(
n

j

)
e(1/8)(θ−1)2t

×
∫ ∞
−∞

e(1/2)(2j+θ−1)ix(1− eix)

× F(−n+ j + 1, θ + 2j ; n+ j + θ; eix)
1√
2πt

e−(1/2)x2/t dx, (2.5)

for j = 0, 1, . . . , n if θ > 0 and j = 1, 2, . . . , n if θ = 0. Here

F(−n+ j + 1, θ + 2j ; n+ j + θ; z)

= B(2j + θ, n− j)−1
∫ 1

0
v2j+θ−1[(1− v)(1− vz)]n−j−1 dv (2.6)

is a hypergeometric function, with B denoting the beta function. If j = n then

P(Aθ
n(t) = n) = e−n(n+θ−1)t/2.

Proof. The representation holds from (2.3), with φ(ζ ) being the series obtained by replacing
ρθ

k (t) in (1.1) by eikζ . Consider the generating function zjGn(z) found by replacing ρθ
k (t)

in (1.1) by zk . After a shift of the index of summation in (1.1) by j and simplification, the
resulting series is

Gn(z) =
n−j∑
k=0

2k + 2j + θ − 1

j ! k!
�(k + 2j + θ − 1)

�(j + θ)

× �(n+ θ)

�(k + n+ j + θ)

n!
(n− k − j)! (−z)k

=
n−j∑
k=0

�(n+ θ)

�(j + θ)

(
n

j

)(
n− j

k

)
�(k + 2j + θ − 1)

�(k + n+ j + θ)

× (n− j − k)(k + 2j + θ − 1)+ k(k + n+ j + θ − 1)

n− j
(−z)k

=
n−j∑
k=0

�(n+ θ)

�(j + θ)

(
n

j

)
[Ak + Ak−1](−z)k

=
n−j∑
k=0

�(n+ θ)

�(j + θ)

�(2j + θ)

�(n+ j + θ)

(
n

j

)
[Bk − Bk−1]zk,
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where

Ak =
(

n− j − 1

k

)
�(k + 2j + θ)

�(k + n+ j + θ)

and

Bk = (−n+ j + 1)(k)(2j + θ)(k)

(n+ j + θ)(k)k! .

Referring to the series expansion for hypergeometric functions (A.1), we see from this that

Gn(z) = (1− z)

(
n

j

)
�(n+ θ)

�(j + θ)

�(2j + θ)

�(n+ j + θ)

× F(−n+ j + 1, 2j + θ; n+ j + θ; z). (2.7)

Substituting φ(ζ ) = eijζ Gn(eijζ ) into (2.3) with β = θ completes the proof.

Remark 2.2. There is a proof of Theorem 2.1 sketched in SectionA.2 which uses the Brownian
motion generator

L = 1

2

∂2

∂x2 .

This is an interesting proof, though no easier than the main proof.

Remark 2.3. A general form of (2.5) is

P(Aθ
n(t) = j) = �(n+ θ)�(2j + θ)

�(j + θ)�(n+ j + θ)

(
n

j

)
e(t/8)(β−1)2

× E[Ut
j (1− Ut)e

(β−1)iXt/2

× F(−n+ j + 1, θ + 2j ; n+ j + θ;Ut)], (2.8)

for j = 0, 1, . . . , n if θ > 0 and j = 1, 2, . . . , n if θ = 0. Here Ut = e−αt/2+iXt , α + β = θ ,
and Xt is N(0, t)-distributed. Equation (2.5) is recovered by setting α = 0 and β = θ .

This can be proved similarly to Theorem 2.1, absorbing e−(t/2)kα into the kth term of Gn(z)

and using the identity (2.3).

Remark 2.4. The relation

n∑
j=0

�(n+ θ)�(2j + θ)

�(j + θ)�(n+ j + θ)

(
n

j

)
(1− z)zj

× F(−n+ j + 1, θ + 2j ; n+ j + θ; z) = 1 (2.9)

holds pointwise for z ∈ C because the distribution of Aθ
n(t) sums to unity for t ≥ 0 and the

coefficients of the powers of Ut in (2.8) are unique when α = θ − 1 and β = 1.

Remark 2.5. An identity is

F(−n+ j + 1, 2j + θ; n+ j + θ; z) = E[(1− V z)n−j−1], (2.10)

where V has a beta(2j + θ, n− j) distribution.
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Remark 2.6. The hypergeometric function in Theorem 2.1 has the special form F(a, b; a−b+
1; z). Identities for this form are given inAbramowitz and Stegun (1972, Equations 15.3.26–28).
In particular, alternative expressions for (2.6) are found from (A.5):

F(−n+ j + 1, θ + 2j ; n+ j + θ; z)
= (1+ z)−(θ+2j)F

(
θ

2
+ j,

θ + 1

2
+ j ; n+ j + θ; 4z(1+ z)−2

)
(2.11)

= (n+ θ)(j)

(θ/2)(j)((θ + 1)/2)(j)

(1+ z)−(θ+2j)F (j)

(
θ

2
,
θ + 1

2
; n+ θ; 4z(1+ z)−2

)

= �(n+ θ + j)

�(n+ θ)

�(θ)

�(2j + θ)
22j (1+ z)−(θ+2j)F (j)

(
θ

2
,
θ + 1

2
; n+ θ; 4z(1+ z)−2

)
.

Here z = eix and F (j) denotes the j th derivative of F .

Corollary 2.2. An identity is

P(Aθ
n(t) = j) = �(n+ θ)�(2j + θ)

�(n+ j + θ)�(j + θ)

(
n

j

)
e−j (j+θ−1)t/2 P(A

2j+θ
n−j (t) = 0), (2.12)

for j = 0, 1, . . . , n if θ > 0 and j = 1, 2, . . . , n if θ = 0. By definition, Aθ
0(t) ≡ 1.

Proof. Identity (2.12) is a direct consequence of (2.5).

Corollary 2.3. An identity is

P(Aθ∞(t) = j) = �(2j + θ)

�(j + θ)j !e
−j (j+θ−1)t/2 P(A

θ+2j∞ (t) = 0), (2.13)

for j = 0, 1, . . . if θ > 0 and j = 1, 2, . . . if θ = 0.

