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Abstract
We prove that if a unimodular random graph is almost surely planar and has finite expected degree, then
it has a combinatorial embedding into the plane which is also unimodular. This implies the claim in the
title immediately by a theorem of Angel, Hutchcroft, Nachmias and Ray [2]. Our unimodular embedding
also implies that all the dichotomy results of [2] about unimodular maps extend in the one-ended case to
unimodular random planar graphs.
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1. Introduction, definitions
1.1 Results andmotivation
By a unimodular random planar graph (URPG), we mean a unimodular random graph that is
almost surely planar. Such a graph is called sofic if it has a local weak approximation by a sequence
of finite graphs. See Subsection 1.2 for the precise definitions. We will prove the following.

Theorem 1. Every unimodular random one-ended planar graph G is sofic.

A subgraph H of a rooted graph (G, o) is a unimodular subgraph if their joint distribution
(G with indicator marks for the subgraph) is unimodular. This also implies that (Ho, o) is uni-
modular, where Ho is the component of o in H. The local weak limit of convergent unimodular
random graphs is unimodular, and by restrictingG to its subgraph induced by vertices of degree at
most k, we get a sequence Gk that converges to G, so it is enough to prove the theorem for graphs
of bounded degree. Unimodular trees are sofic, as proved by Elek [11] relying on a method by
Bowen [6]. An alternative proof was given in [3]. This implies, as shown by Elek and Lippner in
[13], that the existence of a unimodular spanning tree is sufficient for soficity. Hence Theorem 1
follows from the next theorem.

Theorem 2. Every unimodular random one-ended planar graph G of finite expected degree contains
a unimodular spanning tree.

Given a graph H, an end of H is an equivalence class of infinite non self-intersecting paths,
where two such paths are equivalent if there is a third one that intersects both of them infinitely
many times. A unimodular graph has either 0 (the finite case), 1, 2 or infinitely many ends [1].

Our main contribution is the following theorem. We provide the definitions after the theorem.
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Theorem 3. Let G be a locally finite unimodular random planar graph. Then G has a unimodular
combinatorial embedding into the plane.

A planar map is defined as a proper embedding of a locally finite planar graph G into an open
subset U of the sphere, up to orientation-preserving homeomorphisms, and with the property
that every compact set of U is intersected by finitely many embedded edges, and every face (com-
ponent ofU minus the embedded graph) is homeomorphic to an open disk. We call a planar map
simply connected if the union of the closure of the faces of the map is homeomorphic to either the
entire sphere, or the sphere minus one point. If (after applying the homeomorphism, if necessary)
one projects this embedding on the plane stereographically from this exceptional point (or an
arbitrary point outside of the embedded graph, if there is no exceptional point), one gets a planar
embedding with the property that every compact set is intersected by finitely many edges. We will
also apply the term simply connected to an embedding of a graph, if the planar map defined by it
is simply connected.

There is a combinatorial definition of embeddings: a combinatorial embedding is a collection of
cyclic permutations πv on the set of edges incident to v, as v ∈V(G), and we call this combinatorial
embedding planar if there is an embedding of G into the sphere where the clockwise cyclic order
of the edges around v is πv. It is clear that every embedding defines a combinatorial embedding (if
we take the cyclic permutation of edges by reading them clockwise around the embedded vertex),
and conversely, any combinatorial embedding can be generated by some actual embedding, by
definition. Using these permutations, one can give a combinatorial definition of faces: walk along
edges, and when walking along e and reaching endpoint v, continue along πv(e). See e.g. [16] for
a more precise definition. If a combinatorial embedding is generated by a planar map, the faces of
the map are in natural bijection with the combinatorial faces. Conversely, a planar combinatorial
embedding defines a unique planar map, which can be obtained if for every combinatorial face
we take a disk, and glue its boundary along the face. Given a combinatorial embedding, defined
by permutations πv as v ∈V(G), we call this combinatorial embedding unimodular if the πv as
markings on the vertices define a unimodular marked graph, and if this holds, we also call the
resulting rooted planar map unimodular.