Proof. The corollary follows directly by taking the limit as n→∞ in (2.12).

Theorem 2.2. The distribution of the number of nonmutant ancestor lineages at time t back in
the coalescent tree of the population has a complex integral representation, if θ > 0, given by

P(Aθ∞(t) = j) = et/8 �(2j + θ)

�(j + θ)j !
∫ ∞
−∞

ρj eix(2j−1)/2(1− ρeix)

(1+ ρeix)2j+θ

e−x2/2t

√
2πt

dx, (2.14)

where j = 0, 1, . . . and ρ = e−θt/2.

Proof. An identity, found by taking the limit as n→∞ in (2.7), is

G∞(z) =
∞∑

k=0

2k + 2j + θ − 1

j ! k!
�(k + 2j + θ − 1)

�(j + θ)
(−z)k

= (1− z)
�(2j + θ)

j !�(j + θ)

∞∑
k=0

(2j + θ)(k)

k! (−z)k

= (1− z)
�(2j + θ)

j !�(j + θ)
(1+ z)−(2j+θ).
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This is proved similarly to Theorem 2.1, by using the identity (2.3) formally with β = 0, i.e.

∞∑
k=0

ake−(t/2)k(k−1) = et/8
∫ ∞
−∞

eiζ/2φ(ζ )
1√
2πt

e−ζ 2/2t dζ

= et/8 E[eiXt/2φ(Xt )], (2.15)

and letting

ak = 2k + 2j + θ − 1

j ! k!
�(k + 2j + θ − 1)

�(j + θ)
(−ρ)k for k = 0, 1, . . . .

Letting φ(ζ ) = eijζ G∞(ρeijζ ) then completes the proof.

Remark 2.7. The distribution of Aθ∞(t) also has the representation

P(Aθ∞(t) = j) = e(1/8)(θ−1)2t �(2j + θ)

�(j + θ)j !
∫ ∞
−∞

e(1/2)ix(2j+θ−1)(1− eix)

(1+ eix)2j+θ

e−x2/2t

√
2πt

dx. (2.16)

The integral exists as an inversion formula for a Fourier transform, considering (1+ eix)−(2j+θ)

to be a transform of a signed measure with atoms of (−1)k(θ+2j)(k)/k! at points k = 0, 1, . . . ,

and the normal transform

e−x2/2t = 1√
2πt−1

∫ ∞
−∞

eiyxe−ty2/2 dy.

We prefer the representation (2.14) as it is a well-behaved integral whose integrand is bounded
in absolute value and does not have singularities.

Formula (2.14) also holds in the sense of a Fourier inverse when θ = 0. That is,

P(A0∞(t) = j) = et/8 (2j − 1)!
j ! (j − 1)!

∫ ∞
−∞

e(1/2)ix(2j−1)(1− eix)

(1+ eix)2j

e−x2/2t

√
2πt

dx,

where j = 1, . . . .

Remark 2.8. Let z ∈ C, |z| < 1, and θ ∈ R, θ ≥ 0. An identity is

∞∑
j=0

�(2j + θ)

�(j + θ)j !z
j (1− z)(1+ z)−(2j+θ) = 1.

This identity holds because of (2.15) and because the distribution of Aθ∞(t) sums to unity. It
can also be shown by letting n→∞ in (2.9). A direct algebraic proof is given in Lemma A.4.
An important identity proved in Lemma A.3 is

(1− z)(1+ z)−α = 1+
∞∑

k=1

(−1)k(2k + α − 1)
α(k−1)

k! zk. (2.17)

Another proof of Theorem 2.2 is to show (1.2) by termwise integration of the integrand in (2.14)
based on the expansion (2.17).
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Remark 2.9. The analogue of (2.14) for Aθ
n(t) is, from (2.8) with β = 0 and α = θ and (2.11),

P(Aθ
n(t) = j) = �(n+ θ)�(2j + θ)

�(j + θ)�(n+ j + θ)

(
n

j

)

× et/8 E

[
e(1/2)iXt Z

j
t (1− Zt)(1+ Zt)

−(θ+2j)

× F

(
θ

2
+ j,

θ + 1

2
+ j ; n+ j + θ; 4Zt(1+ Zt)

−2
)]

(2.18)

for j = 0, 1, . . . , n, where Zt = ρeiXt , ρ = e−θt/2, and Xt is N(0, t)-distributed.
Theorem 2.2 can be proved directly by taking the limit as n→∞ in (2.18), noting that then

the hypergeometric function tends to 1 and the first factor tends to �(2j + θ)/�(j + θ)j !.
Corollary 2.4. We have

P(Aθ∞(t) = j) = e−(1/2)j (j+θ−1)t+(t/8) �(2j + θ)

�(j + θ)j !
∫ ∞
−∞

e−(1/2)ix(1− βeix)

(1+ βeix)2j+θ

e−x2/2t

√
2πt

dx,

(2.19)
where β = e−(1/2)(2j+θ)t . This holds for j = 0, 1, . . . if θ > 0 and j = 1, 2, . . . if θ = 0.

Proof. The proof follows from (2.13) and (2.14).

2.1. Identities between lineage distributions of different sample sizes, and family sizes
subtended by ancestor lineages

An identity between the distributions of Aθ
n(t) and Aθ

m(t), n < m, follows from the integral
representation for the distribution, by algebraic proof. There is also a deeper probabilistic
interpretation relating the two distributions. It is of interest to understand both approaches, so
we derive our main identity in two ways.

Theorem 2.3. For j = 0, 1, . . . , n and n ≤ m,

P(Aθ
n(t) = j) = n!

(n− j)!
�(n+ θ)

�(j + θ)

m−n+j∑
l=j

(
l

j

)
�(l + θ)

�(n+ l + θ)

× (m− n)[l−j ](m+ θ)(j)

m[l]
P(Aθ

m(t) = l). (2.20)

The limit form of (2.20) as m→∞ is

P(Aθ
n(t) = j) = n!