In [2] Angel, Hutchcroft, Nachmias and Ray prove that every simply connected unimodular
random rooted planar map is sofic. A unimodular randommap that represents a one-ended graph
is automatically simply connected (Proposition 5), hence Theorem 4 applies to it.

In this paper the only type of embeddings that we consider are combinatorial embeddings, and
specifically, unimodular ones. About actual embeddings that are unimodular or invariant with
regard to the automorphisms of G or the underlying space, we refer the reader to joint works of
the author with Benjamini [4] and with Tóth [20].

The next theorem is essentially Theorem 5.13 and Theorem 2 in [2].

Theorem 4. (Angel, Hutchcroft, Nachmias, Ray [2]). If G has finite expected degree and it can be
represented by a simply connected unimodular random rooted planar map, then the free uniform
spanning forest of G is a unimodular spanning tree almost surely. Consequently, G is sofic.

Conley, Gaboriau, Marks and Tucker-Drob, [8] have proved results related to Theorem 4. In
our setup these can be vaguely phrased as follows: a unimodular simply connected planar map has
some unimodular spanning tree, under certain mild conditions. Their paper is in the context of
Borel graphs, and they consider graphs with a Borel 2-basis for the cycle space, which is equivalent
to the existence of a Borel embedding that defines a simply connected planar map by a result of
Thomassen [18], see [8]. They prove that if such an embedding exists and the graph is locally finite
and not two-ended, then it has a Borel spanning forest with only one-ended trees. This defines a
one-ended spanning tree for the dual graph. In [8], it is also shown that Theorem 2 (and hence
Theorem 1) holds for the case of planar Cayley graphs.
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Figure 1. A representation of (part of the) same infinite graph by a simply connected map (on the left) and by one that is
not. The embedding on the left is unimodular (being an atomic probability measure on a single decorated graph), and we
canmake the one on the right unimodular by deciding for each triangle� indepedently how its three neighbouring triangles
should bemappedwith regard to the two components of the sphereminus�. Aftermaking these decisions for every triangle,
the combinatorial embedding is determined up to orientation, and one can decide about the latter by a coin flip.

Suppose that a URPGG has a unimodular embedding into the plane. Then Theorem 4 provides
us with a sufficient condition to be sofic: whenever this embedding is simply connected. The graph
structure of G does not directly determine whether the embedding is simply connected. To see
this, consider the Cayley graph corresponding to < a, b | a3, b3 >, which is the free product of
two copies of the 3-element cyclic group. (Recall that if two groups G1 =< S1 | R1 > and G2 =<

S2 | R2 > are given in terms of defining relators, where Si is a generatings set for Gi and Ri are
defining relators, then the free product of G1 and G2 is < S1, S2 | R1, R2 >.) This graph does have
unimodular embeddings that are simply connected and that are not (Figure 1 hints the proof of
this claim, with the explanation below it). As the next observation shows, for one-ended URPG’s,
any unimodular embedding is simply connected. This is close to a characterisation, because ‘most’
URPG’s with 2 or infinitely many ends can only be embedded in the sphere with more than 1
accumulation points of edges, and hence there is no simply connected planar map that would
represent them. See Remark 6 for more on the existence of simply connected embeddings.

Proposition 5. Let G be a one-ended URPG that has a unimodular combinatorial embedding into
the plane. Then this embedding defines a simply connected planar map.

Proof. The planar map defined by a combinatorial embedding of G can only be a surface that
is compact or one-ended (as a topological space). Otherwise one could find finitely many faces
whose removal cuts the surface into at least two pieces that each contain infinitely many faces,
and hence G would have at least two ends. The only compact planar surface is the sphere, and
the only one-ended planar surface is the sphere minus one point, as explained in Section 7 of [2]
based on [5]. �

Hence, if G also has finite expected degree, the conclusion of Theorem 4 holds. To illustrate
that the one-endedness assumption cannot be omitted in general, note that the Cartesian product
of a 3-cycle with a biinfinite path or the Cartesian product of one edge and a 3-regular tree are
planar, but they cannot be represented by simply connected planar maps.