(n− j)!
�(n+ θ)

�(j + θ)

∞∑
l=j

(
l

j

)
�(l + θ)

�(n+ l + θ)
P(Aθ∞(t) = l). (2.21)

Proof. Make the following substitutions in (A.4): a ← θ/2 + j , b ← (θ + 1)/2 + j ,
c← m+j+θ , and m← m−n (in the sense that, for example, c−m← m+j+θ−(m−n) =
n+ j + θ). Then

a(k)b(k)

c(k)(c −m)(k)

:= (θ/2+ j)(k)((θ + 1)/2+ j)(k)

(m+ j + θ)(k)(n+ j + θ)(k)

= 2−2k �(2j + 2k + θ)

�(θ + 2j)

�(m+ j + θ)

�(m+ j + θ + k)

�(n+ j + θ)

�(n+ j + θ + k)
,
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by using the duplication formula (A.8). Identity (A.4) becomes

F

(
θ

2
+ j,

θ + 1

2
+ j ; θ + n+ j ; z

)

=
m−n∑
k=0

(
m− n

k

)
�(2j + 2k + θ)

�(θ + 2j)

�(m+ j + θ)

�(m+ j + θ + k)

�(n+ j + θ)

�(n+ j + θ + k)

×
(

z

4

)k

F

(
θ

2
,
θ + 1

2
; θ + n+ k; z

)
. (2.22)

Let

Qθ
m,j =

�(m+ θ)�(2j + θ)

�(j + θ)�(m+ j + θ)

(
m

j

)
F

(
θ

2
+ j,

θ + 1

2
+ j ; θ +m+ j ; z

)
.

Then, by (2.22), we have

Qθ
n,j =

(
n

j

)
�(n+ θ)

�(j + θ)

m−n∑
k=0

(m− n)[k](m+ θ)(j)

m[j+k]
(j + k)!

k!
�(k + j + θ)

�(n+ j + k + θ)

(
z

4

)k

Qθ
m,j+k.

(2.23)
The limit form of this identity as m→∞ is

Qθ
n,j =

(
n

j

)
�(n+ θ)

�(j + θ)

∞∑
k=0

(j + k)!
k!

�(j + k + θ)

�(j + k + n+ θ)

�(2j + 2k + θ)

�(j + k + θ)j !
(

z

4

)k

.

A representation following from (2.11) and (2.5) is

P(Aθ
n(t) = j) = E[(1− Ut)U

j+(θ−1)/2
t (1+ Ut)

−(θ+2j)Qθ
n,j (Vt )],

where Ut is N(0, t)-distributed and Vt = 4Ut(1 + Ut)
−2. Substituting (2.23) into this and

shifting the summation index by j shows that (2.20) holds. The limit form (2.21) of (2.20)
clearly holds.

Remark 2.10. Equations (2.20) and (2.21) have probabilistic interpretations. If a sample
of n genes is taken from the leaves of a coalescent tree of m ≥ n genes, then the distributions
of nonmutant lines in the two trees at time t back are related by the equation

P(Aθ
n(t) = j) =

m−n+j∑
l=j

P(Aθ
n(t) = j | Aθ

m(t) = l) P(Aθ
m(t) = l).

The interpretation in (2.20) is that, for j = l − (m− n), . . . , l,

P(Aθ
n(t) = j | Aθ

m(t) = l) = n!
(n− j)!

�(n+ θ)

�(j + θ)

(
l

j

)
�(l + θ)

�(n+ l + θ)

× (m− n)[l−j ](m+ θ)(j)

m[l]
, (2.24)

and in (2.21) that, for j = 0, . . . , l,

P(Aθ
n(t) = j | Aθ∞(t) = l) = n!

(n− j)!
�(n+ θ)

�(j + θ)

(
l

j

)
�(l + θ)

�(n+ l + θ)
. (2.25)
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The distribution of the number of lineages in a subtree of size n of a coalescent tree of m genes
at time t back was studied in Saunders et al. (1984) and corresponds to the distribution (2.24)
when θ = 0.

We now describe the sampling of n genes from the leaves of a coalescent tree. This provides
detail about the family size distribution subtended by ancestral lines in the sample, as well as
independent proofs of (2.24) and (2.25).

Recall that Aθ∞(t) is the number of nonmutant lines at time t back in a coalescent tree
with an infinite number of leaves. Given that Aθ∞(t) = l, the relative family size distribution
of the nonmutant families subtended by the l edges (V1, . . . , Vl) is Dirichlet with parameters
1, 1, . . . , 1, θ , with density

�(θ + l)

�(θ)

(
1−

l∑
i=1

vi

)θ−1

, 0 < v1, . . . , vl < 1,

l∑
i=1

vi < 1. (2.26)

The total relative frequency of mutant families is 1 −∑l
i=1 Vi . The relative sizes of new

mutant families are distributed as are the atoms in a Poisson–Dirichlet point process PD(θ),
independent of V1, . . . , Vl (Griffiths (1980), Watterson (1984), Donnelly and Tavaré (1987)).
Then (given that Aθ∞(t) = l) a sample of n genes from the infinite-leaf coalescent tree has
its own n-coalescent tree in which the number of nonmutant lines at time t back is Aθ

n(t),
which is the number of family types from 1, 2, . . . , l represented in a multinomial sample from
V1, V2, . . . , Vl . Let the labelled configuration of the number of genes in j nonmutant families
in a sample of size n be Q = (Q1, . . . , Qj ). Thus,

P(Q = q, Aθ
n(t) = j | Aθ∞(t) = l)

= n!
q1! · · · qj ! (n− |q|)!

(
l

j

)
E

[
V

q1
1 · · ·V

qj

j

(
1−

l∑
r=1

Vr

)n−|q|]

= n!
(n− |q|)!

(
l

j

)
θ(n−|q|)

(θ + l)(n)

. (2.27)

Summing over the partition q of n into j nonzero parts with j ≤ |q| ≤ n, we have

P(|Q| = |q|, Aθ
n(t) = j | Aθ∞(t) = l) =

(|q| − 1

j − 1

)
n!

(n− |q|)!
(

l

j

)
θ(n−|q|)

(θ + l)(n)

= �(j + θ)

(j − 1)!�(θ)

(
n− j

|q| − j

)
B(|q|, θ + n− |q|)

× n!
(n− j)!

�(n+ θ)

�(j + θ)

(
l

j

)
�(l + θ)

�(n+ l + θ)
. (2.28)

Interpreting (2.28) as

P(|Q| = |q|, Aθ
n(t) = j | Aθ∞(t) = l)

= P(|Q| = |q| | Aθ
n(t) = j) P(Aθ

n(t) = j | Aθ∞(t) = l)

immediately gives

P(|Q| = |q| | Aθ
n(t) = j) = �(j + θ)

(j − 1)!�(θ)

(
n− j

|q| − j

)
B(|q|, θ + n− |q|),
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and (2.25) holds. It follows from (2.27), (2.28), and (2.25) that

(a) the sample configuration Q conditional on Aθ
n(t) = j is independent of the number of

population lines Aθ∞(t), and

(b) the sample configuration Q conditional on Aθ
n(t) = j and |Q| = |q| is uniformly

distributed on the
(|q|−1

j−1

)
labelled partitions with q1 + · · · + qj = |q|.

The analogue of (2.26) for a sample of size n is that, for j ≤ |q| ≤ n,

P(Q = q | Aθ
n(t) = j) = �(j + θ)

(j − 1)!�(θ)

(
n− j

|q| − j

)
B(|q|, θ + n− |q|)

(|q| − 1

j − 1

)−1

= (n− j)!
(n− |q|)!

θ(n−|q|)
(θ + j)(n−|q|)

. (2.29)

Distribution (2.29) was derived in Watterson (1984). The distribution of the configuration of
sizes of mutant families conditional on |Q| = |q| is distributed according to Ewens’ sampling
formula in a sample of n− |q| genes.

The distribution of Q when θ = 0 (and, hence, |Q| = n) is the labelled ancestral partition
distribution of Kingman (1982), where the n sample genes are partitioned into j classes with a
uniform probability

P(Q = q | Aθ
n(t) = j) =

(
n− 1

j − 1

)−1

, 1 ≤ j ≤ n.

Let Q be the family size distribution in a sample of m genes of l nonmutant lines at time t back.
To have Aθ

n(t) = j in a subsample of n genes from the original m we require from the n genes a
configuration a = (a1, . . . , aj ) within families i1, . . . , ij of sizes qi1 , . . . , qij . This probability
is the same for all

(
l
j

)
choices of families. Thus,

P(Aθ
n(t) = j | Aθ

m(t) = l) (2.30)

=
(

l

j

) ∑
a>0, q>0

(
q1
a1

) · · · (qj

aj

)(
m−|q|
n−|a|

)
(
m
n

) P(Q = q | Aθ
m(t) = l)

=
(
l
j

)
(
m
n

) (m− l)!
(θ + l)(m−l)

θ(n−|a|)
(n− |a|)! (2.31)

×
∑

a>0, q>0

(
q1

a1

)
· · ·

(
qj

aj

)
(θ + n− |a|)(m−|q|−(n−|a|))

(m− |q| − (n− |a|))! , (2.32)

where summation is over nonzero entries of a and q, with |a| ≤ n and |q| ≤ m. For a fixed a,
the sum of (2.32) over q > 0 is recognised as the coefficient of sm in the generating function

[ j∏
k=1

sak (1− s)−(ak+1)

][ l∏
k=j+1

s(1− s)−1
]
sn−|a|(1− s)−(θ+n−|a|) = sn+l−j (1− s)−(θ+l+n).

That is, the sum is equal to
(θ + l + n)(m−n−(l−j))

(m− n− (l − j))! . (2.33)

https://doi.org/10.1239/aap/1151337077 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1151337077


418 R. C. GRIFFITHS

Also, ∑
a>0

θ(n−|a|)
(n− |a|)! =

(θ + j)(n−j)

(n− j)! ,

which is the coefficient of sn in sj (1− s)−j (1− s)−θ . To evaluate (2.30), collecting terms
from (2.31) and (2.33) yields

P(Aθ
n(t) = j | Aθ

m(t) = l)

=
(
l
j

)
(
m
n

) (m− l)!
(θ + l)(m−l)

(θ + j)(n−j)

(n− j)!
(θ + l + n)(m−n−(l−j))

(m− n− (l − j))!
= n!

(n− j)!
�(n+ θ)

�(j + θ)

(
l

j

)
�(l + θ)

�(n+ l + θ)

(m− n)[l−j ](m+ θ)(j)

m[l]
,

which is identical to (2.24).

2.2. Time to the most recent common ancestor

Corollary 2.5. Let T ◦ be the time to the most recent common ancestor of the population. The
distribution function of T ◦ is

P(T ◦ < t) = et/8
∫ ∞
−∞

e−(1/2)ix(1− βeix)

(1+ βeix)2

e−x2/2t

√
2πt

dx, (2.34)

where β = e−t .
The density of T ◦ is

3e−(7/8)t

∫ ∞
−∞

e−(1/2)ix(1− βeix)

(1+ βeix)4

e−x2/2t

√
2πt

dx, (2.35)

where β = e−2t .

Proof. The proof follows from P(T ◦ < t) = P(A0∞(t) = 1), the fact that the density of T ◦
is P(A0∞(t) = 2), and (2.19) with θ = 0.

Corollary 2.6. Let T θ be the time when the last nonmutant ancestral line is lost from the
population. The distribution function of T θ is

P(T θ < t) = et/8
∫ ∞
−∞

e−(1/2)ix(1− βeix)

(1+ βeix)θ

e−x2/2t

√
2πt

dx, (2.36)

where β = e−θt/2.
The density of T θ is

1
2θ(θ + 1)e−(θ/2)t+t/8

∫ ∞
−∞

e−(1/2)ix(1− βeix)

(1+ βeix)2+θ

e−x2/2t

√
2πt

dx, (2.37)

where β = e−(1/2)(θ+2)t .

Proof. The proof follows from P(T θ < t) = P(Aθ∞(t) = 0) and the fact that the density
of T θ is (θ/2) P(Aθ∞(t) = 1).
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Remark 2.11. Formulae analogous to (2.34)–(2.37) for a sample are easily derived from (2.5)
and (2.10). If T ◦n and T θ

n are sample analogues then

P(T ◦n < t) = et/8
∫ ∞
−∞

e(1/2)ix(1− eix)

× n(n− 1)

∫ 1

0
v(1− v)n−2(1− veix)n−2 dv

e−x2/2t

√
2πt

dx (2.38)

and

P(T θ
n < t) = e(1/8)(θ−1)2t

∫ ∞
−∞

e(θ−1)ix/2(1− eix)

× �(θ)�(n)

�(n+ θ)

∫ 1

0
vθ−1(1− v)n−1(1− veix)n−1 dv

e−x2/2t

√
2πt

dx.