Remark 6. One-endedness is a sufficient condition for a locally finite graph to have some simply
connected embedding, but not a necessary one. In [20] a graph theoretical characterisation is given
for the existence of a simply connected embedding. Then it is shown, based on the method of
Section 2, that URPG’s that have some simply connected embedding also have a simply connected
unimodular combinatorial embedding. (The construction for Theorem 3 may give a unimodular
embedding that is not simply connected, unless some extra care is taken.) Theorems 2 and 1
remain true for these URPG’s as well, by the same argument as here.

Theorem 3 has some further corollaries. Without loss of generality we will assume that our
URPG is ergodic (extremal), and will skip saying ‘almost surely’.

https://doi.org/10.1017/S0963548323000159 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000159


854 Á. Timár

Corollary 7. The dichotomy results of Theorem 1 in [2] are valid for every unimodular random
one-ended planar graph G. In particular, the following are equivalent.

• G is invariantly amenable;
• there is a unimodular planar map with average curvature 0 that represents G;
• every harmonic Dirichlet function is a constant;
• Bernoulli(p) percolation has at most one infinite component for every p ∈ [0, 1] almost surely.

Proof of Theorem 2. It follows from Theorem 4, Proposition 5 and Theorem 3. �
Proof of Theorem 1. Follows from Theorem 2 essentially by [13]. See Section 8 of [2] for an
elaboration of this implication and further references. A brief sketch of the proof is the following.
Every unimodular random tree is strongly sofic, i.e., for any unimodular decoration of the tree
there exists a sofic approximation by finite decorated graphs. Once we have a unimodular span-
ning tree T in a unimodular graph G, we can encode G as a unimodular decoration of T, and from
the finite decorated graphs approximating this decorated T, we can obtain a sequence of finite
graphs approximating G. �

In an earlier version of this manuscript [19], we erroneously claimed that we can prove
Theorems 1 and 2 without the assumption of one-endedness. The argument was based on a
unimodular tree-like decomposition of G to pieces that are finite or one-ended, but a mistake
was found, so it remains open whether such a decomposition exists for an arbitrary unimodular
random graph (or at least planar ones), and whether URPG’s with infinitely many ends are sofic.

1.2 Unimodular random graphs, soficity
Given a graphH, x ∈V(H), r ∈R

+, denote by B(H, x, r) the ball of radius r around x inH. Let G∗
be the set of all locally finite rooted graphs up to rooted isomorphism (isomorphism preserving
the root). For a rooted graph (G, o), we denote the respective element (equivalence class) of G∗ by
[G, o], but if there is no ambiguity, we usually just refer to the equivalence class by (G, o) orG. One
can make G a metric space by defining the distance between two elements (G, o) and (G′, o′) by
inf{2−r : B(G, o, r)∼= B(G′, o′, r)}, where ∼= is the relation of being rooted isomorphic. A probabil-
ity measure on G is called a random rooted graph. One may also consider marked rooted graphs,
in which case marks (labels) coming from some fixed metric space are also present on some ver-
tices and/or edges. The definitions naturally extend to this setup. Consider a sequence Gn of finite
graphs, and let on be a uniformly chosen vertex of Gn. We say that Gn converges to a random
rooted graph G= (G, o) in the local weak (or Benjamini–Schramm) sense if for any finite rooted
graph (H, o′), P(B(Gn, on, R)∼= (H, o′))→ P(B(G, o, R)∼= (H, o′)). In other words, the probability
measure corresponding to (Gn, on) weakly converges to the probability measure corresponding to
(G, o). If a given random rooted graph G= (G, o) is the Benjamini–Schramm limit of a sequence
of finite graphs, we call it sofic.

Similarly to G∗, define G∗∗ as the set of graphs with an ordered pair of vertices, up to iso-
morphisms preserving the ordered pair. Suppose that G0 is a finite graph, o0 ∈V(G) a uniformly
chosen root, and μ the probability measure on G∗ that samples (G0, o0). For any Borel f : G∗∗ →
[0,∞], we have the equation

∫ ∑
x∈V(G)

f (G, o, x)dμ([G, o])=
∫ ∑

x∈V(G)
f (G, x, o)dμ([G, o]), (1)

because both sides are equal to |V(G0)|−1 ∑
x,y∈V(G0) f (G0, x, y). Given a probability measure μ

on G∗, referred to as a random rooted graph, we say that it is unimodular if (1) holds. It is easy
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to check that sofic graphs are unimodular. A major open question is whether the converse is also
true.

Question 8. (Aldous, Lyons [1]) Is every unimodular random (marked) graph sofic?

Whether the Cayley diagram of a group is sofic is a central question itself, and large classes of
groups are known to be sofic; see [17] for references or [12] for some more recent examples.
In the class of planar unimodular random graphs that are known to be sofic are unimodular
random trees ( [6], [11]), or Curien’s Planar Stochastic Hyperbolic Triangulations [9], whose
approximability by uniform random triangulations of appropriate genus was shown recently
in [7].

2. Unimodular combinatorial planar embeddings for unimodular random planar
graphs

In this section, we prove Theorem 3. Our strategy is as follows. First, it is enough to focus on 2-
connected graphs, because one can decompose any connected graph to 2-connected components
that may intersect only in cut-vertices, and once we have a unimodular combinatorial embed-
ding for all the 2-connected components, we can extend it to one for the entire graph by taking
suitable random permutations of the edges on each of these cutvertices independently. Now,
for a 2-connected graph we can take its decomposition to 3-connected components (Theorem
10). For the 3-connected components the existence of a unimodular combinatorial embedding is
straightforward, because they have a unique combinatorial embedding up to a reversal of orien-
tation (Theorem 9). Then we can put together the combinatorial embedding of the 2-connected
supergraph from these, using the mentioned decomposition and some local random choices.

2.1 Some tools: Whitney’s theorem, generalised Tutte decomposition
The following theorem was first proved by Whitney for finite simple graphs, and then generalised
(to a broader setting than the one below) by Imrich, [15]. Recall that having a unique combinato-
rial embedding up to orientation is the same as having a unique embedding into the plane up to
homeomorphisms.

Theorem 9. (Whitney, Imrich). Let G be a 3-connected locally finite planar simple graph. Then
G has two combinatorial embeddings into the plane, and one arises from the other by inverting all
permutations.

Now, if one allows (finite bundles of) parallel edges, the theorem remains valid, with the only
modification that all the parallel edges between vertices v and w appear in some consecutive order
in the πv and πw, and the uniqueness of the embedding holds up to arbitrary permutations within
these bundles of parallel edges. In what follows, we will apply the theorem in that sense: whenever
we take the ‘unique’ combinatorial embedding of the graph, we mean the random embedding where
we first (uniquely) embed the corresponding simple graph, and then add the parallel copies of each
edge with a uniform random permutation on them.

The Tutte decomposition of a finite graph was developed by Tutte in [21] and the uniqueness
of the decomposition was shown in [14]. In [10], Droms, Servatius and Servatius extended the
results to infinite locally finite graphs. After preparing the necessary terminology, we will quote
their result. More details are found in [10].

Given some graph G, a block of G is a maximal 2-connected subgraph of G (with respect to
containment). A multilink is a pair of adjacent vertices together with all of finitely many parallel
edges between them. A 3-block is a graph which is a cycle, a finite multilink or a locally finite
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Figure 2. Amalgamating two graphs. When both of them come with a combinatorial planar embedding, one obtains a
combinatorial embedding of the amalgamated graph.

3-connected graph, and has at least three edges. We mention that by definition both blocks and
3-blocks are allowed to be infinite.