(2.39)

2.3. The probability generating function of Aθ∞(t)

Corollary 2.7. The probability generating function of Aθ∞(t),

GAθ∞(t)(s) = E[sAθ∞(t)],
is given by

GAθ∞(t)(s) = 2θ−1et/8
∫ ∞
−∞

e−(1/2)ix(1− ρeix)K−1[1+ ρeix +K]−(θ−1) e−x2/2t

√
2πt

dx (2.40)

for θ ≥ 0, where ρ = e−θt/2 and K = [(1+ ρeix)2 − 4ρseix]1/2.

Proof. The proof follows from integral representation (2.14) of the distribution of Aθ∞(t)

and the identity (A.12). Substituting

w = sρeix

(1+ ρeix)2

into the identity and simplifying gives (2.40).

Corollary 2.8. The probability generating function of A0∞ is given by

GA0∞(t)(s) = et/8
∫ ∞
−∞

e−(1/2)ix 1− e2ix

K0

e−x2/2t

√
2πt

dx, (2.41)

where K0 = [(1+ eix)2 − 4seix]1/2.

Proof. Substituting θ = 0 into (2.40), simplifying, and noting that

∫ ∞
−∞

e−(1/2)ix(1− ρeix)
e−x2/2t

√
2πt

dx = 0

gives (2.41).
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Remark 2.12. The generating function for the Jacobi polynomials P
(α,β)
n (z) is

F (α,β)(z, r) =
∞∑

n=0

rnP (α,β)
n (z)

= 2α+βR−1(1− r + R)−α(1+ r + R)−β, (2.42)

where R = [1− 2zr + r2]1/2. The first two polynomials are

P
(α,β)
0 (z) = 1 and P

(α,β)
1 (z) = 1

2 [2(α + 1)+ (α + β + 2)(z− 1)].
The Jacobi polynomials are orthogonal on the distribution of Z = 2X − 1, where X has a
beta(α + 1, β + 1) distribution. The Legendre polynomials {Pn(z)} are a special case with
α = β = 0 and generating function R−1, and are orthogonal on the uniform distribution on
[−1, 1].

The generating function GAθ∞(t)(s), (2.40), is related to the Jacobi polynomial generating
function (2.42). If we make the substitutions α← 0, β ← θ − 1, r ← ρeix , and z← 2s − 1,
then

R = [1− 2(2s − 1)ρeix + ρ2e2ix]1/2 = [(1+ ρeix)2 − 4ρseix]1/2

and we see that

GAθ∞(t)(s) = et/8
∫ ∞
−∞

e−(1/2)ix(1− ρeix)F (0,θ−1)(2s − 1, ρeix)
e−x2/2t

√
2πt

dx

= et/8
∫ ∞
−∞

e−(1/2)ix(1− ρeix)2θ−1R−1(1+ ρeix + R)−(θ−1) e−x2/2t

√
2πt

dx

=
∞∑

n=0

[e−n(n+θ−1)t/2 − e−(n+1)(n+θ)t/2]P (0,θ−1)
n (2s − 1)

= 1+
∞∑

n=1

e−n(n+θ−1)t/2[P (0,θ−1)
n (2s − 1)− P

(0,θ−1)
n−1 (2s − 1)]. (2.43)

The first two terms in (2.43) evaluate to

1− (θ + 1)e−θt/2 + (θ + 1)e−θt/2s,

using

P
(0,θ−1)
1 (2s − 1) = −θ + (θ + 1)s.

If θ = 0 then

GA0∞(t)(s) =
et/8

2

∫ ∞
−∞

e−(1/2)ix 1− e2ix

R0

e−x2/2t

√
2πt

dx

= s + 1

2

∞∑
n=2

e−n(n−1)t/2[Pn(2s − 1)− Pn−2(2s − 1)],

where R0 = [(1+ eix)2 − 4seix]1/2.
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From the identity (A.7) with α = 0, we have

n(P (0,θ−1)
n (2x−1)−P

(0,θ−1)
n−1 (2x−1)) = −2

(
n+ θ − 1

2

)
(1−x)P

(1,θ−1)
n−1 (2x−1), (2.44)

allowing terms in the expansion (2.43) to be expressed differently.
An alternative form for the probability generating function of Aθ∞(t), based on (2.16), is

GAθ∞(t)(s) = 2θ−1e(1/8)(θ−1)2t

∫ ∞
−∞

e(1/2)(θ−1)ix(1− eix)K−1[1+ eix +K]−(θ−1) e−x2/2t

√
2πt

dx,

(2.45)
where now K = [(1+ eix)2 − 4seix]1/2. The generating function is important in deriving both
the distribution of the time to loss or fixation of an allele and the distribution of the age of a
mutation.

2.4. The time to loss or fixation of an allele

In a diffusion process model for the frequency of an allele subject to loss by nonreversible
mutation at rate θ/2, the generator is

Lθ = 1

2
x(1− x)

∂2

∂x2 −
1

2
θx

∂

∂x
.

Let Tθ be the time to loss of an allele of initial frequency 1− p. Then

P(Tθ ≤ t) =
∞∑

j=0

P(Aθ∞(t) = j)pj ,

with a corresponding density of

fTθ (t) =
1

2

∞∑
j=1

j (j + θ − 1)pj−1(1− p) P(Aθ∞(t) = j).

The distribution is derived by arguing that either there are no nonmutant lines from the initial
population, or the roots of the nonmutant lines in the initial population do not belong to the allele
under consideration (Griffiths and Li (1983), Tavaré (1984), Ethier and Griffiths (1993)). The
probability generating function of Aθ∞(t) immediately gives two representations, a complex
integral from (2.45) and a Jacobi polynomial expansion from (2.43), for the distribution function
of Tθ .