Suppose that A and B are two disjoint graphs, and there is a function f that picks one edge fA
fromA, assigns a tail f−A and a head f+A to it, and picks an edge fB from B and assigns a tail f−B and a
head f+B to it. Then define the edge amalgam of A and B over f as the union of the graphs on A and
B, with f−A identified with f−B and f+A identified with f+B , and fA and fB removed. See Figure 2 for
an illustration. We denote the edge amalgam of A and B by A+f B or simply A+ B. It is easy to
check that A+ B is 2-connected if and only if A and B are both 2-connected. We call a countable
labelled tree T an edge amalgam tree if every vertex α ∈V(T) is labelled by a graph Gα (finite or
infinite) which are pairwise disjoint, every edge {α, β} ∈ E(T) is labelled by a function f = f (α, β)
that defines an edge amalgam of Gα and Gβ , and finally, every edge e of Gα is amalgamated to at
most one other edge, or more precisely, there is at most one function f and Gβ such that Gα and
Gβ get amalgamated along e (meaning fGα = e). If there is exactly one such f , then we call e virtual.
One can perform amalgamation over all the edges of T in some order, and the end result will be
independent from the order in which the edges of T are chosen, by the last condition. Moreover,
an edge will be present in the final graph �(T) if and only if it is not virtual.

In [10] a 3-block tree is defined, as an edge amalgam tree (where the tree may not be locally
finite), where every label Gα is a 3-block, and no two multilinks or two cycles are neighbours in T.
This latter requirement is only important because it ensures the following uniqueness theorem.

Theorem 10. (Droms, Servatius, Servatius, [10]). To any locally finite 2-connected graph G there
corresponds a unique 3-block tree T such that �(T)=G.

We mention that in [10] the definition of a 3-block tree contains two more conditions than
here, whose importance is explained in the discussion after the defininition in Section 3 of [10].
The first one (condition 2) is needed to make sure that a 3-block tree always give rise to a 2-
connected graph. This is for a direction that we do not need, because we start from a 2-connected
graph. The other one (condition 3) is needed to avoid vertices of infinite degree. This possibility
is excluded in the setup of Theorem 10). Thus, we decided to take the simplified definition for a
3-block tree, which agrees with the original definition in the setup that we have.

2.2 A unimodular combinatorial embedding

Lemma 11. If G is a 3-connected URPG and it is a simple graph, then the combinatorial embedding
in Theorem 9 is unimodular. Consequently, Theorem 3 holds for G.

Proof. Fix an instance of (G, o); we will show that a large enough neighbourhood of o determines
πo, up to taking the inverse permutations (which we do not mention going forward; we will just
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flip a coin at the end to decide which of the two to chose). Let G1 ≤G2 ≤ . . . be a finite exhaustion
of G, with o ∈G1. Fix a neighbour x of o arbitrarily. By the 3-connectedness of G, there exist three
pairwise inner-disjoint paths between o and x, and so there is an N such that Gn contains all these
paths if n>N. In the 3-block tree decomposition ofGn, n>N, o and x have to belong to the same
3-block (otherwise there is a 2-point separating set between them, more specifically, the endpoints
of a virtual edge of the block that contains one of them). So, since x was arbitrary, if n is large
enough, all the neighbours of o are in the same 3-block Bn as o in the 3-block tree decomposition
of Gn, and this 3-block is 3-connected (and not a cycle or multilink, by construction). The Bn has
a unique embedding by Theorem 9. Although Bn is not a subgraph of Gn, it is easy to see that it is
a topological subgraph of Gn (that is, one can replace all the virtual edges of Bn by pairwise inner-
disjoint paths in Gn). Then, it is also a topological subgraph of G, because Gn ≤G. Therefore, the
topological subgraph of G that is isomorphic to Bn is also uniquely embedded in the plane. This
implies that the permutation on the neighbours of o defined by the unique embedding of G is the
same as the one defined by the embedding of Gn. This holds for any n>N proving our claim. �
Lemma 12. Let T be a 3-block tree consisting of a single edge {α, β}. Then for any combinatorial
embedding πGα of Gα and πGβ of Gβ into the plane, there is a combinatorial embedding of Gα +
Gβ in the plane whose restriction to Gα is πGα , and restriction to Gβ is πGβ . Here uniqueness is
understood modulo permutations within bundles of parallel edges.