Theorem 2.4. The distribution function of Tθ is

P(Tθ ≤ t) = GAθ∞(t)(p)

= 2θ−1e(1/8)(θ−1)2t

∫ ∞
−∞

e(1/2)(θ−1)ix(1− eix)

×K−1(1+ eix +K)−(θ−1) e−x2/2t

√
2πt

dx

= 1+
∞∑

n=1

e−n(n+θ−1)t/2[P (0,θ−1)
n (2p − 1)− P

(0,θ−1)
n−1 (2p − 1)],

where K = [(1+ eix)2 − 4peix]1/2.
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Remark 2.13. The usual way to find u(x, t) = P(Tθ ≤ t) from an initial frequency x is to solve
the differential equation

∂

∂t
u = Lθu, (2.46)

with u(0, t) = 1. The solution to (2.46) is easily verified by using the identity for forward
equations (1.3) (with n = ∞) on the left-hand side. The Jacobi polynomial solution can be
derived by using an eigenvalue–eigenvector approach using a differential equation property of
the Jacobi polynomials.

With
yn = P (0,θ−1)

n (2x − 1)− P
(0,θ−1)
n−1 (2x − 1),

we have
Lθ yn = − 1

2n(n+ θ − 1)yn. (2.47)

To verify (2.47), first consider the identity (2.44); then verify that the right-hand side of (2.44)
satisfies (2.47) by obtaining an identical differential equation for (1− x)P

(1,θ−1)
n−1 (2x − 1)

from (A.6).
Kimura derived eigenfunction expansions for transition distributions and associated absorp-

tion time distributions. A review of Kimura’s research can be found in Watterson (1996).
Kimura’s solution of (2.47) is discussed in Tavaré (1984).

If θ = 0 then there are two allele types subject to random drift. The probability that the allele
type of initial frequency 1− p is lost by time t is the probability that the allele of frequency p

is fixed by time t , namely GA0∞(t)(p).

2.5. The age of a mutation

The age, ξx , of a mutation observed to be at a current frequency x in a neutral model is
known to have a distribution

P(ξx ≤ t) =
∞∑

j=1

(1− x)j−1 P(A0∞(t) = j), (2.48)

with a corresponding density of

fξx (t) =
1

2
x

∞∑
j=2

j (j − 1)(1− x)j−2 P(A0∞(t) = j)

(Griffiths and Tavaré (1998)).
An integral representation for the distribution of ξx follows directly from (2.48) and Theo-

rem 2.4 with the substitutions 0← θ and 1− x ← p.

Corollary 2.9. We have

P(ξx ≤ t) = et/8

2(1− x)

∫ ∞
−∞

e−(1/2)iy 1− e2iy

R(x)

e−(1/2t)y2

√
2πt

dy (2.49)

= 1+ 1

2(1− x)

∞∑
n=2

e−n(n−1)t/2[Pn(1− 2x)− Pn−2(1− 2x)],

where R(x) = [(1+ eiy)2 − 4(1− x)eiy]1/2.
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The density of ξx is

fξx (t; x) = x

2
G′′

A0∞(t)
(1− x)

= 6et/8x

∫ ∞
−∞

e(3/2)iy 1− e2iy

R(x)5

e−(1/2t)y2

√
2πt

dy.

Remark 2.14. The distribution of the age of a mutation observed to be of frequency b in a
sample of n genes is, from Griffiths (2003, Equation (25)),

(n− 2)!
(b − 2)! (n− b − 1)!

∫ 1

0
xb−1(1− x)n−b P(ξx ≤ t) dx.

Denoting the age by ξn
b , we have, directly from (2.49), that

P(ξn
b ≤ t) = (n− 2)!

(b − 2)! (n− b − 1)!
et/8

2

∫ ∞
−∞

e−(1/2)iy(1− e2iy)

×
∫ 1

0
xb−1(1− x)n−b−1R(x)−1 dx

e−(1/2t)y2

√
2πt

dy.

2.6. Wrapped normal integral representations

Complex integral representations of real functions in this paper have the form E[G(eiXt )],
where Xt is N(0, t)-distributed and G(ζ) = ζ−1/2H(ζ), where H(ζ) has a Laurent series
expansion for |ζ | ≤ 1. The function G(e2ix) is thus periodic with period 2π . Alternative
integral representations are found using a wrapped normal distribution of Xt/2 mod 2π . The
identities in (2.50) and (2.51) follow from the Poisson summation formula in complex analysis.
The alternative forms are suitable for numerical evaluation: (2.50) for small values of v and
(2.51) for larger values of v. The accuracy of truncated series can be found by making an integral
comparison with the series tail and then applying the upper inequality from Equation (7.1.13)
of Abramowitz and Stegun (1972):

1

x +√x2 + 2
< ex2

∫ ∞
x

e−t2
dt ≤ 1

x +√
x2 + (4/π)

, x ≥ 0.

Lemma 2.2. Let X be N(0, v)-distributed and let Y = X mod 2π . Then Y has a density, for
0 < y < 2π , given by

q(y; v) = 1√
2πv

∞∑
k=−∞

e−(1/2)(y+2πk)2/v (2.50)

= 1

2π
+ 1

π

∞∑
k=1

cos(ky)e−k2v/2, 0 < y ≤ 2π. (2.51)

Corollary 2.10. Let Xt be N(0, t)-distributed. For a function, G(ζ), with domain {z ∈
C : |ζ | ≤ 1} such that G(e2ix) is periodic with period 2π , we have

E[G(eiXt )] =
∫ 2π

0
G(e2iy)q(y; t/4) dy. (2.52)
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Remark 2.15. If

G(z) = z−1/2(1− z)

∞∑
l=0

alz
l,

then ∫ 2π

0
G(e2iy)q(y; t/4) dy =

∞∑
j=0

(aj+1 − aj )e
−(2j+1)2t/8,

and q(y; t/4) can be replaced by

q̃(y; t/4) = 1

π

∞∑
j=1

cos((2j + 1)y)e−(2j+1)2t/8

in (2.52), since the integral of terms of the form

cos(2jy)e−iy(1− e2iy)e2ily

vanishes for j, l = 0, 1, . . . .

Appendix A.

A.1. Hypergeometric function properties

Reference numbers AB are to equations in Abramowitz and Stegun (1972).

Definition A.1. (AB 15.1.1)

F(a, b; c; z) =
∞∑

k=0

a(k)b(k)

c(k)

zk

k! . (A.1)

The series terminates at k = m if a = −m.

An integral representation for c > b > 0 is (AB 15.3.1)

F(a, b; c; z) = �(c)

�(b)�(c − b)

∫ 1

0
tb−1(1− t)c−b−1(1− tz)−a dt.

The hypergeometric function satisfies the differential formula (AB 15.2.2)

dk

dzk
F (a, b; c; z) = a(k)b(k)

c(k)

F (a + k, b + k; c + k; z) (A.2)

and the differential equation (AB 15.5.1)

z(1− z)F ′′ + [c − (a + b + 1)z]F ′ − abF = 0.

Lemma A.1. (AB 15.2.4) The hypergeometric function satisfies

dn

dzn
[zc−1F(a, b; c; z)] = (c − n)(n)z

c−n−1F(a, b; c − n; z), (A.3)

which is equivalent to

F(a, b; c − n; z) =
n∑

k=0

(
n

k

)
a(k)b(k)

c(k)(c − n)(k)

zkF (a + k, b + k; c − n+ k; z). (A.4)
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Proof. Equation (A.4) follows directly by expanding the derivative of the product of terms
on the left-hand side of (A.3), applying the identity (A.2), and then simplifying the coefficient

(c − 1)[n−k]
(c − n)(n)

a(k)b(k)

c(k)

= a(k)b(k)

c(k)(c − n)(k)

.

Remark A.1. Hypergeometric function identities for F(a, b; a − b + 1; z) are given in
AB 15.3.26–28. The identity AB 15.3.26 is

F(a, b; a − b + 1; z) = (1+ z)−aF ( 1
2a, 1

2a + 1
2 ; a − b + 1; 4z(1+ z)−2).

By applying this identity we obtain

F(−n+ j + 1, θ + 2j ; n+ j + θ; z)
= F(θ + 2j,−n+ j + 1; n+ j + θ; z)
= (1+ z)−(θ+2j)F

(
θ

2
+ j,

θ + 1

2
+ j ; n+ j + θ; 4z(1+ z)−2

)
. (A.5)

A limit that is seen directly from (A.5) is

lim
n→∞F(−n+ j + 1, θ + 2j ; n+ j + θ; z) = (1+ z)−(θ+j),

because all the terms in the series expansion of the hypergeometric function on the right-hand
side of (A.5) tend to 0, apart from the constant term, 1.

(AB 22.6.1). Let y = P
(α,β)
n . The Jacobi polynomials satisfy the differential equation

(1− x2)y′′ + (α − β − (α + β + 2)x)y′ + n(n+ α + β + 1)y = 0. (A.6)

(AB 22.7.15). Furthermore,(
n+ α

2
+ β

2
+ 1

)
(1− x)P (α+1,β)

n (x) = (n+ α + 1)P (α,β)
n (x)− (n+ 1)P

(α,β)
n+1 (x). (A.7)

(AB 6.1.18). The gamma function satisfies the following duplication formula:

�(2z) = (2π)−1/222z−1/2�(z)�(z+ 1
2 ).

Lemma A.2. We have

�(2j + θ)

�(θ)
= 22j �(j + θ/2)

�(θ/2)

�(j + (θ + 1)/2)

�((θ + 1)/2)
. (A.8)

Lemma A.3. Let z ∈ C with |z| < 1 and α ∈ R with α > 0. An identity is

(1− z)(1+ z)−α = 1+
∞∑

k=1

(−1)k(2k + α − 1)
α(k−1)

k! zk. (A.9)

Proof. For k ≥ 1, the coefficient of zk in (A.9) is

(−1)k
�(α + k)

�(α)k! − (−1)k−1 �(α + k − 1)

�(α)(k − 1)! = (−1)k
�(α + k)

�(α)k! (α + k − 1+ k)

= (−1)k(2k + α − 1)
α(k−1)

k! .
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Lemma A.4. Let z ∈ C with |z| < 1 and θ ∈ R with θ ≥ 0. An identity is

∞∑
j=0

�(2j + θ)

�(j + θ)j !z
j (1− z)(1+ z)−(2j+θ) = 1. (A.10)

Proof. The constant term in the power series expansion of (A.10) is unity, evaluated from
the term in the series on the left-hand side with j = 0, setting z = 0.

For k ≥ 1, the coefficient of zk in (A.10) is

k∑
j=0

�(2j + θ)

�(j + θ)j !
{
(−1)k−j �(2j + θ + k − j)

�(2j + θ)(k − j)! − (−1)k−j−1 �(2j + θ + k − j − 1)

�(2j + θ)(k − j − 1)!
}

=
k∑

j=0

�(j + θ + k − 1)

�(j + θ)(k − j)! j ! (−1)k−j {(2j + θ + k − j − 1)+ (k − j)}

= (2k + θ − 1)

k!
k∑

j=0

(
k

j

)
(−1)k−j (j + θ)(k−1) (A.11)

= 0.

The sum (A.11) equals 0 because (j + θ)(k−1) is a polynomial of degree k − 1 in j which can
be expressed as a linear sum in the basis elements (j[l], 0 ≤ l ≤ k − 1). For any of the basis
elements we have

k∑
j=0

(
k

j

)
(−1)k−j j[l] = k[l](1− 1)k−l = 0.

Lemma A.5. Let w ∈ C with |w| < 1
4 and θ ∈ R with θ ≥ 0. An identity is

∞∑
j=0

�(2j + θ)

�(j + θ)j !w
j = 2θ−1(

√
1− 4w)−1(1+√1− 4w)−(θ−1). (A.12)

Proof. Substitute

w = z

(1+ z)2 (A.13)

into (A.10). The left-hand side of (A.12) is then equal to

(1+ z(w))θ

1− z(w)
, (A.14)

where

z(w) = 1−√1− 4w

1+√1− 4w

is the solution to (A.13) such that z(0) = 0. Equation (A.14) simplifies to the right-hand side
of (A.12).