More generally, if T is a finite 3-block tree and a combinatorial embedding πGα is given for every
Gα , then �(T) has a unique combinatorial embedding in the plane whose restriction to Gα is πGα

for every α ∈V(T). One can obtain this embedding by repeatedly applying the previous paragraph
to the edges of T, in an arbitrary order.

Proof. Denote A=Gα and B=Gβ , and let πA and πB be the respective combinatorial embed-
dings. Let fA, fB, f−A , f+A , f−B and f+B be as in the definition of the edge-amalgam tree. Let v− be the
vertex that f−A and f−B is merged into, after the amalgamation. By symmetry, it suffices to define
πA+B
v− . Suppose that the cyclic permutation πA

f−A
is (fA, e1, . . . , ek), and the cyclic permutation πB

f−B
is (fB, f1, . . . , f�). Then define πA+B

v− as the permutation (e1, . . . , ek, f1, . . . , f�).
The second part follows by induction. �

Proof of Theorem 3. First suppose thatG is 2-connected. Consider the unique 3-block tree T that
corresponds to G, as in Theorem 10. Note that we can view T as a decoration of G, by defining
a set system over G where every 3-block is represented by a subgraph of G, the one that results
from this 3-block after the repeated amalgamations. This decoration is locally determined by G:
we only have to find 3-connected components. Whether x and y are in the same 3-connected
component, which happens if and only if there are three inner-disjoint paths between them, can be
determined from a large enough neighbourhood, up to a small error. To summarise: T, if thought
of as a decoration of G, is jointly unimodular with G, and hence we can rely on it in the following
construction.

Given some T′ ⊂ T, denote by virt(T′) the set of virtual edges in ∪
α∈V(T′)E(Gα). For every

α ∈V(T) fix a combinatorial embedding πGα of Gα in the sphere, as follows. If Gα is a multilink,
take a uniform cyclic permutation of its edges; if Gα is a 3-connected graph, take uniformly one of
the two combinatorial embeddings (as in Theorem 9); and if Gα is a cycle, take its unique combi-
natorial embedding. Then, by Lemma 12, for any finite subtree T′ ⊂ T, there exists an embedding
of the graph �(T′) in the sphere such that the orientation that this embedding generates when
restricted to Gα is πGα , for every α ∈V(T′). Taking an exhaustion of T by finite subtrees T′, this
gives rise to an embedding of G∪ virt(T) with similar properties. For every vertex of G, the limit-
ing permutation for the combinatorial embedding is reached in a finite number of steps, hence the
limit does not depend on the particular exhaustion taken. The resulting combinatorial embedding
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is unimodular: the only non-deterministic part is the embedding of the 3-blocks at the begin-
ning. When the 3-block is finite, its embedding is trivially unimodular, and when it is infinite
3-connected, then apply Lemma 11.

Suppose now that G is an arbitrary connected graph. For each 2-block C pick a unimodular
random combinatorial embedding πC. Such an embedding exists, as we have just seen. Consider
an arbitrary cutvertex v ∈V(G). Let C1, . . . , Ck be a listing of the 2-connected components of G
that contain v. Denote by Ni the edges of Ci that are incident to v.

For each i ∈ {1, . . . , k}, pick an ei1 ∈Ni uniformly and independently, and let ei1, e
i
2, . . . ,

ei|Ni| be the listing of the elements of Ni in the order given by πCi . Take a uniform cyclic per-
mutation δ of {1, . . . , k}. Define the cyclic ordering e11, e

1
2, . . . , e

1|N1|, e
δ(1)
1 , eδ(1)2 , . . . , eδ(1)|Nδ(1)|, . . . ,

eδ
(k−1)(1)
1 , eδ

(k−1)(1)
2 , . . . , eδ

(k−1)(1)
|N

δ(k−1)(1)| on the edges incident to v, and call this ordering σv. Because of
the tree-like structure that cutvertices define on a graph G, the permutations (σv)v∈V(G) define a
combinatorial embedding of G into the plane. For similar reasons as in the 2-connected case, the
resulting combinatorial embedding is unimodular. �
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