Lemma A.6. Let w ∈ C with |w| < 1
4 and θ ∈ R with θ ≥ 0. An identity is

∞∑
j=0

�(2j + θ)

�(j + θ)j !w
j = F

(
θ

2
,
θ + 1

2
; θ; 4w

)
. (A.15)
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Proof. By direct calculation,

∞∑
j=0

�(2j + θ)

�(j + θ)j !w
j = �(θ)

�(θ/2)2

∞∑
j=0

22jwj �(j + θ/2)�(θ/2)

�(j + θ)

�(j + (θ + 1)/2)

�((θ + 1)/2)j !

=
∞∑

j=0

(θ/2)(j)((θ + 1)/2)(j)

(θ)(j)

(4w)j

j ! ,

as required.

Remark A.2. There are alternative hypergeometric function expressions for (A.15); see
AB 15.3.15 to AB 15.23.18. The expressions follow from Kummer’s quadratic transformation
formulae for F(a, b; 2b; z). Equations (A.15) and (A.12) are seen to be identical from the
identity AB 15.3.17,

F(a, b; 2b; z) =
(

1

2
+ 1

2

√
1− z

)−2a

F

[
a, a − b + 1

2
; b + 1

2
;
(

1−√1− z

1+√1− z

)2]
,

with a = (θ + 1)/2, b = θ/2, and z = 4w. Since a − b + 1
2 = 1, a = b + 1

2 , and
F(a, 1; a; v) = (1− v)−1, (A.12) follows.

A.2. Alternative proof of Theorem 2.1

The generator corresponding to standard Brownian motion is

L = 1

2

∂2

∂x2 .

Thus, for suitable functions Q(Xt), whose second derivatives exist, we have

∂

∂t
E[Q(Xt)] = E[LQ(Xt)]. (A.16)

Write (2.5) as
P(Aθ

n(t) = j) = e(1/8)(θ−1)2t E[Hθ
n,j (e

iXt )], (A.17)

where Xt is N(0, t)-distributed. In (2.5), P(Aθ
n(0) = j) = δn,j , the Kronecker delta, because,

as t → 0,

E[Hθ
n,j (e

iXt )] = lim
z→1

(1− z)F (−n+ j + 1, θ + 2j ; n+ j + θ; z) = δn,j , (A.18)

since the hypergeometric function in (A.18) is bounded as z→ 1 if j < n and equal to (1−z)−1

if j = n. Applying (A.16) yields

∂

∂t
e(1/8)(θ−1)2t E[Hθ

n,j (e
iXt )] = e(1/8)(θ−1)2t E[Gθ

n,j (e
iXt )],

where
Gθ

n,j (z) = 1
8 (θ − 1)2Hθ

n,j (z)− 1
2zHθ ′

n,j (z)− 1
2z2Hθ ′′

n,j (z). (A.19)

It is enough to show the equivalence of (A.19) and

Gθ
n,j (z) = −

j (j + θ − 1)

2
Hθ

n,j (z)+
(j + 1)(j + θ)

2
Hθ

n,j+1(z),
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because then (1.3) holds, and the generator claimed for Aθ
n(t) is correct. We can equivalently

show that

(j + 1)(j + θ)

2
Hθ

n,j+1(z) =
1

8
(θ + 2j − 1)2Hθ

n,j (z)−
1

2
zHθ ′

n,j (z)−
1

2
z2Hθ ′′

n,j (z). (A.20)

Let
Kθ

n,j (z) = z(θ+2j−1)/2(1− z)F (−n+ j + 1, θ + 2j ; n+ j + θ; z).
Then

Hθ
n,j =

�(n+ θ)�(2j + θ)

�(j + θ)�(n+ j + θ)

(
n

j

)
Kθ

n,j

and (A.20) is equivalent to

(2j + θ)(2j + θ + 1)(n− j)

n+ j + θ
Kθ

n,j+1(z) =
1

4
(θ + 2j − 1)2Kθ

n,j (z)− zKθ ′
n,j (z)− z2Kθ ′′

n,j (z).

(A.21)
Now, Kθ

n,j (z) = K
θ+2j
n−j,0 because of its functional form, and the coefficients in (A.21) are also

functions of n− j and θ + 2j . It is therefore sufficient to show that (A.21) holds when j = 0,
because then we can replace n by n− j and θ by θ + 2j to obtain the general form. That is, it
is sufficient to show that

nθ(θ + 1)

n+ θ
Kθ

n,1(z) =
1

4
(θ − 1)2Kθ

n,0(z)− zKθ ′
n,0(z)− z2Kθ ′′

n,0(z). (A.22)

The proof now uses the hypergeometric identity (2.11) to express Kθ
n,1(z) (on the left-hand

side) in terms of Kθ
n,0(z) and Kθ ′

n,0(z). This is based on the equations

Kθ
n,0(z) = z(θ−1)/2(1− z)(1+ z)−θF

(
θ

2
,
θ + 1

2
; n+ θ; 4z

(1+ z)2

)
,

Kθ
n,1(z) = z(θ+1)/2(1− z)(1+ z)−(θ+2)F

(
θ

2
+ 1,

θ + 1

2
+ 1; n+ θ + 1; 4z

(1+ z)2

)
,

and

F ′
(

θ

2
,
θ + 1

2
; n+ θ; 4z

(1+ z)2

)

= θ(θ + 1)

4(n+ θ)

4(1− z)

(1+ z)2 F

(
θ

2
+ 1,

θ + 1

2
+ 1; n+ θ + 1; 4z

(1+ z)2

)
.

Using the hypergeometric differential equation

z(1− z)F ′′ + [n+ θ + (n− θ − 2)z]F ′ + (n− 1)θF = 0,

with F = F(−n+ 1, θ; n+ θ; z), we also express Kθ ′′
n,1(z) (on the right-hand side) in terms of

Kθ
n,0(z) and Kθ ′

n,0(z), to show that (A.22) holds. Much algebraic manipulation shows that both
sides of (A.22) are equal to

−nz(1−z)−1(1+z)

[
θ − 1

2
z−1−(1−z)−1−θ(1+z)−1

]
Kθ

n,0(z)+nz(1−z)−1(1+z)Kθ ′
n,0(z),

(A.23)
completing the proof.
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